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1. Brief summary on the standard cosmology

Before discussing the braneworld cosmology, we first summarize the standard 
cosmology in four-dimensional flat space

Friedmann equation

Continuity equation

in terms of the cosmological time

Standard cosmology relying on the matter content

1. Inflation with :

2. radiation-dominated era :

3. matter-dominated era :



2. Braneworld model

We take into account another model called the braneworld or RS model, which can 
describe the expanding universe of the dual QFT.

Let us first assume that M± are two five-dimensional bulk spaces with each own well-
defined metric, g_(±)MN, and that they are bordered through a four-dimensional brane 
∂M.

aAdS_5 aAdS_5

4-dim. Brane in 
which we live 



Radial motion of a brane in the braneworld model
Assume that the bulk has the following general metric

The Israel junction equation governs the motion of the brane

: tension of the brane
: induced metric on the brane

Introducing a cosmological time on the brane

the induced metric on the brane becomes the FRLW metric form

The scale factor is determined by the Israel junction equation



How can we realize the standard cosmologies on the brane?

In order to realize the matter in the braneworld model, we consider uniformly distributed 

open strings which can be identified with fundamental matter.

ds2 =
z02 + 1

z2
dx2 (1)

x z
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Open string

and the rest one at the AdS boundary. On the dual field theory side, this geometry results in

the SU(Nc) gauge theory with a fundamental matter. In this case, the fundamental matter

has an infinitely large mass proportional to the Higgs vev and its degree of freedom is linearly

proportional to Nc. For a general (d+1)-dimensional case, the corresponding geometry can be

realized by adding open string actions to the AdS geometry
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where gµ⌫ and h↵� indicate a (d+1)-dimensional bulk metric and an induced metric on a open

string, respectively. In front of the open string action, we multiplied a factor (d � 1)/4 for

later convenience. This model has been known as a string cloud [5]. Above the second term

corresponds to a sum of all open strings with a string tension Ti. From this action, the Einstein

equation including the gravitational backreaction of open strings reads
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In the static gauge with t = ⇠
0 and z = ⇠

1, assuming that strings have the same tension T

and are uniformly distributed over (d� 1) spatial directions, the density of open strings can be

represented as
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where we set 8⇡G = 1 and V
(d�1) indicates a (d� 1)-dimensional volume orthogonal to ⇠

↵.

Intriguingly, this open string configuration allows the following solution satisfying the weak

and dominant energy conditions only for positive ⇢ [5, 6],

ds
2 =

R
2

z2

✓
�f(z)dt2 +

1

f(z)
dz

2 + �ijdx
i
dx

j

◆
, (23)

where a nontrivial metric factor is given by

f(z) = 1� ⇢z
d�1

. (24)

This solution resembles a black hole solution due to the existence of a horizon. In general, a

black hole solution arises when a matter field is well localized to the inside of the horizon. Thus,

we cannot generally expect the existence of a black hole without such a localized matter at least

in a flat spacetime. However, this is not the case for the AdS geometry. The nontrivial warping
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This solution resembles a black hole solution due to the existence of a horizon. In general, a

black hole solution arises when a matter field is well localized to the inside of the horizon. Thus,

we cannot generally expect the existence of a black hole without such a localized matter at least

in a flat spacetime. However, this is not the case for the AdS geometry. The nontrivial warping

factor of the AdS geometry allows the uniformly distributed matter to be e↵ectively localized

at the center and results in the black hole horizon, as shown above. In the holographic QCD,

the hard wall model is dual to a confining phase, while the black hole geometry is matched to a

deconfining phase. Even at zero temperature, the QCD phase diagram shows that there exists

a deconfinement phase transition at a certain critical density. This fact implies that even at

zero temperature one can still utilize a black hole solution in order to describe the deconfining

phase of QCD. The string cloud geometry can also show the similar feature. In this work, we

will investigate quantum aspects of this model by using the holographic entanglement entropy.

Before closing this section, we summarize thermodynamic properties of the string cloud

geometry. Due to the existence of the horizon, we can apply the thermodynamics law and read

various thermodynamic properties. From the above geometric solution, the horizon appears at
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Then, the regularity at the horizon leads to the following e↵ective Hawking temperature
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Using the density of the open string, the Einstein equation reduces to

3 Gravity dual of heavy quark matter

In the AdS/CFT context, an asymptotic AdS space usually plays an important role in under-

standing a strongly interacting dual CFT. In the previous section, we studied the entanglement

entropy of the quantum field theory with and without a mass gap. We showed, as expected,

that the mass gap breaks the conformal symmetry at low energy scale and generates a nontriv-

ial RG flow. However, it was not clarified what the origin of such a mass gap is. In general,

the AdS geometry is too simple to clarify the mass gap. Thus, we should inevitably take into

account an appropriate matter field. In general, the gravitational backreaction of the matter

field modifies the pure AdS geometry to another one like a black hole or star. In this case,

the mass gap of the quantum field theory can be mapped to the star geometry with a hard

core on the dual gravity side. In addition, the IR cuto↵ we introduced corresponds to the hard

wall (or surface) of the star. In the previous section, since we did not take into account such a

matter e↵ect, the previous results are valid only when the matter’s gravitational backreaction

is negligible, for example, in the low density limit. In this section, we will further consider a

more realistic stringy setup including a mass gap together with its gravitational back reaction.

When Nc+1 D3-branes are located at the center on top of each others, the five-dimensional

AdS space naturally appears as the near horizon geometry. In this case, the AdS radius is

associated with the number of D3-branes, R2
⇠ Nc + 1, and Nc + 1 corresponds to the rank

of the SU(Nc + 1) gauge group of the dual field theory. If we pull one of them out and send

it to the AdS boundary, the gauge group is broken into SU(Nc) ⇥ U(1) with a Higgs vacuum
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proportional to Nc. For a general (d+1)-dimensional case, the corresponding geometry can be

realized by adding open string actions to the AdS geometry

S =
1

16⇡G

Z
d
d+1

x
p
�g (R� 2⇤)�

d� 1

4

X

i

Ti

Z
d
2
⇠

p
�hh

↵�
@↵X

µ
@�X

⌫
gµ⌫ , (19)

where gµ⌫ and h↵� indicate a (d+1)-dimensional bulk metric and an induced metric on a open

string, respectively. In front of the open string action, we multiplied a factor (d � 1)/4 for

later convenience. This model has been known as a string cloud [5]. Above the second term

corresponds to a sum of all open strings with a string tension Ti. From this action, the Einstein

equation including the gravitational backreaction of open strings reads

Rµ⌫ �
1

2
Rgµ⌫ + ⇤gµ⌫ = 8⇡GTµ⌫ , (20)

6
with the following open string’s energy-momentum tensor

Intriguingly, this Einstein equation allows the following exact solution

with

T
µ⌫ = �

(d� 1) ⇢

2

p
�h

p
�g

h
↵�
@↵X

µ
@�X

⌫
. (21)

In the static gauge with t = ⇠
0 and z = ⇠

1, assuming that strings have the same tension T

and are uniformly distributed over (d� 1) spatial directions, the density of open strings can be

represented as

⇢ =
T

V (d�1)

X

i

�
(d�1) (x�Xi) , (22)

where we set 8⇡G = 1 and V
(d�1) indicates a (d� 1)-dimensional volume orthogonal to ⇠

↵.

Intriguingly, this open string configuration allows the following solution satisfying the weak

and dominant energy conditions only for positive ⇢ [5, 6],

ds
2 =

R
2

z2

✓
�f(z)dt2 +

1

f(z)
dz

2 + �ijdx
i
dx

j

◆
, (23)

where a nontrivial metric factor is given by

f(z) = 1� ⇢z
d�1

. (24)

This solution resembles a black hole solution due to the existence of a horizon. In general, a

black hole solution arises when a matter field is well localized to the inside of the horizon. Thus,

we cannot generally expect the existence of a black hole without such a localized matter at least

in a flat spacetime. However, this is not the case for the AdS geometry. The nontrivial warping

factor of the AdS geometry allows the uniformly distributed matter to be e↵ectively localized

at the center and results in the black hole horizon, as shown above. In the holographic QCD,

the hard wall model is dual to a confining phase, while the black hole geometry is matched to a

deconfining phase. Even at zero temperature, the QCD phase diagram shows that there exists

a deconfinement phase transition at a certain critical density. This fact implies that even at

zero temperature one can still utilize a black hole solution in order to describe the deconfining

phase of QCD. The string cloud geometry can also show the similar feature. In this work, we

will investigate quantum aspects of this model by using the holographic entanglement entropy.

Before closing this section, we summarize thermodynamic properties of the string cloud

geometry. Due to the existence of the horizon, we can apply the thermodynamics law and read

various thermodynamic properties. From the above geometric solution, the horizon appears at

zh =
1

⇢1/(d�1)
. (25)

Then, the regularity at the horizon leads to the following e↵ective Hawking temperature

TH =
d� 1

4⇡zh
=

(d� 1) ⇢1/(d�1)

4⇡
. (26)

7

with

which is called the string cloud geometry. This string cloud geometry looks like a black hole 

geometry.

(cf.                               for a Schwarzschild BH)f(z) = 1�mzd
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In the present model, we considered uniformly distributed strings.

In a flat geometry, the uniformly distributed matter cannot make a black hole because it 

requires a well localized matter.

However, this is not true for the AdS sapce due to the nontrivial warping factor.

open strings in a flat space open strings in an AdS space

black hole

z = 1



We can also introduce a localized matter corresponding to a black hole mass m

Then, the dual geometry represents a quark-gluon plasma 

- open strings : fundamental matter (quark, massive matter)

- black hole mass : adjoint matter (radiation, gluon)

A generalized string cloud geometry



In a generalized string cloud geometry, the junction equation reduces to 

The induced metric on the brane becomes

Possible cosmologies in the braneworld model

1. Time-independent universe

For an AdS space with                      , if the brane has a critical tension 

the brane does not move and the scale factor of the brane world becomes time-

independent



2. Eternal inflationary era

For an AdS space with                      , if the brane has a non-critical tension 

the radial motion of the brane determines the cosmology on the brane

with a Hubble constant

3. Matter-dominated era

Taking                                , the open string’s density determines the radial motion of 

the brane

In this case, the scale factor results in 



4. Radiation-dominated era

In the string cloud geometry with              and            , the brane’s radial motion is 

determined by

The solution of this junction equation is

which corresponds to the radiation-dominated era, as expected.

Now, let us consider the time-dependent entanglement entropy in the above 

expanding universes

- To do so, we introduce a new coordinate

- It is worth noting that the RT formula is sufficient to calculated the time-dependent 

entanglement entropy in the braneworld model, because the bulk geometry is time-

independent. 
- Time-dependence of the entanglement entropy comes from the time-dependent 

boundary condition.



Time-independent entanglement entropy in a static geometry

- Divide the system into two parts, a subsystem and its complement, and 

parameterize the subsystem size as

For a five-dimensional AdS space

- The entanglement entropy is determined by

- The equation governing the minimal surface configuration is

- The minimal surface configuration satisfies

- Finally, we obtain a time-independent entanglement entropy

where     indicates the position of the boundary.



1. Time-dependent entanglement entropy in the inflating universe

For an eternally inflating universe in the braneworld model, the bulk geometry is 

given by the same AdS geometry. Thus, the previous time-independent solution is 

still applicable. However, the brane moves in the braneworld model, we impose a 

time-dependent boundary condition

- The brane, which plays a role of the boundary for the minimal surface, moves in 

the braneworld model

- In the late time era of the eternal inflation, the time-dependent entanglement 

entropy finally reduces to

- This result is consistent with the one obtained in the previous dS boundary model.

3. Time-dependent entanglement entropy in expanding universes



2. Entanglement entropy in the radiation- and matter-dominated eras

The entanglement entropy is given by

where

2-1. In the radiation-dominated era

- The brane position is determined as

- In the late time era, the entanglement entropy increases linearly with time



2-2. In the matter-dominated era

- The brane position is determined to be

- In the late time era, the entanglement entropy increases by 



4. Discussion

- We have studied the time-dependent entanglement entropy in expanding 

universes by applying two different holographic models

- Despite the fact that they are casually disconnected, the quantum correlation 

leads to non-vanishing entanglement entropy, which increases with time in 

expanding universes: 

- For eternal inflation,

- In the radiation-dominated era,

- In the matter-dominated era,
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