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Outlines

Neutron Stars

LDM
- Root Mean Square Deviation, Lagrange Multiplier Method

Energy density functional

Tolmann Oppeheimer Volkov (T.O.V) equations

Bayesian Statistics
- Conditional probabilities

Application to nuclear matter and neutron stars
- Mass and radius according to the observational constraints
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Neutron stars

Figure: Cassiopeia A is among the best-studied supernova remnants. This image
blends data from NASA’s Spitzer (red), Hubble (yellow), and Chandra (green and
blue) observatories. NASA/JPL-CALTECH/STSCI/CXC/SAO
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Basic facts of neutron star

Formed after core collapsing supernovae.

Suggested by Walter Baade and Fritz Zwicky (1934) - Only a year
after the discovery of the neutron by James Chadwick

Jocelyn Bell Burnell and Antony Hewish observed pulsar in 1965.

Neutron star is cold after 30s ∼ 60s of its birth
- inner core, outer core, inner crust, outer crust, envelope
- R : ∼ 10Km, M : 1.2 ∼ 2.x M�
- 2× 1011 earth g → General relativity
- B field : 108 ∼ 1012G.
- Central density : 3 ∼ 10ρ0 → Nuclear physics!!
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Inner structure of neutron stars

Inner core
Hyperons?

Quarks?

Outer core
n, p, e, µ

Inner crust
n, Z, e

Outer crust Z, e

Envelope
ρ ∼ ρs(= 108g/cm3)

8 ∼
15km

ρ ∼ 2ρ0

ρ ∼ 0.5ρ0(= 2× 1014g/cm3)

ρ ∼ ρd(= 4× 1011g/cm3)

ρ ∼ 1010g/cm3

Bose (K−, π−) condensation

Hyperon 1S0 superfluidity

Color superconductivity

Uniform nuclear matter

n 3P2, p 1S0 superfluidity

n 1S0 superfluidity

BCC lattice

Neutron Stars:
- Dense nuclear matter physics
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TOV equations for macroscopic structure
(spherically symmetric non-rotating NS)

dp

dr
= −G (M(r) + 4πr3p/c2)(ε+ p)

r(r − 2GM(r)/c2)c2
,

dM

dr
= 4π

ε

c2
r2,

(1)

Macroscopic quantities
r ; distance from the center
M(r) ; enclosed mass from the center

Microscopic quantities (Nuclear physics)
p ; pressure
ε; energy density
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Goals

Our goal through this lecture is to get some ideas how to connect nuclear
physics with some statistical methods

From nuclei to neutron star core
Binding energy of finite nuclei, unbound nucleons, uniform nuclear
matter

Use simple but quite accurate nuclear physics models
Liquid drop models, Energy density functionals, . . .

Introduce some numerical techniques to solve equations
Newton Raphson, Interpolation Scheme, . . .

Freshman calculus or statistics would be enough for nuclear physics
research.

Truth

You have to know that ‘if someone can do it, you can do it’.
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Nuclear Binding energy
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Figure: Binding energy per nucleon for stable nuclei

There many methods to calculate binding energy of finite nuclei.
- Liquid drop model, Thomas Fermi, Skyrme Hartee-Fock, Relativistic
Mean field model, No-core shell, Quantum Monte Carlo, . . .
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Liquid Drop Model

Nuclear mass or total binding energy can be described by a simple
liquid drop model
- Sharp edge, uniform density

E = −BA + ESA
2/3 + EC

Z 2

A1/3
(2)

Fitting function(?)

f (A,Z ) = a0A + a1A
2/3 + a2A

1/3 + · · ·+ b1Z + b2Z
2 + · · · (3)

Origin of B, ES , EC

- B : binding energy of bulk matter
- ES : Surface energy
- EC : Coulomb
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Correction term : Asymmetry energy

Pure neutron matter and Symmetric nuclear matter show the
different E/A.
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SNM

Sv ' 32 MeV

E (n, x) = ESNM + (1− 2x)2S(n)

ESNM = E (n, x =
1

2
)

EPNM = E (n, x = 0)

S(n) = EPNM − ESNM

(4)

E = −BA + ESA
2/3 + EC

Z 2

A1/3
+ ESYM

(N − Z )2

A
(5)

−BA + ESYM
(N − Z )2

A
=
[
−B + ESYM(1− 2x)2

]
A (6)

YEUNHWAN (YEUNHWAN LIM) Nuclear Bayesian June-2020 10 / 64



Correction term : Asymmetry energy
Pure neutron matter and Symmetric nuclear matter show the
different E/A.

0.00 0.08 0.16 0.24 0.32

ρ(fm−3)

−20

−10

0

10

20

30

40

E
/A

(M
eV

)

PNM

SNM

Sv ' 32 MeV

E (n, x) = ESNM + (1− 2x)2S(n)

ESNM = E (n, x =
1

2
)

EPNM = E (n, x = 0)

S(n) = EPNM − ESNM

(4)

E = −BA + ESA
2/3 + EC

Z 2

A1/3
+ ESYM

(N − Z )2

A
(5)

−BA + ESYM
(N − Z )2

A
=
[
−B + ESYM(1− 2x)2

]
A (6)

YEUNHWAN (YEUNHWAN LIM) Nuclear Bayesian June-2020 10 / 64



Correction term : Asymmetry energy
Pure neutron matter and Symmetric nuclear matter show the
different E/A.

0.00 0.08 0.16 0.24 0.32

ρ(fm−3)

−20

−10

0

10

20

30

40

E
/A

(M
eV

)

PNM

SNM

Sv ' 32 MeV

E (n, x) = ESNM + (1− 2x)2S(n)

ESNM = E (n, x =
1

2
)

EPNM = E (n, x = 0)

S(n) = EPNM − ESNM

(4)

E = −BA + ESA
2/3 + EC

Z 2

A1/3
+ ESYM

(N − Z )2

A
(5)

−BA + ESYM
(N − Z )2

A
=
[
−B + ESYM(1− 2x)2

]
A (6)

YEUNHWAN (YEUNHWAN LIM) Nuclear Bayesian June-2020 10 / 64



Correction term : Asymmetry energy
Pure neutron matter and Symmetric nuclear matter show the
different E/A.

0.00 0.08 0.16 0.24 0.32

ρ(fm−3)

−20

−10

0

10

20

30

40

E
/A

(M
eV

)

PNM

SNM

Sv ' 32 MeV

E (n, x) = ESNM + (1− 2x)2S(n)

ESNM = E (n, x =
1

2
)

EPNM = E (n, x = 0)

S(n) = EPNM − ESNM

(4)

E = −BA + ESA
2/3 + EC

Z 2

A1/3
+ ESYM

(N − Z )2

A
(5)

−BA + ESYM
(N − Z )2

A
=
[
−B + ESYM(1− 2x)2

]
A (6)

YEUNHWAN (YEUNHWAN LIM) Nuclear Bayesian June-2020 10 / 64



Correction term : Asymmetry energy
Pure neutron matter and Symmetric nuclear matter show the
different E/A.

0.00 0.08 0.16 0.24 0.32

ρ(fm−3)

−20

−10

0

10

20

30

40

E
/A

(M
eV

)

PNM

SNM

Sv ' 32 MeV

E (n, x) = ESNM + (1− 2x)2S(n)

ESNM = E (n, x =
1

2
)

EPNM = E (n, x = 0)

S(n) = EPNM − ESNM

(4)

E = −BA + ESA
2/3 + EC

Z 2

A1/3
+ ESYM

(N − Z )2

A
(5)

−BA + ESYM
(N − Z )2

A
=
[
−B + ESYM(1− 2x)2

]
A (6)

YEUNHWAN (YEUNHWAN LIM) Nuclear Bayesian June-2020 10 / 64



Correction term : Pairing Energy
Even-odd Staggering Sn = B(N,Z )− B(N − 1,Z )
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N
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S
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)

Sn (Z = 50)

Figure: One neutron separation energy of Sn isotopes

E = −BA + ESA
2/3 + EC

Z 2

A1/3
+ ESYM

(N − Z )2

A
+ Ap

∆√
A

(7)

Ap = −1 for even-even, Ap = 0 for even-odd, and Ap = 1 for odd-odd
nuclei.
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Correction term : Shell corrections

Figure: Single particle energy
level (wikipedia)

Low-lying energy levels in a single-particle
shell model with an oscillator potential
without spin-orbit (left) and with spin-orbit
(right) interaction.[

− ~2

2m
∇2 + U(x)

]
ψ(x) = Eψ(x) (8)

U(x) =

{
1
2kx

2

− U0

1+e(r−R)/a

(9)

YEUNHWAN (YEUNHWAN LIM) Nuclear Bayesian June-2020 12 / 64



U(x)→ U(x) + WLS(x),

WLS(r) = f (r)~L · ~S , J = L + S, ~L · ~S = 1
2(J2 − L2 − S2).

WLS =
∂

∂r
f (r) [J(J + 1)− L(L + 1)− S(S + 1)] (10)

Solve Schrödinger equation, sum up all wave functions and obtain density
profile.

ρ(r) =
∑
n,l ,s

|ψnls(r)|2 (11)

DFT

Roughly speaking, Density Functional Theory for nuclei is to replace U(r)
with U(ρn, ρp) and obtain wave functions or densities until it reaches
self-consistency.
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We employ algebraic function depends on magic number and valence
number of nucleus (Duflo and Zuker Phys. Rev. C 52, R23(R)).

Eshell = a1S
2 + a2(S2)2 + a3S3 + anpSnp, (12)

where

S2 =
nv n̄v
Dn

+
pv p̄v
Dp

S3 =
nv n̄v (nv − n̄v )

Dn
+

pv p̄v (pv − p̄v )

Dp

Snp =
nv n̄vpv p̄v
DnDp

(13)

56Fe

We obtain nv = |30− 28| = 2, pv = |26− 20| = 6. Dn(Dp) is the
degeneracy number, Dn = 50− 28 = 22, Dp = 28− 20 = 8,
n̄v = 50− 30 = 20, p̄v = 28− 26 = 2
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How do we fit all such terms? B, ES , EC , ∆, Eshell?
- Linear regression

0 20 40 60 80 100

0
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60

Figure: Scatterred data and its least square linear plot

y = ax + b → χ2 =
1

N

∑
i

(axi + b − yi )
2 (14)
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To minimize χ2, we take derivatives w.r.t. a and b

f1 =
∂χ2

∂a
=

2

N

∑
i

(axi + b − yi )xi = 0 ,

f2 =
∂χ2

∂b
=

2

N

∑
i

(axi + b − yi ) = 0

(15)

Warning

This is possible because the fitting function is linear. In general non-linear
fitting fuction, or optimization is necessary.

Good news !

In this type of LDM, we can linearize by changing variables Ai = xi ,
A2/3 = si , . . . , Api/

√
A = ui . Follow the ways as in the linear regression.
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By adding more and more correction terms, we can see the root mean
square deviation decrease.

σRMSD = 17.608 (Coulomb), σRMSD = 3.098 (Asymmetry),
σRMSD = 2.987 (Pairing), σRMSD = 1.797 (Shell)

0 30 60 90 120 150 180 210 240

A

0

2

4

6

8

10

B
/A

(M
eV

)

LDM

0 30 60 90 120 150 180 210 240

A

0

2

4

6

8

10

12

14

16

B
/A

(M
eV

)

Bulk
Surface
Coulomb
Asymmetry
Pairing
Shell

Figure: Left :Experimental binding energy (red circles) and LDM calculations
(green line), Right: Binding energy contributions
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How do we know that nuclei are bound?
Total binding energy (in positively defined) should increase as we put
more neutrons or protons

Sn = B(N,Z )− B(N − 1,Z ),S2n = B(N,Z )− B(N − 2,Z ),

Sp = B(N,Z )− B(N,Z − 1),S2p = B(N,Z )− B(N,Z − 2).
(16)

Bound nuclei

Sn > 0, S2n > 0, Sp > 0, S2p > 0. → Do loop calculation !

Coding:

Except theoretical parts, Computer coding : Do Loop & If and else
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Exercise ! DIY
We have the equations to get the optimized linear equation or
correlation line, i.e., Eq. (15). Can you get the analytic solution for a
and b?
What if you have a vector ~x instead of scalar x? That is, there are
data points (x1i , x

2
i , x

3
i , . . . , x

N
i , yi ) and we want to find,

(a1, a2, . . . , aN , b).
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Exercise ! DIY
Nuclear matter saturates at a density of about 0.16baryons/fm3

where the energy per baryoon is about −16MeV. The nuclear surface
tension is about 1MeV/fm2. Estimate the mass number of the
nucleus with the largest binding energy per baryon, assuming
symmetric nuclear matter (equal number of neutrons and protons).

Hint:

E = −BA + 4πR2σ +
3

5

Z 2e2

R
, n0

4πR3

3
= A (17)
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Compressible Liquid Drop Model

LDM is very successful to describe the binding energy of finite nuclei.

Something else with LDM?
1 The first thing we can do is to allow the variation of density of nuclei

n0 → n ; compressible model, R 6= r0A
1/3

2 How can we find that?
Write down the total binding energy as a function density and think
the way to solve it !

E = −BA + ESA
2/3 + EC

Z 2

A1/3
; In compressible model (18)

−B → −B + Sv (1− 2x)2 + K
18

(
1− n

n0

)2
A→ 4π

3 R3n, ES → σ(x); x → proton fraction
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※ σ(x) is the surface tension which can be obtained semi-infinite nuclear
matter density profile. This is an quantities related to two phase(dense
matter, dilute matter) equilibrium. Thus it is a thermodynamic quantity.
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Figure: surface density profile (left) and surface tension (right)

σ(x) ' σ(x = 0.5)− σδ(1− 2x)2 (19)
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f (n, x) =

[
−B + Sv (1− 2x)2 +

K

18

(
1− n

n0

)2
]
A

+ 4πR2σ(x) +
3

5

Z 2e2

R
; Compressible model

(20)

Energy minimization
∂f

∂n
= 0 ,

∂f

∂x
= 0? (21)

No we forgot the constraints

A =
4π

3
R3n , x =

Z

A
(22)
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Lagrange Multiplier Method

How can we minimize some quantities with certain constraints?

f (x , y) = x2 + y2 − 1; x + y = 1 (23)

We can apply Lagrange multiplier method

g(x , y) = x2 + y2 − 1 + λ(x + y − 1) (24)

∂g

∂x
=
∂g

∂y
=
∂g

∂λ
= 0 (25)

2x + λ = 0, 2y + λ = 0, x + y − 1 = 0 (26)
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In the core of neutron star, uniform nuclear matter exists. Because of
charge neutrality, electrons or muons exist depending on the
condition. Now we want to find the ground state-which we are usually
interested. Let’s apply the Lagrange multiplier method and see the
conclusion.

1 Write total free energy density from each contribution,

Ftot = FN + Fe + Fµ (27)

2 Find the contraints

n = nn + np , np = ne + nµ (28)

3 Definition of chemical potential?

µn =
∂FN

∂nn
, µp =

∂FN

∂np
, µe =

∂Fe

∂ne
, µµ =

∂Fµ
∂nµ

, (29)

µn = µp + µe , µe = µµ, (30)
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Apply Lagrange Multiplier method to the compressible liquid drop
model

g(n, x) =

[
−B + Sv (1− 2x)2 +

K

18

(
1− n

n0

)2
]
A

+ 4πR2[σ0 − (1− 2x)2σδ] +
3

5

Z 2e2

R

+ λ1

(
A− 4πR3

3
n

)
+ λ2

(
Z

A
− x

) (31)

What are unknowns ? n, x , R, λ1. λ1, λ2

YEUNHWAN (YEUNHWAN LIM) Nuclear Bayesian June-2020 26 / 64



Apply Lagrange Multiplier method to the compressible liquid drop
model

g(n, x) =

[
−B + Sv (1− 2x)2 +

K

18

(
1− n

n0

)2
]
A

+ 4πR2[σ0 − (1− 2x)2σδ] +
3

5

Z 2e2

R

+ λ1

(
A− 4πR3

3
n

)
+ λ2

(
Z

A
− x

) (31)

What are unknowns ?

n, x , R, λ1. λ1, λ2

YEUNHWAN (YEUNHWAN LIM) Nuclear Bayesian June-2020 26 / 64



Apply Lagrange Multiplier method to the compressible liquid drop
model

g(n, x) =

[
−B + Sv (1− 2x)2 +

K

18

(
1− n

n0

)2
]
A

+ 4πR2[σ0 − (1− 2x)2σδ] +
3

5

Z 2e2

R

+ λ1

(
A− 4πR3

3
n

)
+ λ2

(
Z

A
− x

) (31)

What are unknowns ? n, x , R, λ1. λ1, λ2
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Using the notation fB(n, x) = −B + Sv (1− 2x)2 + K
18

(
1− n

n0

)2
∂g

∂n
= 0;

∂fB
∂n

A− 4πR3

3
λ1 = 0, (32)

∂g

∂x
= 0;

∂fB
∂x

A− 16πR2δ2σδ − λ2 = 0, (33)

∂g

∂R
= 0; 8πR[σ0 − δ2σδ] +

∂EC

∂R
− λ14πR2n = 0, (34)

∂g

∂λ1
= 0; A =

4π

3
R3n (35)

∂g

∂λ2
= 0; x =

Z

A
(36)

Next job is to reduce the equations as many as possible!
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λ1 and λ2 are related to chemical potential of neutrons and protons

λ1 = n
∂fB
∂n

, λ2 =
∂fB
∂n

A− 16πR2δσδ, x =
Z

A
(37)

The remaining two unknowns are n and x which can be obtained from
two equations.

8πR[σ0 − δ2σδ] +
∂EC

∂R
− 4πR2n2

∂fB
∂n

= 0,

A− 4π

3
R3n = 0

(38)

Non-linear equations !

It’s time to learn how to solve non-linear solutions.
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Newton Raphson

Newton Raphson is a very powerful method to get solution for
non-linear equations
Find the solution f (x) = 0

xn+1 = xn − f (xn)/f ′(xn) (39)
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Numerical derivative

xn+1 = xn − f (xn)
xn − xn−1

f (xn)− f (xn−1)
(40)

f (x) +
df

dx
∆x = 0 → ∆x = − f

df /dx
(41)

We can also generalize NR to multivariable ~x = (x1, x2, . . . , xN).

fi +
∂fi
∂xj

∆xj = 0 → ∆xj = −D−1ij fi (42)

∂xj∆xj means summation over j , D−1ij is the matrix inverse for
∂fi/∂xj
Depending on the relative size of xj , λj (scale factor) is introuduced,
∆xj = −λjD−1ij fi
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Figure: Bound nuclei with compressible model
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Take home problem III

If you can write a code (python, fortran, c, c++,. . . ), Try to solve
Eq.(38) for 56Fe.

You may use B = −16MeV, Sv = 32MeV, K = 235MeV,
σ0 = 1.12MeV fm−2, σδ = 2.0MeV fm−2.

You can try with initial guess n = 0.16 fm−3, R = 1.12A1/3 fm.

If you can solve for a given value of B, Sv , K , σ0, σδ, you can also
find the optimized σ0 and σδ.

In the same manner, you can also find the pairing gap ∆ and Shell
corrections in the compressible model.

See how the energy difference changes for N, Z , especially magic
number.

Tips

As you may know, if you meet some numerical problems, it always works if
you can simplify the problems. In this case, you may start fB = −B or
σδ = 0 and increase the complexities to check your code.
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Take Home Problem IV

Energy density functioal is a simple analytic function to decribe
energy density as a function of baryon number density and proton
fraction (n, x).

E(n, x) =
~

2m
τn +

~
2m

τp + (1− 2x)2fn(n) +
[
1− (1− 2x)2

]
fs(n) ,

We can get the coefficients for Energy Density Functional utilizing the
results from state of the art calculation for pure neutron matter EOS
and symmetric nuclear matter properties.
First, the kinetic energy densities (τn, τp) (in the uniform) are given as

τn =
3

5
(3π2)2/3(n(1− x))5/3, τp =

3

5
(3π2)2/3(nx)5/3

The potential energy parts are assumed to be

fs(n) =
3∑

i=0

ain
(2+i/3) , fn(n) =

3∑
i=0

bin
(2+i/3)
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The definition of symmetric nuclear matter properties are

−B =
E
n
,P = n2

∂

∂n

(E
n

)
,K = 9n2

∂2

∂n2

(E
n

)
,Q = 27n3

∂3

∂n3

(E
n

)
.

where every quantity is evaluated at n = n0, x = 1/2.
From the properties finite nuclei, we have B = 16MeV,
P = 0(n0 = 0.16 fm−3), K = 235MeV, Q = −300MeV

Find the coefficient ai from the symmetric nuclear matter properties !

Find the coefficient bi from the neutron matter EOS !

Fitting

This problem is related with the last lecture and a problem in there.
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This is the data file for pure neutron matter from Many body perturbation
calculation using chiral potential and three body forces.

kF (fm−1) n (fm−3) E/A (MeV)

0.66651 0.01 2.87933
0.83975 0.02 4.27096
0.96127 0.03 5.33345
1.05802 0.04 6.23757
1.13972 0.05 7.05834
1.21113 0.06 7.83732
1.27499 0.07 8.59843
1.33302 0.08 9.35958
1.3864 0.09 10.13324

1.43595 0.1 10.92077

kF (fm−1) n (fm−3) E/A (MeV)

1.48231 0.11 11.73104
1.52593 0.12 12.56379
1.56719 0.13 13.42159
1.60639 0.14 14.29794
1.64376 0.15 15.19301
1.6795 0.16 16.10768

1.71379 0.17 17.03337
1.74675 0.18 17.97216
1.77852 0.19 18.91497
1.80919 0.20 19.86317
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LDM for neutron star crust

The compressible model can be used to study the properties of
neutron star crust.

There are several diffference between finite nuclei and nuclei in
neutron star crust.

First of all, we have to think the presence of electrons

As density increases, neutrons drips out of neutron rich heavy nuclei
Unbound neutron exists

Write energy contribution and apply Lagrange Multiplier Method with
constraints !
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Figure: Wigner Seitz cell

Fi : Energy density of a heavy nucleus

Fs : Surface energy density

Fc : Coulomb energy density

Fo : Energy density of outside nucleons

Fe : Electron energy density
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F =uni fi +
σ(xi )ud

rN
+ 2π(nixierN)2ufd(u)

+ (1− u)nno fo + fe ,

(43)

with constraints
n − uni − (1− u)nno = 0 ,

nYp − unixi = 0 ,

nYp − ne = 0 .

(44)

Unknows are u, ni , nno , xi , rN , ne , λ1, λ2, and λ3.

∂F/∂rN → FS = 2FC (the nuclear virial theorem)

∂G/∂ne = 0, the beta equilibrium is made.

Finally, the unknowns will be (ni , xi , u, nno) for a given (n,Yp).
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A little more : Hot dense matter

TWe can do a little more with LDM for hot dense matter EOS
(Supernova EOS)

At finite temperature, there are always unbound neutrons, protons,
electrons, and even alpha particles

Important thing is to find the way to minimize the energy (or free
energy at T 6= 0 MeV)

Free energy density is given for a (n,Ye ,T )

Thermodynamic quantities from free energy density and during the
process of looking for solutions
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Conditional probability (‘Think Bayes’ Allen B. Downey )

A conditional probability is a probability based on some background
information.

Example

What is the the probability that I will have a heart attack in the next year?
According to the CDC, “Every year about 785,000 Americans have a first
coronary attack. (http://www.cdc.gov/heartdisease/facts.htm).”

We can naively think that we may devide 785,500 by the population
in the US. → 0.3%

Condition

However, the chance will depend on the age, level of cholesterol, blood
pressure, family history, and so on.
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The usual notation for Conditional Probability is p(A|B).

A represents the prediction that I will have a heart attack in the next
year, and B is the set of health conditions

Conjoint probability is the probability that two things are true.
p(A ∩ B) means the probability that A and B are both true.

Coin tosses and Dice

P(A ∩ B) = P(A)P(B) (45)

Example

A is the even that the first coin lands face up. B is the event that the the
second coin lands face up, then p(A) = p(B) = 0.5,
p(A ∩ B) = p(A)p(B) = 0.25.
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What if A and B are correlated? They are not independent.

P(A ∩ B) = P(A)P(B) if A and B are independent. (46)

In general, the probability of a conjunction is

p(A ∩ B) = p(A)P(B|A) (47)

P(B|A) = P(B) means they are independent!

Example

Suppose that A means that it rains today and B means that it rains
tomorrow. If I know that it rained today, it is more likely that it will rain
tomorrow, so p(B|A) > p(B) .
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The Cookie problems

Simple consideration

Suppose there are two bowls of cookies. Bowl 1 contains 30 vanilla
cookies and 10 chocolate cookies. Bowl 2 contains 20 of each. Now
suppose you choose one of the bowls at random and, without looking,
select a cookie at random. The cookie is vanilla. What is the probability
that it came from Bowl 1?

Bowl 1 30 Vanilla 10 Choco

Bowl 2 20 Vanilla 20 Choco

Mathematically p(Bowl1|Vanilla)?

It may not seem to be easy but we know that P(Vanilla|Bowl1) = 1/4
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Bayesian Theorem

The observation that conjunction is commutative

p(A ∩ B) = p(B ∩ A) for any events A and B (48)

Conjoint probability

P(A ∩ B) = P(A)P(B|A) or P(B ∩ A) = P(B)P(A|B)

P(B)P(A|B) = P(A)P(B|A) (49)
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Bowl 1 30 Vanilla 10 Choco

Bowl 2 20 Vanilla 20 Choco

Mathematically p(Bowl1|Vanilla)?

p(B1|V ) =
p(B1)p(V |B1)

p(V )
(50)

p(V ) =
50

80
, p(V |B1) =

30

40
, and p(B1) =

1

2
,→ p(B1|V ) =

3

5
.

We can simply guess that p(B1|V ) > p(B2|V ) because Bowl1 has more
vanilla cookies.

We can mathematically or statistically confirm that p(B1|V ) > p(B2|V ).

YEUNHWAN (YEUNHWAN LIM) Nuclear Bayesian June-2020 45 / 64



Bowl 1 30 Vanilla 10 Choco

Bowl 2 20 Vanilla 20 Choco

Mathematically p(Bowl1|Vanilla)?

p(B1|V ) =
p(B1)p(V |B1)

p(V )
(50)

p(V ) =
50

80
, p(V |B1) =

30

40
, and p(B1) =

1

2
,→ p(B1|V ) =

3

5
.

We can simply guess that p(B1|V ) > p(B2|V ) because Bowl1 has more
vanilla cookies.

We can mathematically or statistically confirm that p(B1|V ) > p(B2|V ).

YEUNHWAN (YEUNHWAN LIM) Nuclear Bayesian June-2020 45 / 64



Bowl 1 30 Vanilla 10 Choco

Bowl 2 20 Vanilla 20 Choco

Mathematically p(Bowl1|Vanilla)?

p(B1|V ) =
p(B1)p(V |B1)

p(V )
(50)

p(V ) =
50

80
, p(V |B1) =

30

40
, and p(B1) =

1

2
,→ p(B1|V ) =

3

5
.

We can simply guess that p(B1|V ) > p(B2|V ) because Bowl1 has more
vanilla cookies.

We can mathematically or statistically confirm that p(B1|V ) > p(B2|V ).

YEUNHWAN (YEUNHWAN LIM) Nuclear Bayesian June-2020 45 / 64



Bowl 1 30 Vanilla 10 Choco

Bowl 2 20 Vanilla 20 Choco

Mathematically p(Bowl1|Vanilla)?

p(B1|V ) =
p(B1)p(V |B1)

p(V )
(50)

p(V ) =
50

80
, p(V |B1) =

30

40
, and p(B1) =

1

2
,→ p(B1|V ) =

3

5
.

We can simply guess that p(B1|V ) > p(B2|V ) because Bowl1 has more
vanilla cookies.

We can mathematically or statistically confirm that p(B1|V ) > p(B2|V ).

YEUNHWAN (YEUNHWAN LIM) Nuclear Bayesian June-2020 45 / 64



The diachronic interpretation

“Diachronic” means that something is happening over time; in this
case the probability of the hypotheses changes, over time, as we see
new data.

p(H|D) =
p(H)p(D|H)

p(D)
(51)

1 p(H) is the probability of the hypothesis before we see the data, called
the prior probability, or just prior.

2 p(H|D) is what we want to compute, the probability of the hypothesis
after we see the data, called the posterior.

3 p(D|H) is the probability of the data under the hypothesis, called the
likelihood.

4 p(D) is the probability of the data under any hypothesis, called the
normalizing constant.
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TOV equations

Connect nuclear EOS to neutron star’s mass and radius.

dp

dr
= −G (M(r) + 4πr3p/c2)(ε+ p)

r(r − 2GM(r)/c2)c2
,

dM

dr
= 4π

ε

c2
r2,

(52)

Naive integration through r is convenient because p and ε rapidly
changes on the surface.

Use G = c = 1 and all units are km.

Choose p as integration variables and chages r2 = z , dr2/dp , dM/dp
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dz

dp
= −2

z

(ε+ p)

(z1/2 − 2m)

(m + 4πpz3/2)

dm

dp
= −4π

εz3/2

(ε+ p)

(z1/2 − 2m)

(m + 4πpz3/2)

(53)

There might be two problems !
1 At the center, z = 0,m(z = 0) = 0, singularity arises

m0 '
4π

3
z3/2ε0

2 p changes rapidly to surface (103MeV fm−3 to 10−10MeV fm−3 )

∆pi < 0.5pi−1 or p → ln(p)

Integrate from the center to the surface with Runge-Kutta 4th oder
method.
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Interpolation

In some cases, we need to interpolate some quantities from data files.

Tables are often used for the stability of the code.
Supernovae simulation with Hot Dense Matter EOS.

There are lots of schemes for interpolations and subroutines.
Linear equation, quadratic, cubic-splint, spline, etc.

First : find the nearest data point for a given. x

Choose your own interpolation scheme.
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Legendre interpolation

For a given set (xi , fi ), (i = 1, 2, . . . , k),

L(x) =
k∑

i=1

fi li (x) (54)

where

li (x) =
∏

j=1,··· ,k
j 6=i

x − xj
xi − xj

(55)

li (x) is a (k − 1)th order polynomial.

li (xm) =

{
1 if m = i

0 if m 6= i
→ L(xi ) = fi (56)
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Ex. Four points interpolation,
x1 < x2 < x < x3 < x4,

f (x) =
(x − x2)(x − x3)(x − x4)

(x1 − x2)(x1 − x3)(x1 − x4)
f1

+
(x − x1)(x − x3)(x − x4)

(x2 − x1)(x2 − x3)(x2 − x4)
f2

+
(x − x1)(x − x2)(x − x4)

(x3 − x1)(x3 − x2)(x3 − x4)
f3

+
(x − x1)(x − x2)(x − x3)

(x4 − x1)(x4 − x2)(x4 − x3)
f4

(57)

You may have your own favorite!
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Correlation or confidence interval

You may meet some statisitical quantities with correlation between x
and y , with σx , σy , σxy , 〈x〉, 〈y〉.

α

2σx

2σ
y

(〈x〉, 〈y〉)

If there’s an extreme case, y = ax + b, perfect correlation, then we
don’t expect that there are some data at two corners.
Thus, it is not statistally correct to draw a box with 2σx width and
2σy centered at (〈x〉, 〈y〉)
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How can we draw an ellipse?

x2

a2
+

y2

b2
= 1 → (x cosα + sinαy)

a2
+

(−x sinα + cosαy)

a2
= 1

dy
dx =∞ or dx

dy = 0 at the boundaries.

σx =
√

b2 sin2 α + a2 cos2 α, σy =
√

b2 cos2 α + a2 sin2 α, (58)

2Rxyσxσy = (a2 − b2) (59)

tan(2α) =
2Rxyσxσy
σ2x − σ2y

(60)
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EOS and Uncertainties

Our goal is to see how the uncertainties propgate into nuclear
astrophysical properties

EOS can be fitted by energy density functional

E(n, x) =
1

2m
τn +

1

2m
τp + (1− 2x)2fn(n) +

[
1− (1− 2x)2

]
fs(n) ,

(61)
where n is the nucleon number density, τn and τp are the neutron and
proton kinetic energy densities, x is the proton fraction,

fs(n) =
3∑

i=0

ain
(2+i/3) , fn(n) =

3∑
i=0

bin
(2+i/3) (62)
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What is prior and what is likelihood in this EOS?

P(H|D) ' P(H)P(D|H) , H ≈ (~a, ~b) (63)

1 Prior can be obtained easily. We can regard some theoretical
calculations as a prior (χMBPT).

2 P(D|H); when H is true, the probability of D is true.
If we use some results, we can regard them as likelihood.

3 D can be symmetric nuclear matter properties and symmetry energy
parameters.

B, n0,K ,Q, J, L,Ksym,Qsym

E(n,
1

2
) = −B +

1

2
K

(
n − n0

3n0

)2

+
1

6
Q

(
n − n0

3n0

)2

+ · · ·

E(n, 0) = J + L

(
n − n0

3n0

)
+

1

2
Ksym

(
n − n0

3n0

)2

+
1

6
Qsym

(
n − n0

3n0

)2

+ · · ·
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results (right)

YEUNHWAN (YEUNHWAN LIM) Nuclear Bayesian June-2020 56 / 64



Where can we find B, n0,K ,Q (symmetric matter) ?
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Figure: SNM probability distribution from Dutra et al. (2012)
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Where can we find J, L,Ksym,Qsym (pure neutron matter) ?
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Figure: PNM probability distribution from Lim & Holt. (2019)
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We can recover aj and bj for EDF.

How can we combine prior (~a, ~b) -χEFT with likelihood

(~a, ~b)-Skyrme, FLT?
1 First of all, we have to understand the meaning of probability from

(~a, ~b).
2 There is a statistical method to generate (~a, ~b) from covariant matrix

and average of them

Σij =
∑
k

(xki − x̄i )(xkj − x̄j)w
k , (64)

3 P(H)P(D|H) → Σ−1
C = Σ−1

A + Σ−1
B

Generate lots of (~a, ~b) set from ΣC , see the results
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Neutron Star Phenomenology

Statistical uncertainties originated from EOSs (Lim&Holt PRL 2018)
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Neutron Star Phenomenology

Statistical uncertainties originated from EOSs (Lim&Holt PRL 2018)
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Probability distribution of central density I
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Probability distribution of central density II
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ñc = 0.53 fm−3

0.2 0.4 0.6 0.8 1.0 1.2 1.4

nc (fm−3)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

P
D

F
,
P

(n
c)

M = 1.6M�

0.503 fm−3 ≤ nc±σ ≤ 0.749 fm−3

0.424 fm−3 ≤ nc±2σ ≤ 1.144 fm−3
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Revised Sv − L correlation from Bayesian modelling.
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Figure: Sv and L constraints, Lim & Holt (2019).
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Figure: Correlations among nuclear properties and neutron stars, Lim & Holt
(2019)
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