

KiloByte Cosmic Birefringence and ALP domain walls

Feb. 2. 2020 @ APCTP ``Dark Matter as a Portal to New Physics"

Fumi Takahashi (Tohoku)

Based on 2012.11576 with Wen Yin

1. Introduction

An axion enjoys a (discrete) shift symmetry,

$$\phi \to \phi + 2\pi f_{\phi}$$

which implies the existence of degenerate vacua.

The properties of the axion is characterized by mass m_ϕ and decay constant f_ϕ .

If the axion is very light and it has only feeble interactions, it may play an important role in cosmology (DM, DE, \cdots).

Axion couplings to the SM particles:

Photons

$$\mathcal{L}_{\phi\gamma} = -c_{\gamma} \frac{\alpha}{4\pi} \frac{\phi}{f_{\phi}} F_{\mu\nu} \tilde{F}^{\mu\nu} = -\frac{1}{4} g_{\phi\gamma\gamma} \phi F_{\mu\nu} \tilde{F}^{\mu\nu}, \qquad c_{\gamma} = O(1) \text{ in most}$$

Axion coupled to photons is often referred to as **ALP**.

 $c_{\gamma} = O(1)$ in most models, but modeldependent.

cf. clockwork axion, Higaki et al 1603.02090 Farina et al 1611.09855

• Electrons
$$\mathcal{L}_{\phi e} = \frac{C_e}{2f_{\phi}} \partial_{\mu} \phi \left(\bar{\Psi}_e \gamma^{\mu} \gamma_5 \Psi_e \right) = -i g_{\phi e e} \phi (\bar{\Psi}_e \gamma_5 \Psi_e) + \cdots$$

• Nucleons
$$\mathcal{L}_{\phi N} = \sum_{N=p,n} rac{C_N}{2f_\phi} \partial_\mu \phi \left(ar{\Psi}_N \gamma^\mu \gamma_5 \Psi_N
ight)$$

Searching for axion/ALP

Cosmic birefringence (CB) due to ALP

Carrol, astro-ph/9806099 Lue, et al, astro-ph/9812088

The polarization plane of CMB gets rotated if the ALP moves after the recombination (<u>isotropic CB</u>), or if it has fluctuations (<u>anisotropic CB</u>).

$$\Phi(\Omega) = 0.42c_{\gamma} \left(\frac{\phi_{\text{today}} - \phi_{\text{LSS}}(\Omega)}{2\pi f_{\phi}} \right) \text{ deg}$$

Hint of isotropic CB?

$$\beta = \frac{1}{4\pi} \int d\Omega \,\Phi(\Omega) = 0.35 \pm 0.14 \,\deg$$

Minami, Komatsu, Phys. Rev. Lett. 125, 221301

$$\mathcal{L}_{\phi\gamma} = c_{\gamma} \frac{\alpha}{4\pi} \frac{\phi}{f_{\phi}} F_{\mu\nu} \tilde{F}^{\mu\nu} = \frac{1}{4} g_{\phi\gamma\gamma} \phi F_{\mu\nu} \tilde{F}^{\mu\nu},$$

https://physics.aps.org/articles/v13/s149

What we did

- •We show that ALP domain walls can induce both isotropic and anisotropic CB.
- •The CMB polarization is either not rotated at all or rotated by a fixed angle, depending on the vacuum at the last scattering.
- •The number of domains is $O(10^{3-4})$, thus the name

KiloByte Cosmic Birefringence (KBCB)

•The reported isotropic CB can be naturally explained if $c_{\gamma} = O(1)$.

$$\beta_{\text{KBCB}} \simeq 0.21 \, c_{\gamma} \, \deg \, \beta_{\text{obs}} = 0.35 \pm 0.14 \, \deg$$

2. Cosmic birefringence

The axion dynamics rotates the polarization plane of linearly polarized light through the axion-photon coupling.

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} - \frac{1}{4}g_{\phi\gamma\gamma}\phi F_{\mu\nu}\tilde{F}^{\mu\nu},$$

$$= \frac{1}{2}\left(\vec{E}^2 - \vec{B}^2\right) + g_{\phi\gamma\gamma}\phi\vec{E} \cdot \vec{B}$$

$$\simeq \frac{1}{2}\left[\left(\vec{E} + \frac{g_{\phi\gamma\gamma}\phi}{2}\vec{B}\right)^2 - \left(\vec{B} - \frac{g_{\phi\gamma\gamma}\phi}{2}\vec{E}\right)^2\right]$$

$$\vec{E} \text{ when } \phi = 0$$

$$\vec{B} \text{ when } \phi = 0$$

$$\Phi = \frac{g_{\phi\gamma\gamma}\Delta\phi}{2} \simeq 0.42c_{\gamma}\left(\frac{\phi_{\text{today}} - \phi_{\text{LSS}}(\Omega)}{2\pi f_{\phi}}\right) \text{ deg}$$
(clockwise)

CMB photons are polarized (dominated by E-mode)

Texture: direction of polarization

CMB constraints on the CB

https://physics.aps.org/articles/v13/s149

CMB constraints on the CB

Isotropic CB

$$\beta = \frac{1}{4\pi} \int d\Omega \, \Phi(\Omega) = 0.35 \pm 0.14 \, \deg$$
 from Planck 18 pol. data

https://physics.aps.org/articles/v13/s149

Minami, Komatsu, Phys. Rev. Lett. 125, 221301

based on a new method that uses both the CMB and Galactic foreground to distinguish between CB (β) and detector orientation miscalibration (α).

Minami et al, PTEP 2019 083E02, Minami PTEP 2020 063E01, Minami and Komatsu PTEP 2020 103E02

cf. The reported isotropic CB in the past:

$$\alpha + \beta = \begin{cases} -0.36 \pm 1.24 \deg & \text{WMAP} \\ 0.31 \pm 0.05 \deg & \text{Planck} \\ -0.61 \pm 0.22 \deg & \text{POLARBEAR} \\ 0.63 \pm 0.04 \deg & \text{SPTpol} \\ 0.12 \pm 0.06 \deg & \text{ACT} \\ 0.09 \pm 0.09 \deg & \text{ACT} \end{cases} \qquad \sigma_{\text{syst}}(\alpha) = \begin{cases} 1.5 \deg & \text{WMAP} \\ 0.28 \deg & \text{Planck} \end{cases}$$

CMB constraints on the CB

Anisotropic CB

for a scale-invariant CB; e.g. the axion fluctuation

$$\delta\phi = \frac{H_{\rm inf}}{2\pi}$$

generated during inflation.

(Recall
$$\Phi = \frac{g_{\phi\gamma\gamma}\Delta\phi}{2}$$
)

N.B. The limit mainly comes from low multipole L < 100.

https://physics.aps.org/articles/v13/s149

Implications for ALP

$$\mathcal{L}_{\phi\gamma} = -c_{\gamma} \frac{\alpha}{4\pi} \frac{\phi}{f_{\phi}} F_{\mu\nu} \tilde{F}^{\mu\nu} = -\frac{1}{4} g_{\phi\gamma\gamma} \phi F_{\mu\nu} \tilde{F}^{\mu\nu},$$

- •The hint of the isotropic CB: $\beta = \frac{1}{4\pi} \int d\Omega \, \Phi(\Omega) = 0.35 \pm 0.14 \, \deg$
- •The ALP prediction: $\Phi(\Omega) \simeq 0.42 c_{\gamma} \left(\frac{\phi_{\mathrm{today}} \phi_{\mathrm{LSS}}(\Omega)}{2\pi f_{\phi}} \right) \mathrm{~deg}$

The ALP must have moved by $\Delta \phi = \mathcal{O}(\pi f_{\phi})$ for $c_{\gamma} = O(1)$ after recombination

Implications for ALP

$$\mathcal{L}_{\phi\gamma} = -c_{\gamma} \frac{\alpha}{4\pi} \frac{\phi}{f_{\phi}} F_{\mu\nu} \tilde{F}^{\mu\nu} = -\frac{1}{4} g_{\phi\gamma\gamma} \phi F_{\mu\nu} \tilde{F}^{\mu\nu},$$

- •The hint of the isotropic CB: $\beta = \frac{1}{4\pi} \int d\Omega \, \Phi(\Omega) = 0.35 \pm 0.14 \, \deg$
- •The ALP prediction: $\Phi(\Omega) \simeq 0.42 c_{\gamma} \left(\frac{\phi_{\mathrm{today}} \phi_{\mathrm{LSS}}(\Omega)}{2\pi f_{\phi}} \right) \mathrm{~deg}$

The ALP must have moved by $\Delta \phi = \mathcal{O}(\pi f_{\phi})$ for $c_{\gamma} = O(1)$ after recombination

The interpretation in terms of a homogeneous ALP was studied in e.g. Fujita et al 2011.11894

***** We study the ALP domain wall connecting the two adjacent vacua separated by $\Delta \phi = 2\pi f_{\phi}$.

Case of a homogeneous ALP

Fujita et al 2011.11894

$$V_{\cos}(\phi) = m^2 f^2 [1 - \cos(\phi/f)]$$
 with $f = M_{\rm pl}$.

In their setup, there are four free parameters:

- (1)mass m
- (2)decay constant $f \rightarrow$ fixed to be the Planck mass in the right figure.
- (3) axion-photon coupling g (or c_{γ})
- (4) The ALP abundance Ω_{ϕ} (or initial misalignment angle)

Note that the mass is lighter than $\sim 10^{-29} \text{eV} \simeq H_{\text{LSS}}$ in most region.

Implications for ALP

$$\mathcal{L}_{\phi\gamma} = -c_{\gamma} \frac{\alpha}{4\pi} \frac{\phi}{f_{\phi}} F_{\mu\nu} \tilde{F}^{\mu\nu} = -\frac{1}{4} g_{\phi\gamma\gamma} \phi F_{\mu\nu} \tilde{F}^{\mu\nu},$$

- •The hint of the isotropic CB: $\beta=\frac{1}{4\pi}\int d\Omega\,\Phi(\Omega)=0.35\pm0.14~{\rm deg}$
- •The ALP prediction: $\Phi(\Omega) \simeq 0.42 c_{\gamma} \left(\frac{\phi_{\mathrm{today}} \phi_{\mathrm{LSS}}(\Omega)}{2\pi f_{\phi}} \right) \mathrm{~deg}$

The ALP must have moved by $\Delta \phi = \mathcal{O}(\pi f_{\phi})$ for $c_{\gamma} = O(1)$ after recombination

The interpretation in terms of a homogeneous ALP was studied in e.g. Fujita et al 2011.11894

We study the ALP domain wall connecting the two adjacent vacua separated by $\Delta\phi=2\pi f_\phi$.

3. ALP domain walls without strings

Let us consider the axion potential

$$V(\phi) = m_{\phi}^2 f_{\phi}^2 \left(1 + \cos \frac{\phi}{f_{\phi}} \right)$$

and focus on the adjacent minima,

$$\phi_L = -\pi f_\phi$$
 and $\phi_R = +\pi f_\phi$.

If both vacua are populated in the early Universe with $0.3 \lesssim p_L \lesssim 0.7$, infinite domain wall (w/o strings) will appear when $H \sim m_\phi \gtrsim H_{\rm LSS}$.

Specific scenarios to obtain $\delta\theta = O(1)$ will be described later.

3. ALP domain walls without strings

Let us consider the axion potential

$$V(\phi) = m_{\phi}^2 f_{\phi}^2 \left(1 + \cos \frac{\phi}{f_{\phi}} \right)$$

and focus on the adjacent minima,

$$\phi_L = -\pi f_\phi$$
 and $\phi_R = +\pi f_\phi$.

If both vacua are populated in the early Universe with $0.3 \lesssim p_L \lesssim 0.7$, infinite domain wall (w/o strings) will appear when $H \sim m_{\phi} \gtrsim H_{\rm LSS}$.

 $\delta \sim m_{\scriptscriptstyle A}^{-1}$

Specific scenarios to obtain $\delta\theta = O(1)$ will be described later.

Scaling solution of domain walls

Press, Ryden, Spergel `89

The scaling solution is such that the Hubble horizon contains on average about one wall:

$$ho_{
m DW} \sim rac{\sigma_{
m DW} H^{-2}}{H^{-3}} \sim m_\phi f_\phi^2 H$$
 $\sigma_{
m DW} \simeq 8 m_\phi f_\phi^2$
tension of DW for the cosine potential

which decreases more slowly than matter, and there is a CMB bound on stable domain walls,

$$\sigma_{\rm DW} \lesssim (1\,{\rm MeV})^3$$

 $\sim H^{-1}$ domain wall $\delta \sim m_{\scriptscriptstyle A}^{-1}$

Zeldovich, Kobzarev, Okun `74, Sousa and Avelino, 1507.01064.

Various bounds and future sensitivity reach

Note that the mass is heavier than $\sim 10^{-29} {\rm eV} \simeq H_{\rm LSS}$

KiloByte CB from ALP domain walls

KiloByte CB from ALP domain walls

KiloByte CB from ALP domain walls

There will be O(10³-⁴) domains on the LSS, and the CMB polarization from each domain is either not rotated at all or rotated by a fixed angle, $\Phi \simeq 0.42 c_\gamma \deg$.

$$=2^N$$
, $N=O(10^{3-4})$

"KiloByte Cosmic Birefringence" (KBCB)

KBCB from **ALP** domain walls

Blue: $\Phi=0$ Orange: $\Phi\simeq 0.42c_{\gamma}\deg$

N.B. This figure is NOT a result of numerical simulations, but just a mock sample.

Predictions of KBCB

Isotropic CB

$$\beta_{\rm KBCB} \simeq 0.21 \, c_{\gamma} \, \deg \cdot$$

independent of m_{ϕ} and f_{ϕ} .

Recall
$$\Phi = \frac{g_{\phi\gamma\gamma}\Delta\phi}{2} \simeq 0.42c_{\gamma} \left(\frac{\phi_{\mathrm{today}} - \phi_{\mathrm{LSS}}(\Omega)}{2\pi f_{\phi}}\right) \mathrm{deg}$$

Minami, Komatsu, Phys. Rev. Lett. 125, 221301

explained for $c_{\gamma} = O(1)$.

The predicted isotropic CB is the same over the viable parameter space (green triangle).

Predictions of KBCB

Anisotropic CB

Expected to have a (broad) peak at a scale corresponding to the Hubble horizon at LSS, and suppressed at larger and smaller scales.

$$\sqrt{\frac{L(L+1)C_L}{2\pi}} \sim 0.3 \left(\frac{\beta}{0.3 \deg}\right) \deg$$

cf. For a <u>scale-invariant</u> anisotropic CB,

$$\sqrt{\frac{L(L+1)C_L}{2\pi}} = \frac{g_{\phi\gamma\gamma}}{2} \frac{H_{\text{inf}}}{2\pi} < 0.18 \deg$$

which mainly comes from low multipole L <100.

4.1 A model with a negative Hubble mass

Suppose that the PQ symmetry is linearly realized as

$$S = \frac{f_{\phi}}{\sqrt{2}} e^{i\frac{\phi}{f_{\phi}}}$$

$$V(S) = -m_S^2 |S|^2 + \frac{\lambda}{4} |S|^4$$

4.1 A model with a negative Hubble mass

Suppose that the PQ symmetry is linearly realized as

$$S = \frac{f_\phi}{\sqrt{2}} e^{i\frac{\phi}{f_\phi}} \longrightarrow S \sim H_{\rm inf} e^{i\frac{\phi}{H_{\rm inf}}}$$
 (during inflation)
$$V(S) = -m_S^2 |S|^2 + \frac{\lambda}{4} |S|^4 - H_{\rm inf}^2 |S|^2$$

During inflation, the effective decay constant can be as large as H_{inf} , and the axion acquires quantum fluctuations of $O(H_{inf})$.

 $\delta\theta = \mathcal{O}(1)$

$$\delta \phi = rac{H_{
m inf}}{2\pi}$$
 $\sim f_{\phi}$
 $\sim H_{
m inf}$

4.2 A model with mixing b/w QCD axion and ALP

Consider two axions whose linear combinations become the QCD axion and the ultralight ALP in the low energy.

$$\frac{g_s^2}{32\pi^2} \left(\frac{\varphi_1}{f_1} + \frac{\varphi_2}{f_2}\right) G_{a\mu\nu} \tilde{G}_a^{\mu\nu}, \qquad S_i = \frac{f_i}{\sqrt{2}} e^{i\varphi_i/f_i}$$

QCD axion:
$$\frac{a}{f_a} = \frac{\varphi_1}{f_1} + \frac{\varphi_2}{f_2}$$
 with $f_a^{-2} \equiv f_1^{-2} + f_2^{-2}$

Ultralight ALP:
$$\frac{\phi}{f_a} = \frac{\varphi_1}{f_2} - \frac{\varphi_2}{f_1}$$

If the φ_2 acquires a periodic potential with $\varphi_2 \to \varphi_2 + 2\pi p f_2$, the ultralight ALP has a decay constant, $f_\phi = \frac{f_1}{p f_2} f_a$.

Suppose that S_1 develops a nonzero VEV after inflation, while S_2 already has a VEV during inflation. Then, φ_1/f_1 randomly takes values between $-\pi$ and π (here $N_{\rm DW}=1$ is assumed) and strings are formed.

Suppose that S_1 develops a nonzero VEV after inflation, while S_2 already has a VEV during inflation. Then, φ_1/f_1 randomly takes values between $-\pi$ and π (here $N_{\rm DW}=1$ is assumed) and strings are formed.

During the QCD phase transition, the QCD axion string-wall network is formed and disappears soon because of $N_{\rm DW}=1$.

A part of fluctuations is left along the ultralight ALP,

$$\phi = -\frac{f_a}{f_1} \varphi_{2i} \pm \pi \frac{f_1^2}{\sqrt{f_1^2 + f_2^2}}$$

5. Summary

- Axion domain walls w/o strings induce both isotropic and anisotropic CB: KiloByte CB
- •It naturally explains the recent hint on the isotropic CB over a wide range of the axion mass and axion-photon coupling.

$$eta_{
m KBCB}\simeq 0.21\,c_{\gamma}\,\,\deg\,\,$$
 independent of $\it m_{\phi}$ and $\it f_{\phi}$. cf. $\it eta_{
m obs}=0.35\pm 0.14\,\deg$

• The predicted anisotropic CB has a peculiar feature determined by the domains on the LSS: determined by domains on the LSS, which may be checked by future CMB observations.