QCD in medium: Effective models and lattice QCD

Seung-il Nam

Department of Physics, Pukyong National University (PKNU), Center for Extreme Nuclear Matters (CENuM), Korea University, Asia Pacific Center for Theoretical Center Physics (APCTP), Republic of Korea

QCD in medium: Effective models

Strongly interacting particles such as quarks and gluons are governed by QCD

Nonlinear interactions of quarks and gluons leads to nontrivial feature of QCD: Asymptotic freedom and Confinement

No free quarks observed yet

•QCD has accumulated many successful interpretations for hadrons, strongly-interacting vacuum, quark matters, perturbative QCD, etc.

> Insufficient understandings on low-energy QCD: Mass gap of YM theory

Relevant symmetries Effective QCD-like models Embedding on computer Lattice QCD Dualities in space-time Holographic QCD

Effective models of QCD based on relevant symmetries and their dynamical breakdowns

Being motivated by the superconducting theory, Nambu and Jona-Lasinio suggested an effective model of QCD: "NJL model"

$$L = \overline{\psi} \Big[i \gamma_{\mu} \partial^{\mu} - (m_{c} + \eta) \Big] \psi$$
$$-\delta \eta \overline{\psi} \psi + \delta G_{S} \Big[(\overline{\psi} \psi)^{2} + (\overline{\psi} i \gamma_{5} \tau \psi)^{2} \Big],$$

Spontaneous Chiral Symmetry Breaking (SCSB) leads to emergence of pion, dynamical mass for quarks, finite low-energy constant, etc.

According to SCSB, QCD mutates at low-energy region as

A sophiscated QCD-like model: Liquid-Instanton Model (LIM)

Instanton: A semi-classical solution which minimize YM action

Simpler understanding of instanton: Tunneling path of vacua

Or, instanton is a low-energy effective-nonperturbative gluon

Instanton interprets well the spontaneous chiral symmetry breaking (SCSB) and U(1) axial anomaly (Witten-Veneziano theorem), etc.

- Technically, it has only two model parameters for light-flavor sector in the large Nc limit: Average instant on size & inter-instanton distance
- Unfortunately, there is NO confinement!!!
- Some suggestions for the confinement with instanton physics: Dyon, nontrivial-holonomy caloron, etc.
- It has been believed that confinement is not so relevant in ground-state hadron spectra, in contrast to resonances, Regge behavior, Hagedorn spectrum, etc.

QCD has complicated phase structure as a function of temperature and density

- I. Each QCD phases defined by its own order parameters
- II. Behavior of order parameters governed by dynamics of symmetry
 - III. Symmetry and its breakdown governed by vacuum structure
 - Chiral symmetry Quark (chiral) condensate: Hadron or not?
 - Center symmetry
 VEV of Polyakov loop: Confined or not?
 - Color symmetry Diquark condensate: Superconducting or not?

Color-flavor symmetry (locking) ↔ Diquark condensate at high density QCD phase ↔ Symmetries of QCD ↔ QCD vacuum

Why are heavy-ion collision experiments special for QCD?

SCSB results in nonzero chiral (quark) condensate due to nonzero effective quark mass even in the chiral limit, i.e. m=0

$$-\langle \bar{\psi}\psi \rangle_{\text{Mink}} = i \langle \psi^{\dagger}\psi \rangle_{\text{Eucl}} = 4N_c \int \frac{d^4p}{(2\pi)^4} \frac{M(p)}{p^2 + M^2(p)}$$

Nonzero <<u>q</u>q> indicates hadron (Nambu-Goldstone) phase, whereas

zero <qq> does non-hadronic phase, not meaning deconfinement
Thus, <qq> is an order parameter for chiral symmetry
In the real world with nonzero quark current mass ~ 5 MeV, at low density, there appears crossover near T ~ 0, and it becomes 1st-order phase transition as density increases
In the vicinity of critical density, there are various and complicated phases, such as color-superconducting, quarkyonic phase, etc.

Dynamical (spontaneous) breakdown of center symmetry results in nonzero Polyakov-loop condensate <L>

 $e^{-\beta F} = Tr[e^{-H/T}] = \sum_{n} \langle n | e^{-\tau \cdot H} | n \rangle_{\tau = \beta = 1/T} =$ $= \sum_{n} e^{-\beta E_{n}} =$ $= \sum_{\psi} \sum_{U} e^{-S_{FG}} Tr \psi_{\tau}^{+} U_{\tau} U \dots U_{0} \psi_{0} =$ $= \sum_{U} e^{-S_{G}} Tr[UU \dots U]_{0\tau}$

 $\sum_{U} e^{-S_{G}} \underbrace{Tr[UU...U]_{0\tau}}_{\langle Tr Pe^{ig\int_{0}^{\beta}A_{0}(\vec{x})d\tau}\rangle_{G}} \not \land \langle L(\vec{x}) \rangle$

 $S_{o\tau} = \psi_{\tau}^{+} U_{\tau} U \dots U_{0} \psi_{0}:$ quark propagator $0 \rightarrow \tau$

Considering Exp[-F/T]~<L>, where F is quark free energy, "<L>=0" means that F is infinity, so that quarks are confined

If <L> nonzero, F is finite to separate the quarks apart, i.e. deconfined

Heavy-ion collision (HIC) experiments enable us to investigate hot and dense QCD matter ~ early Universe

Theory can help to understand HIC experiments

Equation of state of QCD matter: Lattice QCD, Effective models

Evolution of QGP: (Viscous) Hydrodynamics

Hadronization: Transport models

We want to focus on the following subjects: Critical behaviors, transport coefficients, Effects of external B fields...

For this purpose, we want to modify the effective models in terms of temperature (as well as density)

Polyakov-loop NJL model & T-modified LIM

We start from the effective Lagrangian of NJL, resulting in effective thermodynamic potential Ω, which gives EoS of QCD matter

$$\mathcal{L} = \bar{\psi}(i\partial \!\!\!/ - \underline{m})\psi + G\left((\bar{\psi}\psi)^2 + (\bar{\psi}i\gamma_5\tau_a\psi)^2\right)$$

•We expand the four-quark interaction in terms of SBCS $\bar{\psi}\psi = \langle \bar{\psi}\psi \rangle_{NJL} + \delta(\bar{\psi}\psi)$

Finite chiral condensate considered as an effective quark mass

$$M = m - 2G \left< \bar{\psi}\psi \right>_{NJI}$$

Finally, we arrive at an effective Lagrangian manifesting SBCS

$$\mathcal{L} = \bar{\psi} \left(i \partial \!\!\!/ - M \right) \psi - \frac{(M-m)^2}{4G} \quad \text{Constant potential via SBCS}$$

Free quark with effective mass M

Employing Matsubara formula to convert the action $S \sim [\int d^4x \text{ Lagrangian}]$ into thermodynamic potential

$$i\int \frac{d^4k}{(2\pi)^4} f(k) \longrightarrow -T\sum_n \int \frac{d^3k}{(2\pi)^3} f(i\omega_n + \mu, \vec{k})$$

with fermionic Matsubara frequencies $\omega_n = (2n+1)\pi T$

We arrive at an effective thermodynamic potential

$$\Omega_{\rm NJL} = \frac{(M_0 - m_q)^2}{4G} - 2N_c N_f \int_0^\Lambda \frac{d^3 \mathbf{k}}{(2\pi)^3} \left\{ E_{\mathbf{k}0} + T \ln\left[\left(1 + e^{-\frac{E_{\mathbf{k}0} - \mu}{T}} \right) \left(1 + e^{-\frac{E_{\mathbf{k}0} + \mu}{T}} \right) \right] \right\}$$

Computing gap equation, giving phase diagram for SBCS

$$\frac{\partial \Omega_{\rm NJL}}{\partial M_0} = \frac{M_0 - m_q}{2G} - 2N_c N_f \int_0^\Lambda \frac{d^3 \mathbf{k}}{(2\pi)^3} \frac{M_0}{E_{\mathbf{k}0}} \left[1 - \frac{e^{-\frac{E_{\mathbf{k}0} - \mu}{T}}}{1 + e^{-\frac{E_{\mathbf{k}0} - \mu}{T}}} - \frac{e^{-\frac{E_{\mathbf{k}0} + \mu}{T}}}{1 + e^{-\frac{E_{\mathbf{k}0} + \mu}{T}}} \right] = 0$$

QCD phase diagram as a function of T and µvia NJL model

•K. Fukushima develop a modified NJL with Polyakov loop, i.e **pNJL**

Identifying the imaginary quark chemical potential as Polyakov line,

$$\begin{split} \Omega/V &= V_{\text{glue}}[L] + \frac{1}{2G}(M - m_q)^2 \\ &- 2N_{\text{c}}N_{\text{f}} \int \frac{\mathrm{d}^3 p}{(2\pi)^3} \Big\{ E_p + T \frac{1}{N_{\text{c}}} \\ &\times \operatorname{Tr}_{\text{c}} \ln \Big[1 + L \mathrm{e}^{-(E_p - \mu)/T} \Big] \\ &+ T \frac{1}{N_{\text{c}}} \operatorname{Tr}_{\text{c}} \ln \Big[1 + L^{\dagger} \mathrm{e}^{-(E_p + \mu)/T} \Big] \Big\}, \end{split} \qquad \begin{aligned} L(\vec{x}) &= \mathcal{T} \exp \left[-\mathrm{i} \int_{0}^{\beta} \mathrm{d}x_4 A_4(x_4, \vec{x}) \right] \\ V_{\text{glue}}[L] \cdot a^3/T \\ &= -2(d - 1)\mathrm{e}^{-\sigma a/T} |\operatorname{Tr}_{\text{c}} L|^2 \\ &- \ln \Big[-|\operatorname{Tr}_{\text{c}} L|^4 + 8\operatorname{Re}(\operatorname{Tr}_{\text{c}} L)^3 \\ &- 18|\operatorname{Tr}_{\text{c}} L|^2 + 27 \Big] \end{split}$$

 V_{glue} [L] constructed by Z(N_c) symmetry and lattice QCD information

$$\Omega_{\text{eff}}^{\phi} = -T^4 \left[\frac{b_2(T)}{2} (\phi \phi^*) + \frac{b_3}{6} (\phi^3 + \phi^{*3}) - \frac{b_4}{4} (\phi \phi^*)^2 \right] \qquad b_2(T) = a_0 + a_1 \left[\frac{T_0}{T} \right] + a_2 \left[\frac{T_0}{T} \right]^2 + a_3 \left[\frac{T_0}{T} \right]^3$$

Realization of simultaneous crossover of chiral and deconfinement phase transitions

T-modified LIM:(mLIM) Instanton parameters are modified with trivial-holonomy caloron solution (Not dyon, vortex, or something)

Caloron is an instanton solution for periodic in Euclidean time, i.e temperature, but no confinement

Distribution func. via trivial-holonomy (Harrington-Shepard) caloron

$$d(\rho, T) = \mathcal{C} \, \rho^{b-5} \exp\left[-\mathcal{F}(T)\rho^2\right], \quad \mathcal{F}(T) = \frac{1}{2}A_{N_c}T^2 + \left[\frac{1}{4}A_{N_c}^2T^4 + \nu\bar{\beta}\gamma n\right]^{\frac{1}{2}}$$

$$A_{N_c} = \frac{1}{3} \left[\frac{11}{6} N_c - 1 \right] \pi^2, \quad \gamma = \frac{27}{4} \left[\frac{N_c}{N_c^2 - 1} \right] \pi^2, \quad b = \frac{11N_c - 2N_f}{3}.$$

Using this, we modify the two instanton parameters as functions of T

mLIM parameters (left) and effective quark mass M (right)

Hence, effective quark mass plays the role of UV regulato

Finally, we arrive at an effective thermodynamic potential via instanton and Polyakov loop

$$\begin{split} \Omega_{\text{eff}} &= \Omega_{\text{eff}}^{q+\Phi} + \Omega_{\text{eff}}^{\Phi} = 2\sigma^2 - 2N_f \left[N_c \int \frac{d^3 \mathbf{k}}{(2\pi)^3} E_{\mathbf{k},T} \right] \\ &+ T \int \frac{d^3 \mathbf{k}}{(2\pi)^3} \ln \left[1 + N_c \left(\Phi + \bar{\Phi} e^{-\frac{E_{\mathbf{k},T}}{T}} \right) e^{-\frac{E_{\mathbf{k},T}}{T}} + e^{-\frac{3E_{\mathbf{k},T}}{T}} \right] \\ &+ T \int \frac{d^3 \mathbf{k}}{(2\pi)^3} \ln \left[1 + N_c \left(\bar{\Phi} + \Phi e^{-\frac{E_{\mathbf{k},T}}{T}} \right) e^{-\frac{E_{\mathbf{k},T}}{T}} + e^{-\frac{3E_{\mathbf{k},T}}{T}} \right] \\ &- T^4 \left[\frac{b_2(T)}{2} (\Phi \bar{\Phi}) + \frac{b_3}{6} (\Phi^3 + \bar{\Phi}^3) - \frac{b_4}{4} (\Phi \bar{\Phi})^2 \right], \end{split}$$

Basically, we have similar results with pNJL results

In detail, positions for critical T and ρ , structure of phase shift, etc. are different quantitatively

Momentum-dependent effective quark mass

$$M = M_0(\mu, T) \left[\frac{2}{2 + \bar{\rho}^2 \, \boldsymbol{k}^2} \right]$$

Gap (saddle-point) equations for LIM and NJL

$$\frac{NN_f}{VM_0} = 2N_c N_f \int \frac{d^3 \mathbf{k}}{(2\pi)^3} \frac{(m+M)F^{\mathcal{N}}}{E} \left[\frac{(1-XY)}{(1+X)(1+Y)} \right],$$

$$\frac{\mathcal{M}-m}{2G} = 2N_c N_f \int^{\Lambda} \frac{d^3 \mathbf{k}}{(2\pi)^3} \frac{(m+\mathcal{M})}{\mathcal{E}} \left[\frac{1-\mathcal{XY}}{(1+\mathcal{X})(1+\mathcal{Y})} \right],$$

Parameterization of instanton packing fraction in medium

$$\frac{N}{V} \to \frac{N}{V} \left[\frac{M_0}{M_{0,\text{vac.}}}\right]^2$$

Standard representations for thermodynamic properties of QCD matter

$$p(T,\mu) = -(\Omega - \Omega_{\text{vac.}}), \quad n(T,\mu) = -\frac{\partial\Omega}{\partial\mu},$$
$$s(T,\mu) = -\frac{\partial\Omega}{\partial T}, \quad \epsilon(T,\mu) = T s(T,\mu) + \mu n(T,\mu) - p(T,\mu),$$

Thermodynamic properties of QCD matter for LIM and NJL

$$p_{\text{NJL}} = -(\Omega_{\text{eff}}^{\text{NJL}} - \Omega_{\text{eff,vac.}}^{\text{NJL}}),$$

$$n_{\text{NJL}} = 2N_f N_c \int^{\Lambda} \frac{d^3 \mathbf{k}}{(2\pi)^3} \left[\frac{\mathcal{E}(\mathcal{Y} - \mathcal{X}) + (1 - \mathcal{X}\mathcal{Y})\mathcal{M}\mathcal{M}^{(\mu)}}{\mathcal{E}(1 + \mathcal{X})(1 + \mathcal{Y})} \right] - \frac{(\mathcal{M} - m)\mathcal{M}^{(\mu)}}{2G},$$

$$s_{\text{NJL}} = 2N_f N_c \int^{\Lambda} \frac{d^3 \mathbf{k}}{(2\pi)^3} \left[\ln\left[(1 + \mathcal{X}) (1 + \mathcal{Y}) \right] + \frac{\mathcal{E}[\mathcal{E}_-(1 + \mathcal{X})\mathcal{Y} + \mathcal{E}_+(1 + \mathcal{Y})\mathcal{X}] + T(1 - \mathcal{X}\mathcal{Y})\mathcal{M}\mathcal{M}^{(T)}}{\mathcal{E}T(1 + \mathcal{X})(1 + \mathcal{Y})} \right]$$

$$- \frac{(\mathcal{M} - m)\mathcal{M}^{(T)}}{2G}.$$

$$p_{\text{LIM}} = -(\Omega_{\text{eff}}^{\text{LIM}} - \Omega_{\text{eff},\text{vac.}}^{\text{LIM}}),$$

$$n_{\text{LIM}} = 2N_f N_c \int \frac{d^3 \mathbf{k}}{(2\pi)^3} \left[\frac{E(Y-X) + (1-XY)MM^{\mu}}{E(1+X)(1+Y)} \right] - \frac{2M_0 M_0^{\mu}}{M_{0,\text{vac.}}^2} \frac{N}{V}$$

$$s_{\text{LIM}} = 2N_f N_c \int^{\Lambda} \frac{d^3 \mathbf{k}}{(2\pi)^3} \left[\ln\left[(1+X)(1+Y) \right] + \frac{E[E_-(1+X)Y + E_+(1+Y)X] + T(1-XY)MM^{(T)}}{ET(1+X)(1+Y)} \right] - \frac{2M_0 M_0^{(T)}}{M_{0,\text{vac.}}^2} \frac{N}{V}$$

Thermodynamic properties: NJL vs. LIM

Chiral phase diagram via effective quark mass

Thermodynamic properties: NJL vs. LIM

4. Some numerical results

Interesting subjects in hot and dense QCD (QGP) in terms of the strongly interacting quark-gluon matter

- 1. Phase structure: Where are CEP and TCP?
- 2. Effects of external magnetic fields: CME, CMS
- 3. Transport coefficients: Viscosities, conductivities, etc.
- 4. Contributions from flavors, colors, axial anomaly
- 5. Various current-current correlators: Jet-quenching parameter
 6. LEC in color fields
- 7...

Very rapidly developing fields

- Much relations with lattice QCD community
- Still huge amounts of research subjects waiting for you!

Nuclear Physics School 2020, 22 - 26 Jun. 2020, APCTP, Korea

4. Some numerical results

This time, I focus on Transport coefficients under external magnetic fields

QGP and Transport coefficients:

Recent heavy-ion collision experiment showed possible evidence of QGP

Interpreted well by hydrodynamics with small viscosity ~ perfect fluid

Properties of QGP can be understood by transport coefficients: Bulk and sheer viscosities, electrical conductivity, and so on

They can be studied using Kubo formula via linear response theory

Introduction

QGP and transport coefficients

- Recent heavy-ion collision experiment showed possible evidence of QGP
- Interpreted well by hydrodynamics with small viscosity: ~ perfect fluid
- Properties of QGP can be understood by transport coefficients:

Bulk and sheer viscosities, electrical conductivity, and so on

They can be studied using Kubo formulae via linear response theory

F. Karsch, D. Kharzeev, and K. Tuchin, Phys. Lett. B 663, 217 (2008).

Strong magnetic (B) field in QGP

- RHIC experiments observed strong B field ~ (pion mass)²
- Strong B field modify nontrivial QCD & acelus must functuated ation), Phys. Rev. Lett. 103, 251601 (2009)
- Charged-current asymmetry: Chiral magnetic effect (wave)
- B field enhances SBCS: Magnetic catalysis

K. Fukushima, D. E. Kharzeev, and H. J. Warringa, Phys. Rev. D 78, 274033 (2008).

D. P. Menezes, M. Benghi Pinto, S. S. Avancini, A. Perez Martinez, and C. Providencia, Phys. Rev. C 79, 035807 (2009).

Chiral condensate for u and d flavors under B field

Chiral condensate for u and d flavors under B field

4. Some numerical results

Various transport coefficients

In viscous hydrodynamics simulations, η of QGP used as a parameter

4. Some numerical results

TD(I)P: Temperature (in)dependent parameters of ρ and N/V

TDP curves increase wrt T, whereas TIP ones get diminished beyond $T_{\mbox{\tiny c}}$

B-field effects negligible beyond T_c: Less effects on QGP

4. Some numerical results

Entropy density shows increasing functions of T for TDP and TIP

Min $(\eta / s) \sim 1/(4\pi)$:KSS bound (Kovtun, Son, and, Starinets)

LQCD, NJL, and ChPT results are compatible with ours

Numerical results vs. SU(Nc) lattice QCD (LQCD)

Gupta et al., PLB597 (2004) SU(3). Unrenormalized VC

Aarts et al., PRL99 (2007) SU(3). Unrenormalized VC

Ding et al., PRD83 (2011): SU(3) SU(3). Unrenormalized VC

Buividovich et al., PRL105 (2010): SU(2)

- \bullet The numerical results compatible with LQCD data for various τ
- Effects of B field is negligible (thick and thin lines)
- EC increases obviously beyond T ~ 200 MeV

B. Kerbikov and M. Andreichikov, arXiv:1206.6044.

5.Summary

Along with lattice QCD and theory beyond QFT, QCD-like EFT plays a important role to understand strongly-interacting systems
Strongly-interacting QGP believed to be created in HIC is a good place to test QCD in extreme conditions, i.e. hot and dense QCD matter

QCD-like EFTs are modified in medium with helps of lattice QCD, Euclidean-time formula, nonperturbative gluonic correlations, etc.
Various physical properties of QGP investigated using QCD-like EFTs, such as transport coefficients, EoS, effects of B-fields, etc.
There are still insufficient understandings and obvious distinctions between EFTs, and they can be resolved along with lattice QCD

QCD in medium: Lattice QCD

In collaboration with Prof. M.Wakatama (Kokushikan Univ., Japan)

QCD is a first principle for strong interactions but too difficult in low-E as we have seen

- Ideas for overcoming huddles:
- 1) We have computing machines
- 2) Physics is based on CALCULUS
- 3) Correlations can be expressed by multiple differentiations
- 4) Reconstruct QCD in discret spacetime

$$f'(a) = \lim_{h
ightarrow 0} rac{f(a+h)-f(a)}{h}.$$

5) Using path integral for correlations and statistical methods: Why????6) Profit!!

Kenneth G. Wilson (1936 ~ 2013)

Physical Review D. 25 (10): 2649.

QCD correlation functions are redefined in discretized space-time

Four-dimensional Euclidean space-time with volume L³T

<0|O(x)O(y)|0>

In continuous limit $a \rightarrow 0$, it becomes our world again

Unfortunately, we have infinite possible paths as quantum fluctuations: Which route do I need to take?

We have a powerful method for this: Path integral

Ok, fine, then how to perform path integral with the discrete spacetime technically?

Again, we have powerful method:

Statistical Monte-Carlo simulation

•First, we start with the path integral for this purpose for QCD

$$\left\langle \mathcal{O}(\bar{\psi},\psi,U) \right\rangle = \frac{1}{Z} \int \mathcal{D}U \mathcal{D}\bar{\psi} \mathcal{D}\psi \ \mathcal{O}(\bar{\psi},\psi,U) \ \mathrm{e}^{-S_G[U] - S_F[\bar{\psi},\psi,U]}$$

Using external Grassmann fields to integrate out the fermion fields

$$\left\langle \mathcal{O}(\bar{\psi},\psi,U) \right\rangle = \frac{1}{Z} \int \mathcal{D}U \; \left(\det D(U)\right) \; \mathrm{e}^{-S_G[U]} \; \mathcal{O}'(U)$$

Redefined operator $\mathcal{O}'(U) \equiv \mathcal{O}(-\frac{\partial}{\partial \eta}, \frac{\partial}{\partial \bar{\eta}}, U) e^{\bar{\eta} D^{-1}(U)\eta} \Big|_{\eta = \bar{\eta} = 0}$

How to perform MC with this???

- 1. Generate a uniform random number i
- 2. Generate a gauge configuration Ui by weighting probability P=det[D(Ui)] exp(-SG[Ui]) to the uniform random number Importance sampling: P and 1/P are known!!
- 3. Calculate O'(Ui) for the obtained Ui
- 4. Repeat the process N times

$$\lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} \mathcal{O}'(U_i) = \frac{1}{Z} \int \mathcal{D}U \, e^{-S_G[U]} \, \mathcal{O}'(U) = \left\langle \mathcal{O}(\bar{\psi}, \psi, U) \right\rangle$$

Generating U_i with P

Sequential generating U via Markov-Chain MC

•Metropolis-Hastings algorithm: Certain probability of $U_i \rightarrow U_j$

Quenched!

<u>1.Introduction: Lattice QCD</u>

Make things easy! : Quenched approximation

There are infinite sea (virtual) quarks in Dirac sea: Quark loops

Decoupling sea quarks by making sea-quark mass infinite

$$\frac{\int \mathcal{D}U \ (\det D(U)) \ e^{-S_G[U]} \ \mathcal{O}'(U)}{\int \mathcal{D}U \ (\det D(U)) \ e^{-S_G[U]} \ \mathcal{O}'(U)} \sim \frac{\int \mathcal{D}U \ (\det D(U)) \ e^{-S_G[U]} \ \mathcal{O}'(U)}{\int \mathcal{D}U \ (\det D(U)) \ e^{-S_G[U]} \ \mathcal{O}'(U)}$$

This treatment is the same with det D(U) =1

Due to this, "P" becomes local (without derivatives) and simple!!!!

Quenched!

<u>1.Introduction: Lattice QCD</u>

How to make SG in LQCD? : Plaquette action

Link variable U which make (anti)quark move to a next site

$$U_{\mu}(x) = \exp\left[iaA_{\mu}(x)\right]$$

 $\psi(x+ax_2)$ =U can be understood as a gauge link in SU(Nc)

$$G(x,y) = P \exp\left[i \int A_{\mu} ds^{\mu}\right]$$

Quenched!

<u>1.Introduction: Lattice QCD</u>

What is a gauge-invariant quantity, constructed by U?A smallest closed loop L of multiplications of U: Plaquette

Quenched! <u>1.Introduction: Lattice QCD</u>

Constructing action with Plaquette: Wilson gauge action

$$S_G[U] = \frac{2}{g^2} \sum_x \sum_{\mu < \nu} \operatorname{ReTr} \left[1 - U_{\mu\nu}(x) \right]$$

I do not prove equivalence..

In continuous limit, it (closely) becomes usual QCD gauge action

In SU(2), this action can be written as

$$S_P[U] = \beta \sum_{x} \sum_{\mu=1}^{3} \left[(4-\mu) - \frac{2}{N_c} b^0_{\mu}(x) \right] = \sum_{a=0}^{3} \left(b^a_{\mu}(x) \right)^2 = 1$$

Here, we have used the SU(2) generator nature (Pauli matrix)
After tedious calculations, we arrive at the final expression: $\left\langle \mathcal{O}(\bar{\psi},\psi,U)\right\rangle = \frac{1}{Z} \prod_{x,\mu} e^{-(4-\mu)} \int_{-1}^{1} d(\cos\theta) \int_{0}^{2\pi} d\phi \int_{-1}^{1} db_{\mu}^{0}(x) \frac{\sqrt{1-(b_{\mu}^{0}(x))^{2}}}{2} \exp\left[\frac{2\beta}{N}b_{\mu}^{0}(x)\right] \mathcal{O}'(U)$

Quenched! <u>1.Introduction: Lattice QCD</u>

SU(2) Willson (plaquette) action gets simpler

$$\begin{split} \left\langle \mathcal{O}(\bar{\psi},\psi,U) \right\rangle &= \frac{1}{Z} \prod_{x,\,\mu} \mathrm{e}^{-(4-\mu)} \int_{-1}^{1} d\left(\cos\theta\right) \int_{0}^{2\pi} d\phi \int_{\mathrm{e}^{-2\beta/N_{c}}}^{\mathrm{e}^{2\beta/N_{c}}} dY \quad \frac{N_{c}}{4\beta} \sqrt{1 - \left(\frac{N_{c}}{2\beta}\log Y\right)^{2}} \ \mathcal{O}'(U) \\ Y &= \exp\left[\frac{2\beta}{N_{c}} b_{\mu}^{0}(x)\right] \iff b_{\mu}^{0}(x) = \frac{N_{c}}{2\beta}\log Y \end{split}$$

Pseudo-Heat-bath method (importance sampling)
1. Random generation of Y (~b) and 0≤ξ≤1
2. Computing P = √~ then compare it with ξ
3. If P ≥ ξ, take Y (~b), and vice versa going to 1 again
4. Computing O'(U) with obtained Y
5. Generating angles randomly then perform integration!!

Although we have a big jump....

■LQCD in finite quark chemical potential: What's wrong with this? ■We compute $\lim_{N\to\infty} \frac{1}{N} \sum_{i=1}^{N} \mathcal{O}'(U_i)$ with P = (det D(U)) $e^{-S_G[U]}$

Note that $det[D] = DD^+$

The quark Dirac operator with chemical potential reads

 $D(\mu_q) = \not D + m + \mu_q \gamma_0$ $D^{\dagger}(\mu_q) = -\not D + m + \mu_q^* \gamma_0 = \gamma_5 D^{\dagger}(-\mu_q^*) \gamma_5$ $\{\det[D(\mu_q)]\}^* = \det[D^{\dagger}(\mu_q)] = \det[\gamma_5 D(-\mu_q^*) \gamma_5] = \det[D(-\mu_q^*)]$ $If \mu \text{ is real, } \det[D] \text{ is not real (complex), and VICE VERSA}$

det[D] must be real, since it is probability P!!!

In addition, if it is a complex, then we have

$$\int dUO'(U)(R+iI)e^{-S_G} \sim \int dUO'(U)e^{-S_G+i\phi}$$

It's oscillation to cancel out the integral: Sign problem
 Notorious problem in strongly interacting fermion systems even in condensed matter, QFT, and nuclear physics as well.

How to solve the sign problem???

- So far, there have been no cures (NP-hard problem)
- Many indirect and approximated methods developed

Canonical approach developed!!

Figure by Dr. Wakayama

 Fugacity expansion of grand canonical partition function

$$Z_{GC}[\mu_q, T, V] = \sum_{n} Z_C[n, T, V] \xi^n, \quad \xi = e^{\mu_q/T}$$

Fugacity

Gilbert Newton Lewis

Obtain canonical function partition function by Fourier transform

$$Z_C[n, T, V] = \int_0^{2\pi} \frac{\mu_{qI}/T}{2\pi} e^{-n\mu_{qI}/T} Z_{GC}[\mu_{qI}, T, V]$$

 For imaginary chemical potential, there is no SIGN problem One can do MCMC or Metropolis-Hastings MC Then, we obtain Z_{GC} on LQCD

Canonical approach developed

If we get Z_n for all n, we can search at ANY density!

Slide by Dr. Wakayama

In numerical calculations, n is finite.

Slide by Dr. Wakayama

Application of canonical method: Lee-Yang zeros

Zeros of ZGC so-called Lee-Yang Zeros (LYZ) contain a valuable information on the phase transitions of a system.

T.D. Lee & C.N. Yang, Phys. Rev. 87, 404&410 (1952)

$$Z_{\rm GC}(\mu_q, T, V) = \sum_{n=-N_{\rm max}}^{N_{\rm max}} Z_{\rm c}(n, T, V) \xi^n = 0$$

Physically, at LYZ, critical-end point (CEP) appears!!

Application of canonical method: Lee-Yang zeros What is critical-end point (CEP)??

Application of canonical method: Lee-Yang zeros
 There are 2Nmax LYZs in complex fugacity plane

 Application of canonical method: Lee-Yang zeros
 First, we parameterize number density with sine function for more reliable numerical treatment in lattice QCD

Wakayama and Hosaka, PRD (2019)

Application of canonical method: Lee-Yang zeros We observe LYZs cross the Im[ξ]=0 line: CEP

Wakayama and Hosaka, PRD (2019)

Application of canonical method: **QCD phase structure**

Wakayama, Nam, and Hosaka, PRD (2020)

Wakayama, Nam, and Hosaka, PRD (2020)

Application of canonical method: **QCD phase structure**

Wakayama, Nam, and Hosaka, PRD (2020)

•Application of canonical method: QCD phase structure•As N_{max} increases, results from canonical
method reaches to exact value-•Nonetheless, canonical method does not
coincide with exact one: limitation of the
method...-

Then, how do we quantify phase transition in this method?: Taking tolerance

$$\frac{n_B^{\rm PNJL}}{n_B^{\rm Canonical}} < 10\%$$

Wakayama, Nam, and Hosaka, PRD (2020)

Application of canonical method: QCD phase structure

Wakayama, Nam, and Hosaka, PRD (2020)

Nuclear Physics School 2020, 22 - 26 Jun. 2020, APCTP, Korea

Thank you for your attention!!