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Science objectives

Abinitio calculations of scattering and reactions relevant to alpha 
processes in stellar evolution and Type Ia supernovae

Challenges

How to reduce computational scaling with number of nucleons in 
participating nuclei?  Can we provide useful abinitio input for halo or 
cluster EFT calculations?
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Adiabatic projection method

Development inspired by progress using no-core shell model with 
resonating group method to describe abinitio scattering and reactions in 
light nuclei. 

Navratil, Roth, Quaglioni, PRC 82 034609 (2010); Navratil, Quaglioni, PRC 83 044609 (2011); 
etc.  

Strategy is to divide the problem into two parts.  In the first part, we 
use Euclidean time projection and lattice Monte Carlo to derive an ab
initio low-energy cluster Hamiltonian, called the adiabatic Hamiltonian 
(adiabatic transfer matrix for nonzero temporal lattice spacing).  

In the second part, we use the adiabatic Hamiltonian to compute 
scattering phase shifts or reaction amplitudes.
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Cluster evolution with Euclidean time.  

M. Groening
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For notational simplicity we use the language of continuous time 
evolution.  The actual calculations use normal-ordered transfer matrices.



Use projection Monte Carlo to propagate cluster wavefunctions in 
Euclidean time to form dressed cluster states
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Evaluate matrix elements of the full microscopic Hamiltonian with 
respect to the dressed cluster states,

Since the dressed cluster states are in general not orthogonal, we 
construct a norm matrix given by the inner product



The adiabatic Hamiltonian is defined by the matrix product

As we increase the projection time, the adiabatic Hamiltonian exactly 
reproduces the low-energy spectrum of the full microscopic Hamiltonian.

One can see the similarity to no-core shell model with resonating group 
method.  But in the adiabatic projection method we don’t need to 
include excitations of the participating nuclei unless the energy is above 
the corresponding inelastic threshold.

Distortion and polarization of the nuclear wave functions are 
automatically produced by the Euclidean time projection.
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Spin-quartet neutron-deuteron scattering
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Pine, D.L., Rupak, EPJA 49 (2013)



Two-particle energy levels near threshold in a periodic cube are related 
to the elastic phase shifts

L

L
L
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Nuclear binding

free 
scattering 

energy

Signal-to-noise problems for finite-volume energy extraction

energy 
shift
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Rokash, Pine, Elhatisari, D.L., Epelbaum, Krebs, PRC 92 (2015) 054612

Asymptotic cluster scattering wave functions 

In the far asymptotic region where our dressed clusters are widely 
separated, they interact only through infinite-range forces such as the 
Coulomb interaction.  

Therefore  we can describe everything with an effective cluster 
Hamiltonian Heff that is nothing more than a free lattice Hamiltonian 
for two point particles plus any infinite-range interactions inherited 
from the full microscopic Hamiltonian. So in the asymptotic region we 
have



Since

we conclude that the adiabatic Hamiltonian coincides with the 
effective cluster Hamiltonian in the asymptotic region
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In the asymptotic region, we are inverting the diffusion process when 
computing the adiabatic Hamiltonian and are left with an effective cluster 
Hamiltonian in position space basis.



We use projections onto spherical harmonics defined on sets of lattice 
points with approximately the same distance from the origin. 
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Hybrid Monte Carlo updates

New algorithm developed for auxiliary field updates and initial/final 
state updates

Metropolis updates
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copy radial Hamiltonian
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We now present abinitio results for alpha-alpha scattering up to 
NNLO with lattice spacing 1.97 fm.

Using the adiabatic projection method, we performed lattice simulations 
for the S-wave and D-wave channels.

Elhatisari, D.L., Rupak, Epelbaum, Krebs, Lähde, Luu, Meißner, Nature 528, 111 (2015)
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S-wave scattering
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S-wave scattering
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We compute the quantum mechanical trace over A-nucleon states by 
summing over pinholes (position eigenstates) for the initial and final states  

Nuclear thermodynamics
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This can be used to calculate the partition function in the canonical ensemble.

In order to compute thermodynamic properties of finite nuclei, nuclear matter, 
and neutron matter, we need to compute the partition function 

Lu, Li, Elhatisari, D.L., Drut, Lähde, Epelbaum, Meißner, work in progress
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Figures by Bing-Nan Lu
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Inelastic reactions

We would like to develop a first principles approach to compute 
inelastic reactions.  We envision a typical scattering experiment where 
the initial state is two colliding clusters but we are well above the 
inelastic threshold and the outgoing state can have many separate 
clusters.

If our detector only counts outgoing states with two clusters, the same 
as our two initial clusters, then we can generalize the notion of elastic 
scattering above the inelastic threshold by considering complex phase 
shifts which record the loss of probability into other unmeasured 
outgoing states.

This non-unitary time evolution can be exactly reproduced in an 
effective Hamiltonian with a non-Hermitian interaction.  The 
interactions of this effective Hamiltonian is called an optical potential.

Work in progress: Hicks, Elhatisari, Rupak, Epelbaum, Krebs, D.L., Li, Lu, Meißner, Rusetsky
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We can compute the effective Hamiltonian in the following manner:  

Feshbach, Annals of Physics 5, 357 (1958) 

We consider a projection operator P that projects onto the space 
that contains all of our asymptotic two-cluster states.  Let Q be the 
projection operator onto the rest of the Hilbert space.

Eigenstates of the Hamiltonian H can be broken into two parts
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We can rearrange the last equation as 

D. Agadjanov, Döring, Mai, Meißner, Rusetsky, JHEP 43, 2016 (2016) 

See also 

This can used to define the effective Hamiltonian
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Diagram courtesy of S. Elhatisari
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Model #1

Consider a field theory in one spatial dimension where two particles 
of type A can scatter at a point vertex and convert in two particles 
of type B and vice versa.  The masses of all the particles are equal.

Let the coefficient of the point interaction be C.
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1. Green’s function method in full space

We compute the T-matrix using the LSZ formula 

Rupak, D.L., PRL 111, 032502 (2013) 

See, for example,

2. Green’s function method using effective Hamiltonian

Same Green’s function method, but this time we apply it to the 
effective Hamiltonian that contains our optical potential.
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3. Applying Lüscher’s method to effective Hamiltonian

We apply Lüscher’s method to the effective Hamiltonian.  Because the 
energy is complex, the corresponding momenta and phase shifts will be 
complex also.

4. Applying hardwall boundaries to effective Hamiltonian

We apply hardwall boundary conditions to the effective Hamiltonian.

5. Optical potential projection method

Instead of using the entire Q space to compute the interaction
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, 

For each pair of vectors vP and wPin the P space, we use 

where R is a projection operator onto a much smaller space of vectors 
generated by Euclidean time evolution from vectors vP and wP. These 
vectors have the form
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preliminary
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preliminary
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Model #2

Consider a field theory in one spatial dimension with three particles A,
B,C with pairwise point-like contact interactions of strength CAB, CBC, 
CCA.  The masses of all particles are equal.

We now compute the optical potential for the scattering of

A

B

C A

B

C
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dimer AB + particle C



preliminary
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(CAB, CBC, CCA)



preliminary
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