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information loss paradox  1

conventional model: 

For a huge black hole,


collapsing matter feels nothing


when crossing (uneventful) horizon


(similar to a classical black hole).


Q:  How is info transferred to HR?


a question about the conventional model.
[Hawking 76]



information loss paradox  2

We can be passing through the horizon right now!

information of EVERYTHING

A black hole can be arbitrarily large so that

surface gravity is smaller than that on earth.

Astrology can be true?

Stringy effect?



information loss paradox  3

string theory or holographic principle:

[Strominger-Vafa 96, Maldacena 98, Witten 98, Gubser-Klebanov-Polyakov 98]


information must come out as Hawking radiation. [’t Hooft, Susskind, …]


Why should people care about it?   [Mathur 09, Polchinski 16, Marolf 17]


decoupling principle: 

Without high-energy events, string theory is irrelevant.


    Unitarity should hold in effective field theory (EFT).⇒



information loss paradox  4

singularity resolved 
in UV theory

[Hawking 76]

no event horizon



information loss paradox  5

Assuming uneventful horizon,

how is the info of collapsed matter transferred into Hawking radiation? 

Need drama at horizon. [Mathur 09]



argument 1 for high energy
charge conservation of global symmetries (e.g. baryon number),


Consider particles with the largest  ratio.


Given  of these particles in gravitational collapse from large distances.


  radiation during collapse    


  Hawking radiation  


  total change:    


  Charge conservation violation!


  There must be high-energy events breaking global symmetry.

q/m
N

→ → M < Nm

→ M → M − ΔM

→ M − ΔM
M

Nq + ΔM
q
m

< Nq

→
→

[Banks-Seiberg 11], [Kawai-Matsuo-Yokokura 13]



argument 2 for high energy

collapsing particles  &  with the same  &  and the same profile:


  same gravitational effect    same Hawking radiation    info lost


  Need high-energy interactions to distinguish  from  in the UV theory.


Even pure states contain info.

A B m q
→ → →
⇒ A B

BMS supertranslation charges are not enough.



argument 3 for high energy

Two books of the same weight and size thrown into a black hole


  Need outgoing radiation of wavelengths < printed letters.

      Need interaction.
⇒



principles at risk

Equivalence Principle 

curvature invariants 


   No high energy event with  .


   Not enough to transfer info to Hawking radiation.


Either equivalence principle or decoupling principle fails?

∼ 1/an

→ E ≫ 1/a

→



“minimal” resolution

If decoupling principle fails, physics has no predictability.


(If no DP, maybe there is no HR.)


minimal resolution:


HR is incompatible with uneventful horizon in EFT.


       HR + EFT     high-energy events (and violation of EP)⇒



AMPS firewall
[Almheiri-Marolf-Polchinski-Sully 13]


Postulate 1: unitarity S-matrix from initial state to final state

Postulate 2: semi-classical physics

Postulate 3: Bekenstein entropy for distant observers

Postulate 4: uneventful horizon for freely falling observers (X)


People claim that the arguments for firewalls can be circumvented,

but it does not means that firewalls will not happen.



counting information
entropy problem   [Bekenstein 72,73, Page 93, Strominger-Vafa 96, Maldacena 
98, Witten 98, Gubser-Klebanov-Polyakov 98, Ryu-Takayanagi 06, Hubeny-
Rangamani-Takayanagi 07, Lewkowycz-Maldacena 13, Penington 19, Penington-
Shenker-Stanford-Yang 19, Almheiri-Engelhardt-Marolf-Maxfield 19, Almheiri-
Hartman-Maldacena-Shaghoulian-Tajdini 20]


no-cloning theorem   [Susskind-Thorlacius-Uglum 93, Susskind-Thorlacius 93, 
Hayden-Preskill 07, Sekino-Susskind 08]


……



entropy problem  1

Unitarity      pure state    pure state


      entropy = 0      entropy = 0


insufficient to guarantee unitarity. 

Example:


state A      state A


state B      state A

⇒ →
⇒ ⟶

⟶
⟶



entropy problem  2

“pure state    pure state” is necessary but insufficient,

as pure states contain info.


Need high-energy events and interaction with matter


Q: Where are the high-energy events in EFT?


The high-energy events also changes the gravitational background 
and affects the calculation of the entropy in Hawking radiation.

→



conventional model
Assumptions:

1. semi-classical Einstein equation

2. low-energy effective QFT 

3. Schwarzschild approximation

4. uneventful horizon


    Hawking radiation


Task:

understand the dynamical process of 
black-hole evaporation

→

assumption 
about the theory

assumption 
about the state

Gμν = κ⟨Tμν⟩



EFT
semi-classical Einstein equation:     .


QFT in curved background for matter field   .


Guess an approximate metric  





   for given quantum state             hard





Q:   generic low-energy initial states         high-energy events? 

Q:  Does the back reaction of    play an important role?

Gμν = κ⟨Tμν⟩

ϕ

gμν

⟶ quantize   ϕ

⟶ ⟨Tμν⟩

⟶ solve   Gμν = κ⟨Tμν⟩

⟶
⟨Tμν⟩



Schwarzschild approximation
Schwarzschild approximation (classical vacuum):     


quantum correction  


      perturbative expansion in powers of   .


But     


   At   ,   we have    .


     introduced on the left-hand side of the EE:  

Gμν = 0.

⟶ Gμν = κ⟨Tμν⟩ ∝ κℏ ∝ ℓ2
p

⟶ ℓ2
p /a2

ds2 = − (1 −
a
r ) dt2 +

dr2

1 − a
r

+ r2dΩ2

→ r − a ∼ 𝒪 (ℓ2
p /a) (1 −

a
r ) ∼

ℓ2
p

a2

→ ℓ2
p /a2 Gμν = κ⟨Tμν⟩

(  )a = 2GNM



Schwarzschild solution

maximally extended 
Schwarzschild solution

causally 
disconnected

singularity at r = 0

 collapsing matter 

classical black-hole 
formation



different proposals

assuming uneventful horizon



early stage of evaporation

Singularity and event horizon 
are irrelevant.


Trapping horizon is time-like.

Observers can go in and out.

 asymptotically Schwarzschild 
 collapsing matter 



uneventful horizon   1

Naively, Equivalence Principle demands uneventful horizon. 

Freely falling observers comoving with the collapsing matter


see everything almost like an inertial frame up to the length scale .


      in vacuum.

𝒪(a)

⇒ ⟨Tττ⟩ ∼ ⟨Tτσ⟩ ∼ ⟨Tσσ⟩ ∼ 𝒪(1/a4)

 Assuming that the quantum effect does not change the length scale. 

 That is, the quantum effect is small.



uneventful horizon   2

Ansatz for metric 



[Davies-Fulling-Unruh 76, Fulling 77, Christensen-Fulling 77]








ingoing negative energy flux around horizon

ds2 = − C(u, v)dudv + r2(u, v)(dθ2 + sin2 θdϕ2)

⟨Tuu⟩ ∼ 𝒪(C2/a4), ⟨Tuv⟩ ∼ 𝒪(C/a4), ⟨Tvv⟩ ∼ 𝒪(1/a4) .

C ∼ 0 ⇒ ⟨Tuu⟩ ∼ 0, ⟨Tuv⟩ ∼ 0, ⟨Tvv⟩ ∼ − (HR) < 0.



possibilities

1. Conventional model is “correct”.


   Decoupling Principle fails.


2. Conventional model is “wrong”.


   What is the mistake?


   When there is Hawking radiation,

 there are high-energy events around collapsing matter.

→

→
→



conventional model
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conventional model
Assumptions:

1. semi-classical Einstein equation

2. low-energy effective QFT 

3. Schwarzschild approximation

4. uneventful horizon


    Hawking radiation


Task:

understand the dynamical process of 
black-hole evaporation

→

assumption 
about the theory

assumption 
about the state



early stage of evaporation

1. Start with the Schwarzschild metric 
as the 0th-order approximation.


2. Compute .       (uneventful?) 

3. Solve  .


4. …. 

⟨Tμν⟩

Gμν = κ⟨Tμν⟩



metric
Spherical symmetry  ⇒

ds2 ≃ − C(r*)(dt2 − dr2
*) + r2(r*)dΩ2

 conformal factor  areal radius 

   dudv = dt2 − dr2
*

(u = (t − r*)/2, v = (t + r*)/2)

   for Schwarzschild solutionC = 1 −
a
r

, r* = r + a log ( r
a

− 1)



uneventful horizon
equivalence principle    


    


Since    ,











ingoing negative energy flux around horizon

→ ⟨Tττ⟩ ∼ ⟨Tτσ⟩ ∼ ⟨Tσσ⟩ ∼ 𝒪(1/a4)

U ≡ τ − σ, V ≡ τ + σ → ⟨TUU⟩ ∼ ⟨TUV⟩ ∼ ⟨TVV⟩ ∼ 𝒪(1/a4)

dU
du

∼ C,
dV
dv

∼ 1

⟨Tuu⟩ =
dU
du

dU
du

⟨TUU⟩, ⟨Tuv⟩ =
dU
du

dV
dv

⟨TUV⟩, ⟨Tvv⟩ =
dV
dv

dV
dv

⟨TVV⟩ .

⟨Tuu⟩ ∼ 𝒪(C2/a4), ⟨Tuv⟩ ∼ 𝒪(C/a4), ⟨Tvv⟩ ∼ 𝒪(1/a4) .

C ∼ 0 ⇒ ⟨Tuu⟩ ∼ 0, ⟨Tuv⟩ ∼ 0, ⟨Tvv⟩ ∼ − (HR) < 0.



freely falling observer
static-geometry approximation:    


conserved energy:    


proper time:     





ds2 ≃ − C(x)(dt2 − dx2) + r2(x)dΩ2

E = m0 γ C, γ ≡
1

1 − ·x2
=

E/m0

C

dτ = C γ−1dt =
m0

E
C dt

U ≡ τ − σ, V ≡ τ + σ ⇒
dU
du

≃
m0

E
C,

dV
dv

≃
E
m0

⇒ ⟨Tuu⟩ ∼ C2⟨TUU⟩, ⟨Tuv⟩ ∼ C⟨TUV⟩, ⟨Tvv⟩ ∼ ⟨TVV⟩

·x ≃ − 1



thin shell
Consider a thin shell with spherical symmetry.


curved space outside the shell:  


flat space inside the shell:








continuity across an infinitesimally thin shell at   :


ds2 = − C(u, v)dudv + r2(u, v)dΩ2

ds2 = − dT2 + dr2 + r2dΩ2 = − dUdV + r2(U, V)dΩ2

T = (V + U)/2, r = (V − U)/2

r = R(T)
dR
dU

= −
υ
2

,
dR
du

= −
1
2

C ⇒
dU
du

=
1
υ

C

⇒ ⟨Tuu⟩ ∼ C2⟨TUU⟩, ⟨Tuv⟩ ∼ C⟨TUV⟩, ⟨Tvv⟩ ∼ ⟨TVV⟩



computing     1⟨Tμν⟩
For a 2D conformal field in the background   


trace anomaly  


energy-momentum conservation  


ds2
(2D) = − C(u, v)dudv

⟨Tμ
(2D)μ⟩ =

1
24π

ℛ(2D)

∇ν⟨Tν
(2D)μ⟩ = 0

⇒
⟨Tuu⟩ = −

1
12π

C1/2∂2
uC−1/2 + f(u),

⟨Tvv⟩ = −
1

12π
C1/2∂2

vC−1/2 + f̄(v) .
determined by the quantum state

[Davies-Fulling-Unruh 76, Fulling 77, Christensen-Fulling 77]



computing     2⟨Tμν⟩
Upon a coordinate transformation   





Let  = affine parameter defined on the infinite past.


u → u′�(u), v → v′�(v)

f(u) → f(u) −
1

16π
{u′�, u}, f̄(v) → f̄(v) −

1
16π

{v′�, v}

(U, V)

⇒ f(u) =
1

16π
{U, u}, f̄(v) =

1
16π

{V, v}

Schwarzian derivative  {f, x} ≡
d2f
dx2

df
dx

2

−
2
3

d3f
dx
df
dx



computing     3⟨Tμν⟩

[Davies-Fulling-Unruh 76]:


2D conformal field    in dim. reduced Schwarzschild background





Vacuum EMT computed at the leading order for a collapsing thin shell.

The interior is in the Minkowski vacuum state.


      @  event horizon.


   uniquely determined at large distances.

ϕ

ds2
(2D) = − (1 −

a
r ) dudv

⟨T(2D)
UU ⟩ ∼ 𝒪(1/a2) ⇒ ⟨T(2D)

uu ⟩ = 0

⟨T(2D)
uu ⟩ → HR

⟨Tuu⟩ =
1
r2

⟨T(2D)
uu ⟩

   uneventful horizon⟶

 Good approximation for   Δt ≪ 𝒪(a3/ℓ2
p)



computing     4⟨Tμν⟩

  is different for different quantum state.


Unruh vacuum:            


static configurations:


Boulware vacuum:               


Hartle-Hawking vacuum:   

⟨Tμν⟩

⟨Tuu⟩ ∼
#
a4

, ⟨Tuv⟩ ∼ 0, ⟨Tvv⟩ ∼ 0 (r → ∞)

⟨Tuu⟩ ∼ ⟨Tuv⟩ ∼ ⟨Tvv⟩ ∼ 0 (r → ∞)

⟨Tuu⟩ ∼
#
a4

, ⟨Tuv⟩ ∼ 0, ⟨Tvv⟩ ∼
#
a4

 Firewall 



computing     5⟨Tμν⟩
[Christensen-Fulling 76]

4D conformal field

trace anomaly + conservation law + Schwarzschild background


   a single functional degree of freedom in  


2D picture extended to 4D as a consistent scenario:


uneventful horizon    Hawking radiation


Uneventful horizon is (possibly) compatible with 
assumption of Schwarzschild approximation.

→ ⟨Tμν⟩

→

not computed.



semi-classical Einstein equation

Guu =
2∂uC∂ur

Cr
−

2∂2
ur

r
= κ⟨Tuu⟩ ∼ 𝒪(ℓ2

pC/a4),

Gvv =
2∂vC∂vr

Cr
−

2∂2
vr

r
= κ⟨Tvv⟩ ∼ 𝒪(ℓ2

p /a4),

Guv =
C

2r2
+

2∂ur∂vr
r2

+
2∂u∂vr

r
= κ⟨Tuv⟩ ∼ 𝒪(ℓ2

pC/a4),

Gθθ =
2r2

C3 (∂uC∂vC − C∂u∂vC) −
4r
C

∂u∂vr = κ⟨Tθθ⟩ ∼ 𝒪(ℓ2
p /a2) .



trapping horizon   1

First choose a foliation: 


 if there is spherical symmetry.


Normally,        .


Trapped region:         .


Trapping horizon:           


outer trapping horizon:       ,       inner trapping horizon:      .


apparent horizon: a space-like slice of the trapping horizon.

r(u, v) = const .

∂ur < 0, ∂vr > 0

∂ur < 0, ∂vr < 0

∂vr = 0.

∂2
vr > 0 ∂2

vr < 0



trapping horizon   2

Assume smooth geometry.
u

v
trapping horizon



wormhole-like geometry
energy of collapsed matter cancelled by negative ingoing energy


  smaller neck


[Parentani-Piran 94, Ho-Matsuo 18]

remnant = “Wheeler’s bag of gold”, “baby universe”

⇒

u

matter

frozen

negative

energy

decapitated?



dynamical horizon geometry




around  trapping horizon    where  





ds2 = − C(u, v)dudv + r2(u, v)dΩ2

(u, v = vh(u)) ∂vr(u, v) = 0

C(u, v) = C0(u) + C1(u)(v − vh(u)) + ⋯

r(u, v) = r0(u) +
r2(u)

2
(v − vh(u))2 +

r3(u)
6

(v − vh(u))3 + ⋯



geometry of uneventful horizon
Guu =

2∂uC∂ur
Cr

−
2∂2

ur
r

= κ⟨Tuu⟩,

Gvv =
2∂vC∂vr

Cr
−

2∂2
vr

r
= κ⟨Tvv⟩,

Guv =
C

2r2
+

2∂ur∂vr
r2

+
2∂u∂vr

r
= κ⟨Tuv⟩,

Gθθ =
2r2

C3 (∂uC∂vC − C∂u∂vC) −
4r
C

∂u∂vr = κ⟨Tθθ⟩ .







⟶ −
2r2(u)

r0
= κ⟨Tvv⟩ < 0

⟶
C0

2r2
0

−
2r2(u) ·vh(u)

r0
= κ⟨Tuv⟩ ∼ 𝒪 ( κC

a4 )
⇒ ·vh(u) > 0

trapping horizon in vacuum    is time-like.⟨Tvv⟩ < 0 ⇒ v = vh(u)



2 classes of ⟨Tμν⟩
event horizon      trapping horizon 

Naively, a time-dependent Schwarzschild radius   


Schwarzschild metric      no trapping horizon


outgoing Vaidya metric      no trapping horizon


ingoing Vaidya metric      trapping horizon


outgoing positive energy flux vs. ingoing negative energy flux 

⟶

a ⇒

⟶

⟶

⟶

⟨Tuu⟩ > 0 vs ⟨Tvv⟩ < 0
eventful horizon vs. uneventful horizon



classical black hole
Schwarzschild coordinates 







ingoing Vaidya metric 

outgoing Vaidya metric

dr = (1 −
a
r ) dr*

u = t − r*, v = t + r*

ds2 = − (1 −
a
r ) dt2 +

dr2

1 − a
r

+ r2dΩ2

ds2 = − (1 −
a
r ) dv2 + 2dvdr + r2dΩ2

ds2 = − (1 −
a
r ) du2 − 2dudr + r2dΩ2

ds2 = − (1 −
a
r )(dt2 − dr2

*) + r2dΩ2

ds2 = − (1 −
a
r ) dudv + r2dΩ2

tortoise coordinate



naive time-dependent solution   1

outgoing Vaidya metric:         





Trajectory    (where ) is space-like during evaporation:


                            


Trajectory      cannot be crossed by any causal trajectory.

ds2 = − (1 −
a(u)

r ) du2 − 2dudr + r2dΩ2

Tuu = −
1

8πGNr2

da(u)
du

> 0, Tur = Trr = 0.

r = a(u) ∂ur = 0

ds2
r=a(u)

= 0 − 2duda = − 2
da
du

du2 > 0 ( da
du

< 0)
r = a(u)



naive time-dependent solution   2

ingoing Vaidya metric:         


           (uneventful horizon)


Trapping horizon in vacuum    is time-like during evaporation :


                            

ds2 = − (1 −
ā(v)

r ) dv2 + 2dvdr + r2dΩ2

Tvv =
1

8πGNr2

dā(v)
dv

< 0, Tvr = Trr = 0.

r = ā(v)

ds2
r=ā(v)

= 0 + 2dvdā = 2
dā
dv

dv2 < 0 ( dā
dv

< 0)
This scenario has an uneventful horizon.



Hawking radiation   1

Hawking radiation arises when 
the affine parameters on the 
past and future null infinities are 
related via an approximate 
exponential relation. (It carries 
purely geometric info.)

[Visser 01, Barcelo-Liberati-Sonego-
Visser 06,06,10,10]



Hawking radiation   2

scalar field    in the black-hole background:   











positive/negative frequency modes      creation/annihilation operators

ϕ ds2 = − Cdudv + r2dΩ2

∇2ϕ = 0 + λϕ2 + ⋯

ϕ ≡
φ
r

⇒ ∂u∂vφ ≃
∂u∂vr

r
φ +

C
4r2

∇Ω2φ −
λ
4r

Cφ2 ∼ 𝒪(C)

φ ≃ ∫
∞

0
dω [c†

ωeiωu + cωe−iωu + c̃†
ωeiωv + c̃ωe−iωv]

⟷

Hawking radiation is insensitive to non-gravitational info.



Hawking radiation   3

In the coordinate system :





positive/negative frequency modes      creation/annihilation operators


Bogoliubov transformation:


(U, V)

φ = ∫
∞

0
dω [a†

ωeiωU + aωe−iωU + ã†
ωeiωV + ãωe−iωV]

⟷

cω = ∫
∞

0
dω′�[Aωω′ �aω′ � + Bωω′�a†

ω′�], c†
ω = ∫

∞

0
dω′ �[B*ωω′�aω′� + A*ωω′�a

†
ω′ �]



Hawking radiation   4

Bogoliubov coefficients:





freely falling observers:           vacuum   ,         1-particle states   


spectrum of Hawking radiation  


✻  The state      must be well-defined.

Aωω′� ≡
1

2π
ω
ω′� ∫

∞

−∞
du eiωu−iω′ �U(u), Bωω′� ≡

1
2π

ω
ω′� ∫

∞

−∞
du eiωu+iω′ �U(u) .

|0⟩ a†
ω |0⟩

⟨0 |c†
ωcω′�|0⟩

cω |0⟩ = ∫
∞

0
dω′� Bωω′�a†

ω′ �|0⟩



Hawking radiation   5

The spectrum of Hawking radiation


    Bogoliubov coefficients


    exponential function in 


    the trajectory of freely falling observers


  polynomial interactions in EFT around horizon are suppressed.


How can matter pass info to Hawking radiation?

⟵

⟵ U(u) ≃ u

⟵

𝒱(ϕ)

dU
du

∼ C(x), C(x) = 1 −
a
r

≃
r − a

a
≃ exp ( r* − a

a ) = e−1 exp (−
u − v

2a )



Hawking radiation   6

Hawking radiation as Unruh effect:


In Minkowski spacetime,

the notion of particles is different for different reference frames.


vacuum for inertial frames    Unruh temperature for accelerating frames


Near the horizon of a black hole, 


freely falling frame      inertial frame,


accelerating observers      fiducial observers.


   Fiducial observers see radiation at the Hawking temperature.

⟷

⟶

⟶

⇒



 and Hawking radiation⟨Tμν⟩
vacuum EMT:


        at large distances.


        around horizon.


At large distances, 

both freely falling and fiducial observers

see outgoing particles as HR.


Around the horizon,

fiducial observers see the same spectrum of HR;

freely falling observers see nothing.

⟨Tuu⟩ → HR, ⟨Tvv⟩ → 0

⟨Tuu⟩ → 0, ⟨Tvv⟩ → − HR



conventional model?

Perturbative expansion around Schwarzschild metric is consistent.


It is also consistent with an uneventful horizon.


The uneventful horizon appears to be supported by EFT.


The conventional model appears to be consistent (apart from info loss).


What’s wrong?



dynamical black holes

Pei-Ming Ho

National Taiwan University



conventional model?

Assuming

uneventful horizon

Schwarzschild approximation

semi-classical Einstein equation

low-energy effective theory


Q: Will there be high-energy events?

better approximation of 
near-horizon geometry

non-renormalizable 
interactions



near-horizon geometry   1

spherical symmetry:    


semi-classical Einstein equation:    


uneventful horizon:





asymptotically Schwarzschild with time-dependent Schwarzschild radius 


at                   

ds2 = − C(u, v)dudv + r2(u, v)dΩ2

Gμν = κ⟨Tμν⟩

⟨Tuu⟩ ∼ 𝒪(C2/a4), ⟨Tuv⟩ ∼ 𝒪(C/a4), ⟨Tvv⟩ ∼ 𝒪(1/a4) .

a

r − a ≫ a/N ≫ 𝒪(ℓ2
p /a) (1/N ≫ ℓ2

p /a2)



near-horizon geometry   2

near-horizon region:   


semi-classical Einstein equation 





 = Schwarzschild radius along a constant-  slice


 = Schwarzschild radius along a constant-  slice


⇒

C =
const

r
exp [−∫

u du′�

2a(u′�)
− ∫v

dv′�

2ā(v′�) ](1 + 𝒪(C))

ā(v) v

a(u) u

da
du

∼ −
σℓ2

p

a2
,

dā
dv

∼ −
σ̄ℓ2

p

ā2

[Ho-Matsuo-Yokokura 19*2, Ho-Yokokura 20]



near-horizon geometry   2

near-horizon region:   


semi-classical Einstein equation 





 = Schwarzschild radius along a constant-  slice


 = Schwarzschild radius along a constant-  slice


⇒

C =
const

r
exp [−∫

u du′�

2a(u′�)
− ∫v

dv′�

2ā(v′�) ](1 + 𝒪(C))

ā(v) v

a(u) u

da
du

∼ −
σℓ2

p

a2
,

dā
dv

∼ −
σ̄ℓ2

p

ā2

r
=

R
s (u)

r −
a

=
a/N

[Ho-Matsuo-Yokokura 19*2, Ho-Yokokura 20]



near-horizon geometry   3

Expansion in powers of 





with coefficients expanded in powers of 





C0(u, v)
C(u, v) = C0(u, v) + α1(u, v)C2

0(u, v) + α2(u, v)C3
0(u, v) + ⋯,

r(u, v) = r0(u, v) + r1(v)C0(u, v) + r2(u, v)C2
0(u, v) + ⋯

(ℓ2
p /a2)

C0(u, v) ≃ C*
r*

r
exp (−∫

u

u*

du′�

2a(u′�)
− ∫

v*

v

dv′�

2ā(v′�) )
r0(v) ≃ ā(v), r1(u, v) ≃

a(u)ā(v)
r0(v)

[Ho-Matsuo-Yokokura 19*2, Ho-Yokokura 20]



near-horizon geometry   4

Due to the exponential form of  ,


large variation in   correspond to tiny proper distance.


When the black hole evaporates to   of its initial mass,

proper distance    btw collapsing matter and trapping horizon:





as long as  .


Planck length separation within the early stage of evaporation.

C(u, v) ≃ C0(u, v)

u, v

1/n
d

d ≲ 𝒪(n3/2ℓp)

n ≪ (a/ℓp)2/3

[Ho-Matsuo-Yokokura 19*2, Ho-Yokokura 20]



near-horizon geometry   5

Lowest order approximation:





Exponential factor        Hawking radiation


Dependence of areal radius  on         

C(u, v) ≃ C* exp (−
u − u* + v* − v

2a ),

r(u, v) ≃ r0(v) ≃ ā(v)

⇒
r v ⇐ ⟨Tvv⟩ < 0

[Ho-Yokokura 20, Ho 20]



interaction of vacuum & matter







,    have little effect around horizon. [Unruh-Leahy 83, Giddings 06]


Higher-dimensional (non-renormalizable) operators?

∇2ϕ = 0 + λϕ2 + ⋯

ϕ ≡
φ
r

⇒ ∂u∂vφ ≃
∂u∂vr

r
φ +

C
4r2

∇Ω2φ −
λ
4r

Cφ2 ∼ 𝒪(C)

ϕ4 (∇ϕ )2



effective field theory (EFT)




All invariant operators included in the  expansion of UV theory.


Higher-dim. (non-renormalizable) operators are suppressed by .


EFT breaks down if higher-dim. operators are more important.

ℒEFT =
1
2

gμν∂μφ∂νφ +
m2

2
φ2 +

λ0

4
φ4 +

1
16πGN

ℛ + λ1ℛφ2

+
λ2

M2
p

gμ1ν1gμ2ν2∂μ1
∂ν1

φ∂μ2
∂ν2

φ +
λ3

M2
p

gμ1ν1gμ2ν2ℛμ1μ2
∂ν1

φ∂ν2
φ

+ ⋯

1/Mp

1/Mn
p



large curvature invariant?   1

effect of back-reaction:


 induces through Einstein’s equation an ingoing geometric deformation


reflected in the areal radius  


  All curvature invariants , …  are still small


because a Lorentz boost can make the -dependence arbitrarily fast or slow. 

⟨Tvv⟩

r ≃ r0(v) .

⇒ ℛ, ℛμνℛμν, ℛμνλρℛμνλρ

v



large curvature invariant?   2

The dominant effect of back-reaction resides in   .


However, under a local Lorentz boost





the -dependence can become arbitrarily weak.


     All curvature invariants are small .

r(u, v) ∼ r0(v)

u → u′� =
1 − υ
1 + υ

u, v → v′� =
1 + υ
1 − υ

v

v

⇒ ∼ 𝒪(a)



trans-Planckian problem   1

   can be trans-Planckian since  .


Due to local Lorentz boosts,


                 


The frequency    can be arbitrarily large or small.


EFT breaks down if    in the absence of selection rules.

ωU = ( dU
du )

−1

ωu
dU
du

∝ C(u, v)

u → u′� =
1 − υ
1 + υ

u,

v → v′ � =
1 + υ
1 − υ

v

U → U′� =
1 − Υ
1 + Υ

U,

V → V′� =
1 + Υ
1 − Υ

V

ωu

ωu guv ωv > M2
p

[’t Hooft 85]



trans-Planckian problem   2

EFT is reliable if, for all 
background fields    and  ,

[Ho-Yokokura 20, Ho 20]

f f̄
∂n

u f
f

(guv)n ∂n
v f̄
f̄

≪ M2n
p

ωuguvω′�v ≪ M2
p → ωugvu ∂v f

f
≪ M2

p , → ωn
u(guv)n ∂n

v f
f

≪ M2n
P

Generalizing conditions for the validity of EFT:



trans-Planckian problem   3

HR:     


when   .


Since   ,


with a reference point on trapping horizon,  


ωu ∼ 1/a ⇒ ωuguv ∂vā
ā

∼
1
a

1
C

ℓ2
p /a2

a
≫ M2

p

C ≪ ℓ4
p /a4

C(u, v) ≃ C* exp (−
u − u* + v* − v

2a )
C* ∼ ℓ2

p /a2

u − u* + v* − v > 2a log(a2/ℓ2
p) scrambling time

[Ho-Yokokura 20, Ho 20]

  for Schwarzschild metric ∂vā = 0

u v



large invariants












gμ1ν1⋯gμnνn (∇μ1
⋯∇μ2n

ϕ) (∇ν1
⋯∇νn−2

ℛνn−1νn) (∇νn+1
⋯∇ν2n−2

ℛν2n−1ν2n)
⟶ (guv)2n (∇2n

u ϕ) (∇n−2
v ℛvv)2

gμ1ν1⋯gμ2nν2n (∇μ1
⋯∇μ2n

ϕ1) (∇ν1
⋯∇νn

ϕ2) (∇νn+1
⋯∇ν2n

ϕ2)
⟶ (guv)2n (∇2n

u ϕ1) (∇n
vϕ2)2

g−n (∇m1ϕ)⋯(∇msϕ) (∇p1ℛ)⋯(∇prℛ)



“minimal” resolution

If decoupling principle fails, physics has no predictability.


(If no DP, maybe there is no HR.)


minimal resolution:


HR is incompatible with uneventful horizon in EFT.


       HR + EFT     high-energy events (and violation of EP)⇒



large transition amplitude   1

EFT must include the following 3 states:


    Unruh vacuum,


        with         


    because the spectrum of HR is   .


   We can rely on EFT to compute the transition amplitude    for


 


due to a higher-derivative interaction     in the EFT.

|0⟩
a†

ω′�|0⟩ ω′� → 0

cω |0⟩ = ∑
ω′�

Bωω′�a†
ω′�|0⟩ ⟨0 |c†

ωcω |0⟩

→ ⟨ f | 𝒪̂ | i⟩

| i⟩ = |0⟩ ⊗ |0⟩ ⟶ | f⟩ = cω |0⟩ ⊗ a†
ω′�|0⟩ ⊗ ⋯

𝒪̂

[Ho-Yokokura 20, Ho 20]









λ
M2n+k+1

p ∫ d4x −g ⟨ f |gμ1ν1⋯gμnνn φk (∇μ1
⋯∇μn

φ) (∇ν1
⋯∇νn−2

ℛνn−1νn) | i⟩

| i⟩ = |0⟩ ⊗ |0⟩ ⟶ | f⟩ = cωu
|0⟩ ⊗ |ω(1)

v , ⋯, ω(k)
v ⟩

→
λ

M2n+k+1
p ∫ dudv C(u, v) C−n(u, v)

1
rk(u, v)

ωn
u

r(u, v)
ei[∑k

i=1 ω(i)
v ]v+iωuu

ℓ2
p

ān+2(v)

∼
λ

M2n+k+1
p ∫ dudv (

ℓ2
p

ā2(v*)
e−(u−u*+v*−v)/(2ā))

n−1
1

āk(v)
ωn

u

ā(v)
ei[∑k

i=1 ω(i)
v ]v+iωuu

ℓ2
p

ān+2(v)

∼
λℓ4n+k+1

p

ā4n+k+1 ∫ dudv e−(n−1)(u−u*+v*−v)/(2ā) ei[∑k
i=1 ω(i)

v ]v+iωuu

[Ho-Yokokura 20, Ho 20]



large transition amplitude   3

   firewall within scrambling time  

(In general, larger amplitude in matter.)

⇒ ∼ 𝒪(a log(a/ℓp))

[Ho-Yokokura 20, Ho 20]

ℳ ∼ (
ℓp

a )
#

∫ dtdx C−(n−1−#) eiωu+⋯

−g ∼ C, guv ∼ C−1

energy conservation?

ℛ ∼ 1/a2, ϕ ∼ 1/a

Lorentz invariant



higher-derivative effect
,            


,                     

∇n
uφ ⟶ ωn

u ∼ 𝒪(1/an) ∇n
vℛ ⟶

ℓ2
p

an+4

(guv)n ⟶ C−n(u, v) C(u, v) ∼
ℓ2

p

ā2(v*)
exp (−

u − u* + v* − v
2ā(v*) )

,        


,                                

∇n
Uφ ⟶ ωn

U ∼ ( dU
du )

−n

ωn
u ∇n

Vℛ ∼ ∂n
Vā−2(v) ⟶ ( dV

dv )
−n ℓ2

p

an+4

(gUV)n ⟶ 1 C(u, v) =
dU
du

dV
dv



What happened?   1

Equivalence principle is violated by higher-derivative interactions.

[Lafrance-Myers 94]


ingoing negative energy flux 


  ingoing deformation of geometry  


  scattering with virtual particles with large frequencies


  particle creation (“firewall”)


saddle point approximation  

⟨Tvv⟩ < 0

→ r(u, v) ≃ ā(v)
→
→

→ ωU ∼ ( dU
du )

−1

ωu

[Ho-Yokokura 20, Ho 20]



The conventional model is consistent

only for EFT without higher-derivative interactions.


UV theory is not arbitrary:

No global symmetry.

Higher-derivative interactions in EFT.

What happened?   2



implication
Hawking radiation and the uneventful horizon cannot be compatible


for a period of time longer than the scrambling time.


After the scrambling time, 


EFT is no longer completely reliable.


Depending on the UV theory and the black-hole state,


either (1) Hawking radiation stops,


or (2) Hawking radiation continues with a firewall.

This is a purely EFT conclusion.



UV effect?

“Trans-Planckian problem does not affect Hawking radiation"

[Jacobson 91, Unruh 95, Brout-Massar-Parentani-Spindel 95]


“Trans-Planckian modes do not exist.” “Vacuum stays vacuum.”


Before EFT breaks down, there are created high-energy particles.


Example: a null thin shell stops radiating. [Kawai-Matsuo-Yokokura 13]


Many other possibilities…



Einstein equivalence principle
Einstein Equivalence Principle:


The outcome of any local non-gravitational experiment 
in a freely falling laboratory is independent of 
the lab’s velocity and location. 

Apart from the energy of the particles,

the vacuum EMT cannot be measured non-gravitationally.


The Einstein EP restricts particles’ EMT, 
but not vacuum EMT.



self-consistent models?
1. If Hawking-radiation stops.     classical/extremal black holes.


2. If Hawking radiation continues,

to transfer info from matter to radiation,

there must be outgoing particles with high-energy scatterings with matter.


   eventful horizon with  .


“eventful horizon”! 
[Kawai-Matsuo-Yokokura 13, Kawai-Yokokura 14, 16, 17]


The surface of matter may be stringy. [FuzzBall, VECRO]

→

→ ⟨Tuu⟩ > 0



conclusion
Both Hawking radiation and large transition amplitudes arise


due to the exponential form of  .


  Hawking radiation and uneventful horizon cannot coexist in EFT

for a time scale much longer than the scrambling time.


Depending on the UV theory and the black-hole configuration,

either Hawking radiation stops or “firewall” arises.


(either classical black hole or “drama at horizon”).


Eventful horizon not always incompatible with equivalence principle.

It is possible to have low-energy effective description.

C(u, v)
→



end


