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Compressible Liquid Drop Model

LDM is very successful to describe the binding energy of finite nuclei.

Something else with LDM?
1 The first thing we can do is to allow the variation of density of nuclei

n0 → n ; compressible model, R 6= r0A
1/3

2 How can we find that?
Write down the total binding energy as a function density and think
the way to solve it !

E = −BA + ESA
2/3 + EC

Z 2

A1/3
; In compressible model (1)

−B → −B + Sv (1− 2x)2 + K
18

(
1− n

n0

)2
A→ 4π

3 R3n, ES → σ(x); x → proton fraction
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※ σ(x) is the surface tension which can be obtained semi-infinite nuclear
matter density profile. This is an quantities related to two phase(dense
matter, dilute matter) equilibrium. Thus it is a thermodynamic quantity.
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Figure: surface density profile (left) and surface tension (right)

σ(x) ' σ(x = 0.5)− σδ(1− 2x)2 (2)
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f (n, x) =

[
−B + Sv (1− 2x)2 +

K

18

(
1− n

n0

)2
]
A

+ 4πR2σ(x) +
3

5

Z 2e2

R
; Compressible model

(3)

Energy minimization
∂f

∂n
= 0 ,

∂f

∂x
= 0? (4)

No we forgot the constraints

A =
4π

3
R3n , x =

Z

A
(5)
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Lagrange Multiplier Method

How can we minimize some quantities with certain constraints?

f (x , y) = x2 + y2 − 1; x + y = 1 (6)

We can apply Lagrange multiplier method

g(x , y) = x2 + y2 − 1 + λ(x + y − 1) (7)

∂g

∂x
=
∂g

∂y
=
∂g

∂λ
= 0 (8)

2x + λ = 0, 2y + λ = 0, x + y − 1 = 0 (9)
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In the core of neutron star, uniform nuclear matter exists. Because of
charge neutrality, electrons or muons exist depending on the
condition. Now we want to find the ground state-which we are usually
interested. Let’s apply the Lagrange multiplier method and see the
conclusion.

1 Write total free energy density from each contribution,

Ftot = FN + Fe + Fµ (10)

2 Find the contraints

n = nn + np , np = ne + nµ (11)

3 Definition of chemical potential?

µn =
∂FN

∂nn
, µp =

∂FN

∂np
, µe =

∂Fe

∂ne
, µµ =

∂Fµ
∂nµ

, (12)

µn = µp + µe , µe = µµ, (13)
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Apply Lagrange Multiplier method to the compressible liquid drop
model

g(n, x) =

[
−B + Sv (1− 2x)2 +

K

18

(
1− n

n0

)2
]
A

+ 4πR2[σ0 − (1− 2x)2σδ] +
3

5

Z 2e2

R

+ λ1

(
A− 4πR3

3
n

)
+ λ2

(
Z

A
− x

) (14)

What are unknowns ? n, x , R, λ1. λ1, λ2
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Using the notation fB(n, x) = −B + Sv (1− 2x)2 + K
18

(
1− n

n0

)2
∂g

∂n
= 0;

∂fB
∂n

A− 4πR3

3
λ1 = 0, (15)

∂g

∂x
= 0;

∂fB
∂x

A− 16πR2δ2σδ − λ2 = 0, (16)

∂g

∂R
= 0; 8πR[σ0 − δ2σδ] +

∂EC

∂R
− λ14πR2n = 0, (17)

∂g

∂λ1
= 0; A =

4π

3
R3n (18)

∂g

∂λ2
= 0; x =

Z

A
(19)

Next job is to reduce the equations as many as possible!
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λ1 and λ2 are related to chemical potential of neutrons and protons

λ1 = n
∂fB
∂n

, λ2 =
∂fB
∂n

A− 16πR2δσδ, x =
Z

A
(20)

The remaining two unknowns are n and x which can be obtained from
two equations.

8πR[σ0 − δ2σδ] +
∂EC

∂R
− 4πR2n2

∂fB
∂n

= 0,

A− 4π

3
R3n = 0

(21)

Non-linear equations !

It’s time to learn how to solve non-linear solutions.

YEUNHWAN (YEUNHWAN LIM) Nuclear Bayesian June-2020 9 / 22



λ1 and λ2 are related to chemical potential of neutrons and protons

λ1 = n
∂fB
∂n

, λ2 =
∂fB
∂n

A− 16πR2δσδ, x =
Z

A
(20)

The remaining two unknowns are n and x which can be obtained from
two equations.

8πR[σ0 − δ2σδ] +
∂EC

∂R
− 4πR2n2

∂fB
∂n

= 0,

A− 4π

3
R3n = 0

(21)

Non-linear equations !

It’s time to learn how to solve non-linear solutions.

YEUNHWAN (YEUNHWAN LIM) Nuclear Bayesian June-2020 9 / 22



λ1 and λ2 are related to chemical potential of neutrons and protons

λ1 = n
∂fB
∂n

, λ2 =
∂fB
∂n

A− 16πR2δσδ, x =
Z

A
(20)

The remaining two unknowns are n and x which can be obtained from
two equations.

8πR[σ0 − δ2σδ] +
∂EC

∂R
− 4πR2n2

∂fB
∂n

= 0,

A− 4π

3
R3n = 0

(21)

Non-linear equations !

It’s time to learn how to solve non-linear solutions.

YEUNHWAN (YEUNHWAN LIM) Nuclear Bayesian June-2020 9 / 22



Newton Raphson

Newton Raphson is a very powerful method to get solution for
non-linear equations
Find the solution f (x) = 0

xn+1 = xn − f (xn)/f ′(xn) (22)
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Numerical derivative

xn+1 = xn − f (xn)
xn − xn−1

f (xn)− f (xn−1)
(23)

f (x) +
df

dx
∆x = 0 → ∆x = − f

df /dx
(24)

We can also generalize NR to multivariable ~x = (x1, x2, . . . , xN).

fi +
∂fi
∂xj

∆xj = 0 → ∆xj = −D−1ij fi (25)

∂xj∆xj means summation over j , D−1ij is the matrix inverse for
∂fi/∂xj
Depending on the relative size of xj , λj (scale factor) is introuduced,
∆xj = −λjD−1ij fi
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Figure: Bound nuclei with compressible model
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Take home problem III

If you can write a code (python, fortran, c, c++,. . . ), Try to solve
Eq.(21) for 56Fe.

You may use B = −16MeV, Sv = 32MeV, K = 235MeV,
σ0 = 1.12MeV fm−2, σδ = 2.0MeV fm−2.

You can try with initial guess n = 0.16 fm−3, R = 1.12A1/3 fm.

If you can solve for a given value of B, Sv , K , σ0, σδ, you can also
find the optimized σ0 and σδ.

In the same manner, you can also find the pairing gap ∆ and Shell
corrections in the compressible model.

See how the energy difference changes for N, Z , especially magic
number.

Tips

As you may know, if you meet some numerical problems, it always works if
you can simplify the problems. In this case, you may start fB = −B or
σδ = 0 and increase the complexities to check your code.
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find the optimized σ0 and σδ.

In the same manner, you can also find the pairing gap ∆ and Shell
corrections in the compressible model.

See how the energy difference changes for N, Z , especially magic
number.

Tips

As you may know, if you meet some numerical problems, it always works if
you can simplify the problems. In this case, you may start fB = −B or
σδ = 0 and increase the complexities to check your code.
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Take Home Problem IV

Energy density functioal is a simple analytic function to decribe
energy density as a function of baryon number density and proton
fraction (n, x).

E(n, x) =
~

2m
τn +

~
2m

τp + (1− 2x)2fn(n) +
[
1− (1− 2x)2

]
fs(n) ,

We can get the coefficients for Energy Density Functional utilizing the
results from state of the art calculation for pure neutron matter EOS
and symmetric nuclear matter properties.
First, the kinetic energy densities (τn, τp) (in the uniform) are given as

τn =
3

5
(3π2)2/3(n(1− x))5/3, τp =

3

5
(3π2)2/3(nx)5/3

The potential energy parts are assumed to be

fs(n) =
3∑

i=0

ain
(2+i/3) , fn(n) =

3∑
i=0

bin
(2+i/3)
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The definition of symmetric nuclear matter properties are

−B =
E
n
,P = n2

∂

∂n

(E
n

)
,K = 9n2

∂2

∂n2

(E
n

)
,Q = 27n3

∂3

∂n3

(E
n

)
.

where every quantity is evaluated at n = n0, x = 1/2.
From the properties finite nuclei, we have B = 16MeV,
P = 0(n0 = 0.16 fm−3), K = 235MeV, Q = −300MeV

Find the coefficient ai from the symmetric nuclear matter properties !

Find the coefficient bi from the neutron matter EOS !

Fitting

This problem is related with the last lecture and a problem in there.
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This is the data file for pure neutron matter from Many body perturbation
calculation using chiral potential and three body forces.

kF (fm−1) n (fm−3) E/A (MeV)

0.66651 0.01 2.87933
0.83975 0.02 4.27096
0.96127 0.03 5.33345
1.05802 0.04 6.23757
1.13972 0.05 7.05834
1.21113 0.06 7.83732
1.27499 0.07 8.59843
1.33302 0.08 9.35958
1.3864 0.09 10.13324

1.43595 0.1 10.92077

kF (fm−1) n (fm−3) E/A (MeV)

1.48231 0.11 11.73104
1.52593 0.12 12.56379
1.56719 0.13 13.42159
1.60639 0.14 14.29794
1.64376 0.15 15.19301
1.6795 0.16 16.10768

1.71379 0.17 17.03337
1.74675 0.18 17.97216
1.77852 0.19 18.91497
1.80919 0.20 19.86317
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LDM for the neutron star crust

The compressible model can be used to study the properties of
neutron star crust.

There are several diffference between finite nuclei and nuclei in
neutron star crust.

First of all, we have to think the presence of electrons

As density increases, neutrons drips out of neutron rich heavy nuclei
Unbound neutron exists

Write energy contribution and apply Lagrange Multiplier Method with
constraints !
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Figure: Wigner Seitz cell

Fi : Energy density of a heavy nucleus

Fs : Surface energy density

Fc : Coulomb energy density

Fo : Energy density of outside nucleons

Fe : Electron energy density
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Nuclear pasta phase

The ground state of nuclear shape is determined by the competition
between Coulomb interaction and surface tension.

Figure: Numerical calculation of nuclear pasta phase. Figure from the work
of Okamoto et al., Phys. Rev. C 88, 025801 (2013).
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F =uni fi +
σ(xi )ud

rN
+ 2π(nixierN)2ufd(u)

+ (1− u)nno fo + fe ,

(26)

with constraints
n − uni − (1− u)nno = 0 ,

nYp − unixi = 0 ,

nYp − ne = 0 .

(27)

Unknows are u, ni , nno , xi , rN , ne , λ1, λ2, and λ3.

∂F/∂rN → FS = 2FC (the nuclear virial theorem)

∂G/∂ne = 0, the beta equilibrium is made.

Finally, the unknowns will be (ni , xi , u, nno) for a given (n,Yp).
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A little more : Hot dense matter

We can do a little more with LDM for hot dense matter EOS
(Supernova EOS)

At finite temperature, there are always unbound neutrons, protons,
electrons, and even alpha particles

The mportant thing is to find the way to minimize the energy (or free
energy at T 6= 0 MeV)

Free energy density is given for a (n,Ye ,T )

Thermodynamic quantities from free energy density and during the
process of looking for solutions
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Take Home Problem V

In this example, you may obtain the neutron star outer crust EOS
using LDM.

Since the outer crust does not have any unbound neutrons, Eq. (26) is
simplified a lot.

The valid dimension is d = 3. That is, spherically symmetric nuclei
would be the ground state.

The surface tension and dicrete dimensional Coulomb fd are given by

σ(x) = σ0
2α+1 + q

(1− x)−α + q + x−α
,

fd(u) =
1

d + 2

[
2

d − 2

(
1− 1

2
du1−2/d

)
+ u

]
,

(28)

where σ0 = 1.12MeV fm−2, q = 45, and α = 3.
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First, assume the electron energy but maintain fd . Try to get
Equations to solve in the outer crust, using the contraints for a given
(n,Yp)

What happens if you add the electrons and minimize the energy
density w.r.t. Yp

Estimate when µn > 0 so that the neutron drip density is determined.
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