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1. Introduction



Light bosonic dark matter

Many light fields from string theory

Axionic scalar：shift symmetry � ! �+ C

Vector：gauge symmetry Aµ ! Aµ + @µ�

Light boson is a candidate of dark matter

Light mass can be ensured by symmetry

QCD axion, dilaton, string axion, hidden photon, …

“String Axiverse” [Arvanitaki et al (2009)]

I will focus on vector boson (hidden photon)
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Figure 5. Allowed parameter space for hidden photon cold dark matter (HP CDM) (for details see
text). The exclusion regions labelled “Coulomb”, “CMB”, “ALPS”, “CAST” and “Solar Lifetime”
arise from experiments and astrophysical observations that do not require HP dark matter (for a
review see [38]). We also show constraints on the “cosmology of a thermal HP DM”. Note that
only constraints on HPs with masses below twice the electron mass are shown since otherwise the
cosmological stability condition requires unreasonably small values of the kinetic mixing, �. The
four constraints that bound the allowed region from above, “⌧2 >1”, “CMB distortions”, “N e↵

⌫ ” and
“X-rays” are described in the text.

Similar to the ALP case one may also wonder about constraints from photon and cos-
mic ray propagation. Photon propagation is essentially una↵ected by a HP dark matter
background since the combined photon-HP equations of motion are still linear and conse-
quently the superposition principle holds. In other words photons pass right through the HP
background without interacting.

Cosmic rays on the other hand could scatter of the HPs via Compton scattering, q+�0 !
q + �. However, for the relevant values of the kinetic mixing parameter the cross section is
too small to have a significant e↵ect.

4.4 Direct experimental and observational constraints on HPs

In Fig. 5 we have also displayed the existing experimental bounds on the existence of HPs
which do not rely on HPs being DM. The bounds labelled “Solar lifetime” and “CAST”,
coming from the non-observation of HP emission from the Sun, exclude a large portion of
parameter space [91]. It is clear that improving the sensitivity of future searches of solar HPs
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[Arias, Cadamuro, Goodsell, Jaeckel, Redondo, Ringwald (2012)]

Constraint on kinetic mixing of hidden photon L = ��
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Production of Hidden Photon DM

Gravitational production

Axionic coupling

[Graham, Mardon, Rajendran (2015), 
Ema, KN, Tang (2019)]

[Agrawal, Kitajima, Reece, Sekiguchi, Takahashi (2018), 
Bastero-Gil, Santiago, Ubaldi, Vega-Morales (2018), 

Co, Pierce, Zhang, Zhao (2018)]

Production mechanisms:

Coherent oscillation [Arias, Cadamuro, Goodsell, Jaeckel, Redondo, Ringwald (2012), 
KN (2019)]

Production from cosmic string [Long, Wang (2019)]

Production from dark Higgs [Dror, Harigaya, Narayan (2018)]
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2. Vector coherent oscillation



Overview of history
Nelson, Scholtz (2011)

Vector coherent oscillation DM in minimal model

Arias, Cadamuro, Goodsell, Jaeckel, Redondo, Ringwald (2012)

Vector coherent oscillation DM in curvature coupling model

Minimal model does not work.

KN (2019)

Curvature coupling model does not work.

Vector coherent oscillation DM in kinetic function model

KN (2020)

Kinetic function model severely constrained by observation
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Scalar coherent oscillation
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Vector coherent oscillation?

of which make ultra-light vector boson possible DM candidate, although none of these are
related with the “coherent oscillation” of vector boson.#1

The vector coherent oscillation as (ultra-light) DM was considered in Refs. [2,14] although
their is a flaw in their mechanism. In Refs. [2,14] the vector boson A

µ

coupling to the Ricci
curvature R is introduced in the Lagrangian as L ⇠ (1/12)RA

µ

Aµ to cancel the e↵ective
Hubble mass term and make vector boson e↵ectively massless. However, such a coupling
necessarily induces a ghost instability for the longitudinal vector mode [15–18]. The roles of
RA

µ

Aµ coupling have been considered in the context of magnetogenesis [19] and the vector
curvaton [20–22], although all of these attempts eventually su↵er from the serious ghost
instability.

The main purpose of this paper is to make a consistent model for a vector coherent oscil-
lation. To this end, we borrow the idea of the vector curvaton scenario utilizing the kinetic
coupling of the form f 2(�)F

µ⌫

F µ⌫ [23–26], which does not su↵er from serious instability. By
assuming some specific time dependence of f(�), it is possible that the vector field develops a
homogeneous condensate during inflation and it begins a coherent oscillation at later epoch,
similarly to the scalar field coherent oscillation.

In Sec. 2 we briefly review why a free massive vector boson cannot develop a homogeneous
condensate during inflation and a problem of introducing the RA

µ

Aµ coupling. In Sec. 3
we give a detailed study of the model with f 2(�)F

µ⌫

F µ⌫ coupling. After discussing the
dynamics of the homogeneous condensate, we give analysis of the fluctuation. In particular,
the statistically anisotropic DM isocurvature perturbation can be a unique signal of this
vector DM scenario. Sec. 4 is devoted to conclusions and discussion.

2 Free massive vector field and its extension

2.1 Action

The action of the massive vector field A
M

is given by
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Z
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,#2 and we assume the Friedmann-Robertson-Walker (FRW)
metric:

g
MN

= diag(�1, a2(t), a2(t), a2(t)), (2)

#1 In this paper, only the oscillation of the homogenous condensate in the entire universe is called as
coherent oscillation.
#2 Note that FMN = gMKgNLFKL 6= @MAN � @NAM for a general metric.

2

2.2 Zero mode dynamics

For spatially homogeneous case A
µ

(t, ~x) = A
µ

(t), the first equation just gives A
0

= 0. The
second equation gives

A00
i

+ a2m2A
i

= 0 $ Ä
i

+HȦ
i

+m2A
i

= 0, (12)

where the dot denotes the derivative with respect to t and H ⌘ ȧ/a is the Hubble parameter.
Later we also use the conformal Hubble parameter H ⌘ a0/a = aH. This has an oscillating
solution like A

i

/ a�1/2(t) cos(mt) for m � H. For H ⌧ m, it clearly has a solution
A

i

' const. However, it does not mean a homogeneous condensate can be formed during
inflation, since the energy density decreases as ⇢ / a�2 even if A

i

= const (see Sec. 3.2). It
is related to the fact that A

i

should be regarded as a “comoving” field rather than a physical
field, as seen below.

Here it may be worth mentioning that A
i

is regarded as a “comoving field” while A
i

⌘
A

i

/a as a “physical” field. One can understand this terminology by looking at the kinetic
(time derivative) term in the action as
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where we have defined physical coordinate d ~X ⌘ ad~x. Thus A
i

is canonical in the comoving
coordinate (⌧, ~x) while A

i

is canonical in the physical coordinate (t, ~X).
In terms of the “physical” field A

i

, the equation of motion is expressed as

Ä
i

+ 3HȦ
i

+ (m2 + 2H2 + Ḣ)A
i

= 0. (14)

Note that the Ricci curvature is expressed asR = 6(2H2+Ḣ). Thus it exhibits a similar equa-
tion as a scalar field. For m � H, it has an oscillating solution like A

i

/ a�3/2(t) cos(mt).
For m ⌧ H, due to the mass term of 2H2 one cannot have a solution like A

i

⇠ const. Even
if we start with some finite value of A

i

during or before inflation, it is exponentially damped
during inflation and we end up with practically vanishing A

i

after inflation. This is the
reason why we cannot have a homogeneous vector condensate in a theory of simple massive
vector field.#4

2.3 Extension and instability

The observation in the previous subsection may lead us to introduce a curvature coupling

L =
1

2
⇠RgMNA

M

A
N

, (15)

#4 Ref. [27] missed the Hubble mass term in the equation of motion and incorrectly derived coherent
oscillation of a free massive vector field.
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Eq.of.m of “Physical” field: Ai ⌘ Ai/a
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Ȧ

i

2 � 1

2
(H2 � Ḣ)A
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i

+ (m2 + 2H2 + Ḣ)A
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Curvature coupling model

Eq.of.m

in the Lagrangian with ⇠ being a constant. The action and equation of motion are the same
after one reinterprets m2 ! m2 � ⇠R. The equation of motion of the zero mode becomes
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For ⇠ = 1/6 one obtains a vanishing Hubble-induced mass term and the equation becomes the
same as a minimal massive scalar field. Thus one may have a solution like A

i

= const during
inflation and hence the vector coherent oscillation occurs at some epoch after inflation. This
curvature coupling of the vector field was considered in the context of magnetogenesis [19],
vector curvaton [20–22] and hidden photon DM as a coherent oscillation [2, 14].

However, this scenario su↵ers from the ghost instability [15–18]. It is easy to see that
the kinetic term of the longitudinal mode (11) has a wrong sign for some finite k after the
replacement m2 ! m2 � ⇠R since one must have m2 � ⇠R < 0 in order to have a solution
like A

i

= const. In the Higgs picture, the appearance of ghost instability may be understood
as an existence of the Higgs kinetic term with a wrong sign in order to obtain a tachyonic
mass for the vector boson. Although small k (⌧ aH) modes do not have ghost instability,
they must be well inside the horizon (k � aH) as time goes back, hence they originate from
the ghost regime. It could be healthy if the time scale of the ghost instability is much longer
than the Hubble time scale, although it is improbable [28]. Thus it is safe to say that we
cannot discuss the vector field dynamics in a healthy way. The situation is more or less the
same for other extensions to modify the “potential” of the vector field in order to cancel the
Hubble mass term somehow [29].

3 Massive vector field with kinetic function

3.1 Action

Let us consider the action of massive vector field with kinetic function f(�) which is depen-
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Same eq.of.m as scalar field

[Arias, Cadamuro, Goodsell, Jaeckel, Redondo, Ringwald (2012)]

Coherent oscillation of vector field

[Turner, Widrow (1988) for Magnetogenesis]
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i

+ (m2 + 2H2 + Ḣ)A
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: Transverse

:Longitudinal

Wrong sign of longitudinal kinetic term: Ghost instability !
[KN (2019); Himmetoglu, Contaldi, Peloso (2008) in the context of vector curvaton]

Taking account of not only zero mode but also fluctuation

S = ST + SL

the transverse mode satisfies ~k · ~AT = 0 with the momentum vector ~k and k̂ ⌘ ~k/|~k|. Note
that A

0

is not dynamical but it is determined by the constraint equation as
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Substituting this into the action, we find that the transverse mode and longitudinal mode
are decoupled from each other: [40]

S = ST + SL, (38)
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The longitudinal mode is further redefined using the canonical field fAL ⌘ f(⌧)AL with
f(⌧) ⌘ am/

p
k2 + a2m2,

SL =

Z

d3kd⌧

(2⇡)3
1

2

⇣

|@⌧ fAL|2 � !2

L|fAL|2
⌘

, !2

L =
a2m2

f 2

� f 00

f
⌘ k2 +m2

L, (41)

where the e↵ective mass is given by#6

m2

L = a2m2 � k2

k2 + a2m2

✓

a00

a
� a02

a2
3a2m2

k2 + a2m2

◆

. (42)

3.2 Transverse mode production

From the action of the transverse mode (39) it is evident that it is conformal in the limit
m ! 0, i.e., the scale factor dependence disappears in the limit m ! 0. Hence there is no
particle production in this limit. It is similar to the situation of a scalar field with conformal
coupling.

To see this in detail, let us expand ~AT as
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where ~✏h denotes the polarization vector for two polarization modes h = + and � which
satisfies ~✏⇤h · ~✏h0 = �hh0 . A concrete expression is ~✏± = (1,±i, 0)/
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2 if ~k points to the z-

direction. The ladder operators satisfy
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#6 The same expression was also derived in Ref. [41] assuming that the vector boson mass is generated by
the Higgs mechanism.
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that A
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3.2 Transverse mode production

From the action of the transverse mode (39) it is evident that it is conformal in the limit
m ! 0, i.e., the scale factor dependence disappears in the limit m ! 0. Hence there is no
particle production in this limit. It is similar to the situation of a scalar field with conformal
coupling.

To see this in detail, let us expand ~AT as

~AT (~k, ⌧) =
X

h=±

h

AT (~k, ⌧)~✏ha~k,h +A⇤
T (~k, ⌧)~✏

⇤
ha

†
�~k,h

i

, (43)

where ~✏h denotes the polarization vector for two polarization modes h = + and � which
satisfies ~✏⇤h · ~✏h0 = �hh0 . A concrete expression is ~✏± = (1,±i, 0)/
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2 if ~k points to the z-
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#6 The same expression was also derived in Ref. [41] assuming that the vector boson mass is generated by
the Higgs mechanism.
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with a(t) being the cosmic scale factor. It is often convenient to use the conformal time
d⌧ = dt/a and rewrite the action as

S =

Z
d⌧d3x
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where ⌘µ⌫ = diag(�1, 1, 1, 1) and we defined A
µ

= (A
0

, A
i

) ⌘ (aA
0

,A
i

) and F
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. In what follows, tensors with greek superscript are understood as those raised by ⌘µ⌫ .
This form makes the conformal nature of the vector boson clear: the metric dependence com-
pletely disappears in the massless limit m ! 0. The vector boson mass term arises either by
the Higgs mechanism or the Stuckelberg mechanism. In the former case, as far as the radial
component of the Higgs field is heavy enough, all the phenomenology is indistinguishable
from the latter one.

The equation of motion is
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where 0 = @/@⌧ = a@/@t. There is no gauge invariance for the massive vector boson, so we
cannot take a gauge to make equations simpler.

In Fourier space, defining
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0

(5) as#3

A
0

(~k, ⌧) =
�i~k · ~A0

k2 + a2m2

=
�ikA0

L

k2 + a2m2

. (8)

Here the vector boson is decomposed into the transverse and longitudinal ones ~A = ~A
T

+k̂A
L

where k̂ ⌘ ~k/k the transverse mode satisfies ~k · ~A
T

= 0. The action for the transverse and
longitudinal mode is given as
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#3 For notational simplicity we use the same character for the vector field in the position space Aµ(⌧, ~x)

and momentum space Aµ(~k, ⌧). We believe that which one is used is clear in the context and this does not
lead to any confusion.
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: Transverse

:Longitudinal

Wrong sign of longitudinal kinetic term: Ghost instability !
[KN (2019); Himmetoglu, Contaldi, Peloso (2008) in the context of vector curvaton]

Taking account of not only zero mode but also fluctuation

S = ST + SL

the transverse mode satisfies ~k · ~AT = 0 with the momentum vector ~k and k̂ ⌘ ~k/|~k|. Note
that A

0

is not dynamical but it is determined by the constraint equation as

A
0

(~k, t) =
i~k · ~̇A

k2 + a2m2

=
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Substituting this into the action, we find that the transverse mode and longitudinal mode
are decoupled from each other: [40]
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The longitudinal mode is further redefined using the canonical field fAL ⌘ f(⌧)AL with
f(⌧) ⌘ am/
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3.2 Transverse mode production

From the action of the transverse mode (39) it is evident that it is conformal in the limit
m ! 0, i.e., the scale factor dependence disappears in the limit m ! 0. Hence there is no
particle production in this limit. It is similar to the situation of a scalar field with conformal
coupling.

To see this in detail, let us expand ~AT as

~AT (~k, ⌧) =
X

h=±

h

AT (~k, ⌧)~✏ha~k,h +A⇤
T (~k, ⌧)~✏

⇤
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†
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i

, (43)

where ~✏h denotes the polarization vector for two polarization modes h = + and � which
satisfies ~✏⇤h · ~✏h0 = �hh0 . A concrete expression is ~✏± = (1,±i, 0)/

p
2 if ~k points to the z-

direction. The ladder operators satisfy
h

a~k,h, a
†
~k0,h0
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= (2⇡)3�hh0�(~k � ~k0),
h

a~k,h, a~k0,h0
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=
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a†~k,h, a
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i

= 0. (44)

#6 The same expression was also derived in Ref. [41] assuming that the vector boson mass is generated by
the Higgs mechanism.
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Substituting this into the action, we find that the transverse mode and longitudinal mode
are decoupled from each other: [40]
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The longitudinal mode is further redefined using the canonical field fAL ⌘ f(⌧)AL with
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3.2 Transverse mode production

From the action of the transverse mode (39) it is evident that it is conformal in the limit
m ! 0, i.e., the scale factor dependence disappears in the limit m ! 0. Hence there is no
particle production in this limit. It is similar to the situation of a scalar field with conformal
coupling.

To see this in detail, let us expand ~AT as

~AT (~k, ⌧) =
X

h=±
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where ~✏h denotes the polarization vector for two polarization modes h = + and � which
satisfies ~✏⇤h · ~✏h0 = �hh0 . A concrete expression is ~✏± = (1,±i, 0)/
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2 if ~k points to the z-

direction. The ladder operators satisfy
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#6 The same expression was also derived in Ref. [41] assuming that the vector boson mass is generated by
the Higgs mechanism.
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with a(t) being the cosmic scale factor. It is often convenient to use the conformal time
d⌧ = dt/a and rewrite the action as
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) and F
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This form makes the conformal nature of the vector boson clear: the metric dependence com-
pletely disappears in the massless limit m ! 0. The vector boson mass term arises either by
the Higgs mechanism or the Stuckelberg mechanism. In the former case, as far as the radial
component of the Higgs field is heavy enough, all the phenomenology is indistinguishable
from the latter one.

The equation of motion is

@
µ

F µ⌫ � a2m2A⌫ = 0. (4)
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where 0 = @/@⌧ = a@/@t. There is no gauge invariance for the massive vector boson, so we
cannot take a gauge to make equations simpler.
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with A
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=
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Here the vector boson is decomposed into the transverse and longitudinal ones ~A = ~A
T

+k̂A
L

where k̂ ⌘ ~k/k the transverse mode satisfies ~k · ~A
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= 0. The action for the transverse and
longitudinal mode is given as
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#3 For notational simplicity we use the same character for the vector field in the position space Aµ(⌧, ~x)

and momentum space Aµ(~k, ⌧). We believe that which one is used is clear in the context and this does not
lead to any confusion.
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Origin of ghost instability

2.2 Zero mode dynamics

For spatially homogeneous case A
µ

(t, ~x) = A
µ

(t), the first equation just gives A
0

= 0. The
second equation gives

A00
i

+ a2m2A
i

= 0 $ Ä
i

+HȦ
i

+m2A
i

= 0, (12)

where the dot denotes the derivative with respect to t and H ⌘ ȧ/a is the Hubble parameter.
Later we also use the conformal Hubble parameter H ⌘ a0/a = aH. This has an oscillating
solution like A

i

/ a�1/2(t) cos(mt) for m � H. For H ⌧ m, it clearly has a solution
A

i

' const. However, it does not mean a homogeneous condensate can be formed during
inflation, since the energy density decreases as ⇢ / a�2 even if A

i

= const (see Sec. 3.2). It
is related to the fact that A

i

should be regarded as a “comoving” field rather than a physical
field, as seen below.

Here it may be worth mentioning that A
i

is regarded as a “comoving field” while A
i

⌘
A

i

/a as a “physical” field. One can understand this terminology by looking at the kinetic
(time derivative) term in the action as

S �
Z

d⌧d3x
1

2
A02
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=

Z
dtd3X
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2a2
Ȧ2

i

=

Z
dtd3X
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Ȧ
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(H2 � Ḣ)A

i

2

◆
, (13)

where we have defined physical coordinate d ~X ⌘ ad~x. Thus A
i

is canonical in the comoving
coordinate (⌧, ~x) while A

i

is canonical in the physical coordinate (t, ~X).
In terms of the “physical” field A

i

, the equation of motion is expressed as

Ä
i

+ 3HȦ
i

+ (m2 + 2H2 + Ḣ)A
i

= 0. (14)

Note that the Ricci curvature is expressed asR = 6(2H2+Ḣ). Thus it exhibits a similar equa-
tion as a scalar field. For m � H, it has an oscillating solution like A

i

/ a�3/2(t) cos(mt).
For m ⌧ H, due to the mass term of 2H2 one cannot have a solution like A

i

⇠ const. Even
if we start with some finite value of A

i

during or before inflation, it is exponentially damped
during inflation and we end up with practically vanishing A

i

after inflation. This is the
reason why we cannot have a homogeneous vector condensate in a theory of simple massive
vector field.#4

2.3 Extension and instability

The observation in the previous subsection may lead us to introduce a curvature coupling

L =
1

2
⇠RgMNA

M

A
N

, (15)

#4 Ref. [27] missed the Hubble mass term in the equation of motion and incorrectly derived coherent
oscillation of a free massive vector field.

4

⇠ =
1

6

Curvature coupling means tachyonic mass of vector field

Negative kinetic term in Higgs picture

Higgs & NG mode (longitudinal vector boson) become ghost

L = �|DM�|2 = �e2|�|2AMAM

Tachyonic mass
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Vector with kinetic function

in the Lagrangian with ⇠ being a constant. The action and equation of motion are the same
after one reinterprets m2 ! m2 � ⇠R. The equation of motion of the zero mode becomes

Ä
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+ 3HȦ
i

+

✓
m2 +

✓
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6
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◆
R

◆
A

i

= 0. (16)

For ⇠ = 1/6 one obtains a vanishing Hubble-induced mass term and the equation becomes the
same as a minimal massive scalar field. Thus one may have a solution like A

i

= const during
inflation and hence the vector coherent oscillation occurs at some epoch after inflation. This
curvature coupling of the vector field was considered in the context of magnetogenesis [19],
vector curvaton [20–22] and hidden photon DM as a coherent oscillation [2, 14].

However, this scenario su↵ers from the ghost instability [15–18]. It is easy to see that
the kinetic term of the longitudinal mode (11) has a wrong sign for some finite k after the
replacement m2 ! m2 � ⇠R since one must have m2 � ⇠R < 0 in order to have a solution
like A

i

= const. In the Higgs picture, the appearance of ghost instability may be understood
as an existence of the Higgs kinetic term with a wrong sign in order to obtain a tachyonic
mass for the vector boson. Although small k (⌧ aH) modes do not have ghost instability,
they must be well inside the horizon (k � aH) as time goes back, hence they originate from
the ghost regime. It could be healthy if the time scale of the ghost instability is much longer
than the Hubble time scale, although it is improbable [28]. Thus it is safe to say that we
cannot discuss the vector field dynamics in a healthy way. The situation is more or less the
same for other extensions to modify the “potential” of the vector field in order to cancel the
Hubble mass term somehow [29].

3 Massive vector field with kinetic function

3.1 Action

Let us consider the action of massive vector field with kinetic function f(�) which is depen-
dent on some scalar field �:

S =
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The equation of motion reads
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which give
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[KN (2019)]

[Ratra (1992) for magnetogenesis;  Dimopoulos, Karciauskas, Wagstaff (2009) for vector curvaton]

where we have defined a “physical” field A
i

⌘ fA
i

/a. Let us take a coordinate such that
A

i

= (0, 0, A
z

) without loss of generality. Then we have T
0i

= 0 and T
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= 0 for i 6= j. For
diagonal components, we obtain
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In the deep oscillating regime m/f � H and f ' const, we have T
xx

= T
yy

= T
zz

= 0 after
the oscillation average, implying the zero pressure. Thus the coherently oscillating vector
field just behaves as non-relativistic matter and does not induce anisotropic expansion. On
the other hand, if the vector condensate during its slow-roll phase is a dominant component
of the universe, it induces anisotropic expansion. In our scenario studied below, the vector
boson begins a coherent oscillation well before it dominates the universe, and hence the
isotropy of the universe is not a↵ected by the vector background.

By using the equation of motion (37), we obtain the energy conservation law as
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where in the second expression of ⇢(K)

A

we have substituted f 2 / a↵. In the deep oscillation

regime, we have f = const and ⇢
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, hence ⇢̇
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Including the fluctuation, the energy density is expressed as
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T

(k)|2
⌘
, (35)

⇢
AL =

Z
d3k

(2⇡)3
1

2a4

✓
f 2a2m2

f 2k2 + a2m2

|A0
L

(k)|2 + a2m2|A
L

(k)|2
◆
. (36)

3.3 Zero mode dynamics

First we study the evolution of the zero mode. Assuming A
µ

(t, ~x) = A
µ

(t) and �(t, ~x) = �(t),
we immediately find that A

0

= 0 from the constraint equation (20). Defining the physical
field A

i

⌘ fA
i

/a, we find

Ä
i

+ 3HȦ
i

+

 
m2

f 2

+ 2H2 + Ḣ �H
ḟ

f
� f̈

f

!
A

i

= 0 (37)
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Action

Hubble mass term is cancelled.
It obtains an additional e↵ective mass term from the time dependence of the kinetic function
f . Now we assume f 2 / a↵(t) during inflation and finally it approaches to f ! 1 around
the end of inflation. Later we will show an example to realize this scaling by the scalar
dynamics. Then the equation of motion becomes

Ä
i

+ 3HȦ
i

+

✓
m2

f 2

� (↵ + 4)(↵� 2)

4
H2 +

2� ↵

2
Ḣ

◆
A

i

= 0. (38)

Thus choosing ↵ = 2 or ↵ = �4 results in the vanishing Hubble induced mass term and
renders A

i

e↵ectively massless during inflation, assuming m/f ⌧ H always holds during in-
flation [24]. In such a case, the dynamics of the homogeneous vector condensate A

i

resembles
that of the minimal scalar field and A

i

can remain constant during inflation.#5

Here are several comments. For ↵ = �4, the kinetic function f 2 / a�4 is an exponentially
decreasing function during inflation. It means that f is exponentially large as time goes back.
One might worry about the backreaction to the scalar field dynamics due to the coupling
f 2FF , but actually it is often safely neglected. Let us suppose that � is an inflaton with its
scalar potential V (�). As we have shown above, f 2FF ⇠ (fȦ

i

/a)2 and A
i

= fA
i

/a ⇠ const

and we have f 2FF ⇠ H2A
i

2

. In order for this term not to a↵ect the inflaton dynamics,
|(@

�

f 2)FF| . |@
�

V (�)| must be satisfied. This condition is rewritten as

 
A(in)

M
P

!
2

. M2

P

2

✓
@
�

V (�)

V (�)

◆
2

=
r

16
⇠ 10�2

✓
H

inf

1014 GeV

◆
2

, (39)

where A(in) is a constant value of A
i

during inflation, M
P

denotes the reduced Planck scale,
r is the tensor-to-scalar ratio and H

inf

is the Hubble scale during inflation [33].#6 Since
H

inf

is bounded as H
inf

. 1014GeV from the non-observation of B-mode polarization [41],
it gives an upper bound on the initial vector amplitude A

i

. As we will see later in Sec. 3.4,
the constraint from DM isocurvature perturbation gives a similar upper bound.

For ↵ = 2, the kinetic function f 2 / a2 is an exponentially increasing function during
inflation. Thus f is exponentially small as time goes back, which means that the theory is
in a strongly coupled regime since f is roughly an inverse of the gauge coupling. In a pure
U(1) gauge theory without any U(1) charged field, however, there is no gauge coupling in
the action and it may not cause any problem. On the other hand, since we need m/f ⌧ H

#5 For ↵ < �4, Ai increases during inflation. At some point the backreaction of the vector boson to the
inflaton becomes important, and it may lead to a scenario of so-called anisotropic inflation [30–32]. We do
not pursue this possibility further in this paper.
#6 A similar kinetic coupling of the electromagnetic field is often considered in the context of inflationary

magnetogenesis [34–37], but it is known that models producing an observed amount of magnetic field su↵er
from the backreaction problem [38–40]. In the magnetogenesis context it should be noticed that the magnetic

field is not generated from the homogeneous ~A since ~B = ~r⇥ ~A and hence the power spectrum of the magnetic
field is strongly blue. In order to obtain the magnetic field in the Mpc scale, one needs huge amount of total
magnetic energy or strongly red spectrum, which yield too large backreaction to the scalar field.
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Concrete form of kinetic function

where a(t) is the cosmic scale factor and �(t) represents the anisotropic expansion. For a
while we neglect the anisotropy, i.e. � = 0, by assuming that the energy density of the vector
field is much smaller than the inflaton. This will be justified later.

It is often useful to rescale the vector field as Aµ = (aA0,Ai) and use the conformal time
d⌧ = dt/a to obtain the action

S =

Z
d⌧d3x


�f 2

4
⌘µ⇢⌘⌫�Fµ⌫F⇢� �

a2h2

2
m2
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µ⌫AµA⌫

�
. (3)

Below we consider the special form of the kinetic function:

f(�) = exp

✓
� �

2M2
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Z
V

V�
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◆
, (4)

where V� ⌘ @V/@�. A particular example is the chaotic inflation:

f(�) = exp

✓
� �
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M2
P

◆
, V (�) =

��n

n
. (5)

For the new (hilltop) inflation model, it is given by

f(�) = exp

✓
� �

4n(n� 2)

vn

M2
P�

n�2

◆
, V (�) = ⇤4


1�

✓
�

v

◆n�2
. (6)

They lead to the scaling of f 2 / a� during the standard slow-roll inflation when the e↵ect of
backreaction of the vector field to the inflaton dynamics is negligible. Note also that f ' 1
soon after inflation ends. The case of � = �4 and 2 have been discussed in Ref. [12]. We
will consider the case of � < �4 and � > 2. For the moment we do not assume any specific
functional form of h(�) except that it soon approaches to h(�) ! 1 after inflation ends.

2.1 Dynamics during inflation

Let us describe the vector and inflaton dynamics during inflation neglecting the spatial
fluctuation. We follow the analysis given in Refs. [21–23]. The equation of motion is given
by

a
@

@t

⇣
af 2Ȧ

⌘
+ a2h2m2

AA = 0, (7)

�̈+ 3H�̇+ V� �
1

a2
ff�Ȧ

2 = 0, (8)

where f� ⌘ @f/@�. The Hubble parameter H = ȧ/a is given by

3M2
PH

2 = ⇢� + ⇢A, (9)
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Chaotic inflation

Hilltop inflation

f2 / a(t)� during inflation

f2 ' 1{ after inflation

(� : inflaton)



↵ = �4

↵ = 2
t

f(�)

1

inflation after inflation

during inflation, we require at least

m ⌧ e�50H
inf

⇠ 10�22H
inf

= 10 eV

✓
H

inf

1014 GeV

◆
. (40)

Thus in this case the vector boson must be very light.#7

We give one concrete example to realize a required time dependence f 2(�) / a↵ [42]. Let
us suppose that � is an inflaton with power law potential V (�) ⇠ ��n. The standard slow-
roll inflaton dynamics gives �2 ⇠ 2nN

e

M2

P

with N
e

being the e-folding number measured
from the end of inflation. Thus the choice of the kinetic function

f 2(�) = ec�
2
/M

2
P '

✓
a
end

a(N
e

)

◆
2cn

, (41)

where a
end

denotes the scale factor at the end of inflation and 2cn = �↵. After inflation
it smoothly connects to f ! 1. Although a monomial inflaton potential is disfavored by
the observation of the cosmic microwave background [41], a slight modification makes the
prediction of density perturbation consistent with observations [43–45]. Note also that ↵
needs not be exactly equal to �4 or 2 for our scenario to work. What we actually need is
to make the e↵ective mass term in the equation of motion (37) smaller than ⇠ H2 during
inflation. Although we focus on the case of ↵ = �4 or 2 hereafter, we can have a similar
vector dynamics for more broad value of ↵.

Now let us estimate the abundance of the vector coherent oscillation. As shown above, A
i

remains constant during inflation for ↵ = �4 or 2 and we take the initial value just as a free
parameter and denote by A(in).#8 We also assume that f = 1 after inflation and introduce
an equation of state parameter w until the end of the reheating, such that

Ḣ = �3

2
(1 + w)H2,

R

6
= 2H2 + Ḣ =

1� 3w

2
H2. (42)

For a monomial power law inflaton potential V / �n, it is given by w = (n � 2)/(n + 2).
The equation of motion of the zero mode after inflation then becomes

Ä
i

+ 3HȦ
i

+

✓
m2 +

1� 3w

2
H2

◆
A

i

= 0. (43)

Neglecting m2 term, the solution looks like

A
i

/ C
1

a�1 + C
2

a(3w�1)/2. (44)

#7 For this reason, the case of ↵ = 2 with constant mass m was not taken seriously in the vector curvaton
context since such a light curvaton is unlikely to decay before Big-Bang nucleosynthesis [23]. In our case,
the vector field needs not decay (actually it must not decay for it to be DM) and hence we do not discard
this possibility.
#8 See Ref. [46] for a scenario that the value of Ai is determined by the balance between the quantum

fluctuation and the classical dynamics.
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Ai ⇠ a�
3
2
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Note on the case of ↵ < �4

with MP being the reduced Planck scale and ⇢� the inflaton energy density. The vector
boson energy density ⇢A is given by

⇢A =
1

2a2

⇣
f 2Ȧ2 + h2m2

AA
2
⌘
=

1

2

8
<

:

"
Ȧ+

 
H � ḟ

f

!
A

#2
+

h2m2
A

f 2
A

2

9
=

; , (10)

where we have defined the “physical” vector field as A ⌘ fA/a [12].
Let us consider the case where the vector boson mass term can be safely ignored. Then

we immediately obtain

af 2Ȧ = const. (11)

Supposing the scaling f 2 / a↵ with ↵ being a numerical constant, we schematically obtain

A = C1 + C2a
�(1+↵), (12)

during inflation where C1 and C2 are constants. As soon explained below, ↵ = � when the
vector energy density is negligible but ↵ can take di↵erent value from � when the backreaction
is important. The physical field roughly behaves as

A / a(|1+↵|�3)/2 =

(
a↵/2�1 for 1 + ↵ > 0

a�↵/2�2 for 1 + ↵  0
. (13)

Note that, although A is increasing for ↵ < �4 and ↵ > 2, the C1 term does not contribute
to the kinetic energy in (10). Since the C1 term is dominant for 1 + ↵ > 0, actually the
energy density is actually decreasing for ↵ > 2. In both cases the vector energy density
scales as ⇢A / f�2a�4 / a�↵�4. Below we consider the case of � < �4 and � > 2 separately.

2.1.1 � < �4

As studied in Ref. [12], ⇢A remains constant for � = �4 that ensures the establishment of
the vector boson homogeneous condensate during inflation. On the other hand, it increases
during inflation for � < �4 and hence eventually the backreaction will become important.
The inflaton equation of motion is written as

�̈+ 3H�̇+ V�

✓
1 +

�

2✏V

⇢A
V

◆
= 0, (14)

where ✏V ⌘ M2
P (V�/V )2/2 is the slow-roll parameter.#2 Thus it is seen that if the vector

boson energy density satisfies ⇢A ⌧ (2✏V /|�|)V , the e↵ect of the vector boson on the inflaton
dynamics is safely neglected. For � < �4, however, ⇢A increases during inflation and ⇢A
will become comparable to (2✏V /|�|)V . It is expected that � will slow down at this stage

#2
Note that ✏H ⌘ � ˙H/H2

= �(4/�)✏V .

4

During inflation:

Vector energy density increases during inflation

Backreaction to the inflaton becomes important

Anisotropic inflation happens
[Watanabe, Kanno, Soda (2009)]

Vector energy density is saturated at

since the parenthesis in the last term of Eq. (14) will approach to zero, which e↵ectively
“flattens” the inflaton potential. Correspondingly the time evolution of the function f(�)
also changes so that ⇢A approximately remains constant: f�2a�4 ⇠ const. This requires the
following relation:

�̇ ' 4HM2
PV�

�V
=

4

3�H
V�. (15)

In order for this solution to be consistent with slow-roll equation of (14), the energy density
should satisfy

⇢A
⇢�

= �2✏V
� + 4

�2
⌘ RA. (16)

Here ⇢� ' V is the inflaton energy density. To summarize, the slow-roll inflaton dynamics
is described by

3H�̇ '

8
><

>:

�V� for
⇢A
⇢�

⌧ RA,

4

�
V� for

⇢A
⇢�

' RA

. (17)

One can see that the potential is e↵ectively flattened by a factor �4/� due to the vector
backreaction. This second case is a slow-roll inflation supported by the vector field and
it is called the anisotropic inflation because the vector field condensate implies a preferred
direction. Even if the initial vector energy density is negligibly small, it will be exponentially
amplified during inflation and it enters the regime of anisotropic inflation, although still the
vector energy density is much smaller than the inflaton itself at this stage.

Fig. 1 shows the result of numerical solution of the equation of motion of the inflaton (8)
and vector boson (7) for the inflaton potential V = m2

��
2/2 and � = �5. Time evolution of

the energy density of the inflaton (⇢�) and vector boson (⇢A) normalized bym2
�M

2
P are shown

in the left panel. We have taken � = 20MP and Ȧ = 10�4m�MP for (a) and 10�6m�MP for
(b) as initial conditions and the massless limit mA ! 0. Time evolution of the ratio ⇢A/⇢�
compared with RA (16) is shown in the right panel. Parameters are the same as the left
panel. Similarly, Fig. 2 shows the result of numerical calculation for the new inflation model
(6) with n = 6. We have taken � = �5, v = MP , � = 0.3�end and A = 10�6MP for (a)
and 10�8MP for (b) as initial condition. Here �end denotes the inflaton field value at which
inflation ends: 2n(n� 1)(�end/v)n�2 = v2/M2

P . In both cases it is clearly seen that the ratio
⇢A/⇢� approaches to the value given by RA (16) independently of the initial condition.

Note that in the calculation performed for these figures the anisotropic inflation regime
does not last for very long time, but it is an artifact of the choice of the initial condition.
If, for example, the calculation starts from much larger (smaller) inflaton field value for the
chaotic (new) inflation model, the vector boson density is saturated at much earlier time
and the anisotropic inflation lasts for much longer time (say, much longer than 60 e-folds).
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Note on the case of ↵ > 2

During inflation: A / a↵/2�1

Vector energy density does not increase: ⇢A / a�↵�2

No backreaction to the inflaton

To maintain vector condensate during inflation:

mA

f
⌧ Hinf

Impossible to explain observed DM abundance

Loophole : introduce mass function L ⇠ �1

2
h2(�)m2

AA
2
µ

2.2.1 � < �4

For � < �4, taking the d2 term in (24), we obtain A / a�1/2 for w = 0 and A / a0 for
w = 1/3, which means ⇢A / a�4 for both cases. This behavior is seen in Figs. 1 and 2. On
the other hand, for H ⌧ mA, the equation is the same as the minimal scalar field: it begins
coherent oscillation at H ⇠ mA and behaves as non-relativistic matter thereafter. Hence we
have ⇢A / a�3 for H ⌧ mA and it is a candidate of DM.

Keeping this in mind, we can now evaluate the vector DM abundance. First we consider
the case of �� > mA. In this case the final energy density to the entropy density (s) ratio is
evaluated as

⇢A
s

=

✓
⇢A
⇢�

◆

H=��

⇣⇢�
s

⌘

H=mA

=
3RA

4

✓
90

⇡2g⇤

◆1/4 ✓ ��

Hinf

◆2/3 p
mAMP , (25)

where ⇢� collectively denotes the inflaton energy density or the radiation energy density
produced by the inflaton decay. For the other case �� < mA, we have

⇢A
s

=

✓
⇢A
⇢�

◆

H=mA

⇣⇢�
s

⌘

H=��

=
3RA

4

✓
mA

Hinf

◆2/3

TR, (26)

with TR being the reheating temperature. Numerically they are summarized as

⇢A
s

'

8
>>><

>>>:

3.7⇥ 10�10 GeV

✓
RA

0.1

◆⇣ mA

10�8 GeV

⌘1/2
✓
1014 GeV

Hinf

◆2/3 ✓
TR

106 GeV

◆4/3

for mA < ��

3.5⇥ 10�10 GeV

✓
RA

0.1

◆⇣ mA

1GeV

⌘2/3
✓
1014 GeV

Hinf

◆2/3 ✓
TR

10GeV

◆
for mA > ��

.

(27)

It is consistent with the observed DM abundance (' 4 ⇥ 10�10 GeV in terms of the energy
to entropy density ratio) for wide parameter ranges.

2.2.2 � > 2

For � > 2, the vector energy density at the end of inflation is bounded as (21). After

inflation, the vector energy density scales as ⇢A ' m2
AA

2
/2 / a�2. For h = 1, for example,

assuming the limit of instant reheating, i.e., the radiation dominated universe starts just
after inflation, the final vector boson abundance is evaluated as

⇢A
s

⌧ 10�26�HinfM
1/2
P

m
1/2
A

. 10�13 GeV

✓
10�22 eV

mA

◆1/2 ✓
Hinf

1014 GeV

◆
, (28)

where we have taken � = 2 when evaluating the most right hand side. If the reheating is
delayed, there is a further suppression factor of (��/Hinf)1/3. Since the DM should be heavier
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2.2.1 � < �4

For � < �4, taking the d2 term in (24), we obtain A / a�1/2 for w = 0 and A / a0 for
w = 1/3, which means ⇢A / a�4 for both cases. This behavior is seen in Figs. 1 and 2. On
the other hand, for H ⌧ mA, the equation is the same as the minimal scalar field: it begins
coherent oscillation at H ⇠ mA and behaves as non-relativistic matter thereafter. Hence we
have ⇢A / a�3 for H ⌧ mA and it is a candidate of DM.

Keeping this in mind, we can now evaluate the vector DM abundance. First we consider
the case of �� > mA. In this case the final energy density to the entropy density (s) ratio is
evaluated as
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where ⇢� collectively denotes the inflaton energy density or the radiation energy density
produced by the inflaton decay. For the other case �� < mA, we have
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with TR being the reheating temperature. Numerically they are summarized as
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.

(27)

It is consistent with the observed DM abundance (' 4 ⇥ 10�10 GeV in terms of the energy
to entropy density ratio) for wide parameter ranges.

2.2.2 � > 2

For � > 2, the vector energy density at the end of inflation is bounded as (21). After

inflation, the vector energy density scales as ⇢A ' m2
AA

2
/2 / a�2. For h = 1, for example,

assuming the limit of instant reheating, i.e., the radiation dominated universe starts just
after inflation, the final vector boson abundance is evaluated as
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, (28)

where we have taken � = 2 when evaluating the most right hand side. If the reheating is
delayed, there is a further suppression factor of (��/Hinf)1/3. Since the DM should be heavier
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Figure 1: Numerical results for chaotic inflation model (5) with n = 2. (Left) Time evolution
of the energy density of the inflaton (⇢�) and vector boson (⇢A) normalized by m2

�M
2
P . We

have taken � = �5 and Ȧ = 10�4m�MP for (a) and 10�6m�MP for (b) as initial condition.
(Right) Time evolution of the ratio ⇢A/⇢� compared with RA. Parameters are the same as
the left panel.

We do not go into details of the problem of initial condition since it is related with the
dynamics before the “observable” inflation happens and just treat the initial condition as
free parameters.#3

So far we have ignored the anisotropic expansion. The equation for ⌃ ⌘ �̇ is given by

⌃̇+ 3H⌃ =
2⇢A
3M2

P

. (18)

It is expected that ⌃ converges to a nearly constant value

⌃

H
' 2⇢A

3⇢�
= �4✏V

3

� + 4

�2
=

✏H
3

� + 4

�
. (19)

It is suppressed by the slow-roll parameter ✏H . Therefore the homogeneous dynamics is not
much a↵ected by the inclusion of the anisotropic expansion.

2.1.2 � > 2

In this case, as far as the vector boson mass mA is negligible, the vector energy density ⇢A
(or its kinetic part) decreases as ⇢A / a���2 during inflation and hence it rapidly approaches
to zero, while the A increases as A / a�/2�1. Since ⇢A is negligible, there is no backreaction
of the vector field to the inflaton and the anisotropic inflation does not occur.

#3
It is possible that the long wavelength vector perturbation accumulates to constitute a “homogeneous”

mode if the total duration of inflation is long enough [25,26].
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On the other hand, the condition that the vector boson mass is negligible is written as
hmA/f ⌧ Hinf at least during the last 60 e-foldings of inflation. For h = 1 for example, it
gives a constraint on the vector boson mass as

mA ⌧ e�30�Hinf ⇠ 10�13�Hinf . (20)

Then the vector boson energy density at the end of inflation is bounded as

⇢A
⇢�

����
⌧end

⌧ 10�26�. (21)

If the total duration of inflation is much longer than 60 e-foldings, the constraint becomes
much more stringent. If this condition is violated, the vector boson mass would make rapid
decay of the amplitude A during inflation.

Another choice is h(�) = f(�). In this case, the only requirement is mA ⌧ Hinf . Thus
the upper bound on the vector energy density at the end of inflation is just

⇢A
⇢�

����
⌧end

' m2
AA

2

6H2
infM

2
P

⌧
✓

A

MP

◆2

. (22)

Fig. 3 shows the time evolution of the energy density of the inflaton (⇢�) and vector
boson (⇢A) for � = 5/2 and h(�) = f(�) for chaotic inflation model (5) with n = 2 (left)
and new inflation model (6) with n = 6 (right). The vector boson mass is taken to be
mA = 10�5Hinf (left) and mA = 10�3Hinf (right). As initial condition, we have taken

7

Numerical calculation

where a(t) is the cosmic scale factor and �(t) represents the anisotropic expansion. For a
while we neglect the anisotropy, i.e. � = 0, by assuming that the energy density of the vector
field is much smaller than the inflaton. This will be justified later.

It is often useful to rescale the vector field as Aµ = (aA0,Ai) and use the conformal time
d⌧ = dt/a to obtain the action

S =

Z
d⌧d3x


�f 2

4
⌘µ⇢⌘⌫�Fµ⌫F⇢� �

a2h2

2
m2

A⌘
µ⌫AµA⌫

�
. (3)

Below we consider the special form of the kinetic function:

f(�) = exp

✓
� �

2M2
P

Z
V

V�

d�

◆
, (4)

where V� ⌘ @V/@�. A particular example is the chaotic inflation:

f(�) = exp

✓
� �

4n

�2

M2
P

◆
, V (�) =

��n

n
. (5)

For the new (hilltop) inflation model, it is given by

f(�) = exp

✓
� �

4n(n� 2)

vn

M2
P�

n�2

◆
, V (�) = ⇤4


1�

✓
�

v

◆n�2
. (6)

They lead to the scaling of f 2 / a� during the standard slow-roll inflation when the e↵ect of
backreaction of the vector field to the inflaton dynamics is negligible. Note also that f ' 1
soon after inflation ends. The case of � = �4 and 2 have been discussed in Ref. [12]. We
will consider the case of � < �4 and � > 2. For the moment we do not assume any specific
functional form of h(�) except that it soon approaches to h(�) ! 1 after inflation ends.

2.1 Dynamics during inflation

Let us describe the vector and inflaton dynamics during inflation neglecting the spatial
fluctuation. We follow the analysis given in Refs. [21–23]. The equation of motion is given
by

a
@

@t

⇣
af 2Ȧ

⌘
+ a2h2m2

AA = 0, (7)

�̈+ 3H�̇+ V� �
1

a2
ff�Ȧ

2 = 0, (8)

where f� ⌘ @f/@�. The Hubble parameter H = ȧ/a is given by

3M2
PH

2 = ⇢� + ⇢A, (9)

3

V (�) =
1

2
m2

��
2

chaotic inflation

hilltop inflation

(↵ = �5)
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Figure 1: Numerical results for chaotic inflation model (5) with n = 2. (Left) Time evolution
of the energy density of the inflaton (⇢�) and vector boson (⇢A) normalized by m2

�M
2
P . We

have taken � = �5 and Ȧ = 10�4m�MP for (a) and 10�6m�MP for (b) as initial condition.
(Right) Time evolution of the ratio ⇢A/⇢� compared with RA. Parameters are the same as
the left panel.

We do not go into details of the problem of initial condition since it is related with the
dynamics before the “observable” inflation happens and just treat the initial condition as
free parameters.#3

So far we have ignored the anisotropic expansion. The equation for ⌃ ⌘ �̇ is given by

⌃̇+ 3H⌃ =
2⇢A
3M2

P

. (18)

It is expected that ⌃ converges to a nearly constant value

⌃

H
' 2⇢A

3⇢�
= �4✏V

3

� + 4

�2
=

✏H
3

� + 4

�
. (19)

It is suppressed by the slow-roll parameter ✏H . Therefore the homogeneous dynamics is not
much a↵ected by the inclusion of the anisotropic expansion.

2.1.2 � > 2

In this case, as far as the vector boson mass mA is negligible, the vector energy density ⇢A
(or its kinetic part) decreases as ⇢A / a���2 during inflation and hence it rapidly approaches
to zero, while the A increases as A / a�/2�1. Since ⇢A is negligible, there is no backreaction
of the vector field to the inflaton and the anisotropic inflation does not occur.

#3
It is possible that the long wavelength vector perturbation accumulates to constitute a “homogeneous”

mode if the total duration of inflation is long enough [25,26].
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On the other hand, the condition that the vector boson mass is negligible is written as
hmA/f ⌧ Hinf at least during the last 60 e-foldings of inflation. For h = 1 for example, it
gives a constraint on the vector boson mass as

mA ⌧ e�30�Hinf ⇠ 10�13�Hinf . (20)

Then the vector boson energy density at the end of inflation is bounded as

⇢A
⇢�

����
⌧end

⌧ 10�26�. (21)

If the total duration of inflation is much longer than 60 e-foldings, the constraint becomes
much more stringent. If this condition is violated, the vector boson mass would make rapid
decay of the amplitude A during inflation.

Another choice is h(�) = f(�). In this case, the only requirement is mA ⌧ Hinf . Thus
the upper bound on the vector energy density at the end of inflation is just

⇢A
⇢�

����
⌧end

' m2
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2

6H2
infM

2
P

⌧
✓
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◆2

. (22)

Fig. 3 shows the time evolution of the energy density of the inflaton (⇢�) and vector
boson (⇢A) for � = 5/2 and h(�) = f(�) for chaotic inflation model (5) with n = 2 (left)
and new inflation model (6) with n = 6 (right). The vector boson mass is taken to be
mA = 10�5Hinf (left) and mA = 10�3Hinf (right). As initial condition, we have taken
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Numerical calculation

where a(t) is the cosmic scale factor and �(t) represents the anisotropic expansion. For a
while we neglect the anisotropy, i.e. � = 0, by assuming that the energy density of the vector
field is much smaller than the inflaton. This will be justified later.

It is often useful to rescale the vector field as Aµ = (aA0,Ai) and use the conformal time
d⌧ = dt/a to obtain the action

S =

Z
d⌧d3x


�f 2

4
⌘µ⇢⌘⌫�Fµ⌫F⇢� �

a2h2

2
m2

A⌘
µ⌫AµA⌫

�
. (3)

Below we consider the special form of the kinetic function:

f(�) = exp

✓
� �

2M2
P

Z
V

V�

d�

◆
, (4)

where V� ⌘ @V/@�. A particular example is the chaotic inflation:

f(�) = exp

✓
� �

4n

�2

M2
P

◆
, V (�) =

��n

n
. (5)

For the new (hilltop) inflation model, it is given by

f(�) = exp
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4n(n� 2)

vn

M2
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n�2

◆
, V (�) = ⇤4


1�

✓
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v
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. (6)

They lead to the scaling of f 2 / a� during the standard slow-roll inflation when the e↵ect of
backreaction of the vector field to the inflaton dynamics is negligible. Note also that f ' 1
soon after inflation ends. The case of � = �4 and 2 have been discussed in Ref. [12]. We
will consider the case of � < �4 and � > 2. For the moment we do not assume any specific
functional form of h(�) except that it soon approaches to h(�) ! 1 after inflation ends.

2.1 Dynamics during inflation

Let us describe the vector and inflaton dynamics during inflation neglecting the spatial
fluctuation. We follow the analysis given in Refs. [21–23]. The equation of motion is given
by

a
@

@t

⇣
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⌘
+ a2h2m2

AA = 0, (7)

�̈+ 3H�̇+ V� �
1
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ff�Ȧ

2 = 0, (8)

where f� ⌘ @f/@�. The Hubble parameter H = ȧ/a is given by
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Figure 1: Numerical results for chaotic inflation model (5) with n = 2. (Left) Time evolution
of the energy density of the inflaton (⇢�) and vector boson (⇢A) normalized by m2

�M
2
P . We

have taken � = �5 and Ȧ = 10�4m�MP for (a) and 10�6m�MP for (b) as initial condition.
(Right) Time evolution of the ratio ⇢A/⇢� compared with RA. Parameters are the same as
the left panel.

We do not go into details of the problem of initial condition since it is related with the
dynamics before the “observable” inflation happens and just treat the initial condition as
free parameters.#3

So far we have ignored the anisotropic expansion. The equation for ⌃ ⌘ �̇ is given by

⌃̇+ 3H⌃ =
2⇢A
3M2

P

. (18)

It is expected that ⌃ converges to a nearly constant value

⌃

H
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3⇢�
= �4✏V

3

� + 4

�2
=

✏H
3
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�
. (19)

It is suppressed by the slow-roll parameter ✏H . Therefore the homogeneous dynamics is not
much a↵ected by the inclusion of the anisotropic expansion.

2.1.2 � > 2

In this case, as far as the vector boson mass mA is negligible, the vector energy density ⇢A
(or its kinetic part) decreases as ⇢A / a���2 during inflation and hence it rapidly approaches
to zero, while the A increases as A / a�/2�1. Since ⇢A is negligible, there is no backreaction
of the vector field to the inflaton and the anisotropic inflation does not occur.

#3
It is possible that the long wavelength vector perturbation accumulates to constitute a “homogeneous”

mode if the total duration of inflation is long enough [25,26].
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Time evolution of the ratio ⇢A/⇢� compared with RA. Parameters are the same as the left
panel.

On the other hand, the condition that the vector boson mass is negligible is written as
hmA/f ⌧ Hinf at least during the last 60 e-foldings of inflation. For h = 1 for example, it
gives a constraint on the vector boson mass as

mA ⌧ e�30�Hinf ⇠ 10�13�Hinf . (20)

Then the vector boson energy density at the end of inflation is bounded as
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⌧end

⌧ 10�26�. (21)

If the total duration of inflation is much longer than 60 e-foldings, the constraint becomes
much more stringent. If this condition is violated, the vector boson mass would make rapid
decay of the amplitude A during inflation.

Another choice is h(�) = f(�). In this case, the only requirement is mA ⌧ Hinf . Thus
the upper bound on the vector energy density at the end of inflation is just
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Fig. 3 shows the time evolution of the energy density of the inflaton (⇢�) and vector
boson (⇢A) for � = 5/2 and h(�) = f(�) for chaotic inflation model (5) with n = 2 (left)
and new inflation model (6) with n = 6 (right). The vector boson mass is taken to be
mA = 10�5Hinf (left) and mA = 10�3Hinf (right). As initial condition, we have taken
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where a(t) is the cosmic scale factor and �(t) represents the anisotropic expansion. For a
while we neglect the anisotropy, i.e. � = 0, by assuming that the energy density of the vector
field is much smaller than the inflaton. This will be justified later.

It is often useful to rescale the vector field as Aµ = (aA0,Ai) and use the conformal time
d⌧ = dt/a to obtain the action

S =

Z
d⌧d3x


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Below we consider the special form of the kinetic function:

f(�) = exp
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, (4)

where V� ⌘ @V/@�. A particular example is the chaotic inflation:

f(�) = exp
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For the new (hilltop) inflation model, it is given by

f(�) = exp
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They lead to the scaling of f 2 / a� during the standard slow-roll inflation when the e↵ect of
backreaction of the vector field to the inflaton dynamics is negligible. Note also that f ' 1
soon after inflation ends. The case of � = �4 and 2 have been discussed in Ref. [12]. We
will consider the case of � < �4 and � > 2. For the moment we do not assume any specific
functional form of h(�) except that it soon approaches to h(�) ! 1 after inflation ends.

2.1 Dynamics during inflation

Let us describe the vector and inflaton dynamics during inflation neglecting the spatial
fluctuation. We follow the analysis given in Refs. [21–23]. The equation of motion is given
by
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Vector DM abundance

2.2.1 � < �4

For � < �4, taking the d2 term in (24), we obtain A / a�1/2 for w = 0 and A / a0 for
w = 1/3, which means ⇢A / a�4 for both cases. This behavior is seen in Figs. 1 and 2. On
the other hand, for H ⌧ mA, the equation is the same as the minimal scalar field: it begins
coherent oscillation at H ⇠ mA and behaves as non-relativistic matter thereafter. Hence we
have ⇢A / a�3 for H ⌧ mA and it is a candidate of DM.

Keeping this in mind, we can now evaluate the vector DM abundance. First we consider
the case of �� > mA. In this case the final energy density to the entropy density (s) ratio is
evaluated as
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where ⇢� collectively denotes the inflaton energy density or the radiation energy density
produced by the inflaton decay. For the other case �� < mA, we have
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with TR being the reheating temperature. Numerically they are summarized as

⇢A
s

'

8
>>><

>>>:

3.7⇥ 10�10 GeV

✓
RA

0.1

◆⇣ mA

10�8 GeV

⌘1/2
✓
1014 GeV

Hinf

◆2/3 ✓
TR

106 GeV

◆4/3

for mA < ��

3.5⇥ 10�10 GeV

✓
RA

0.1

◆⇣ mA

1GeV

⌘2/3
✓
1014 GeV

Hinf

◆2/3 ✓
TR

10GeV

◆
for mA > ��

.

(27)

It is consistent with the observed DM abundance (' 4 ⇥ 10�10 GeV in terms of the energy
to entropy density ratio) for wide parameter ranges.

2.2.2 � > 2

For � > 2, the vector energy density at the end of inflation is bounded as (21). After

inflation, the vector energy density scales as ⇢A ' m2
AA

2
/2 / a�2. For h = 1, for example,

assuming the limit of instant reheating, i.e., the radiation dominated universe starts just
after inflation, the final vector boson abundance is evaluated as
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where we have taken � = 2 when evaluating the most right hand side. If the reheating is
delayed, there is a further suppression factor of (��/Hinf)1/3. Since the DM should be heavier
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Figure 3: Time evolution of the energy density of the inflaton (⇢�) and vector boson (⇢A) for
� = 5/2 and h(�) = f(�) for chaotic inflation model (5) with n = 2 (left) and new inflation
model (6) with n = 6 (right). The vector boson mass is taken to be mA = 10�5Hinf (left)
and mA = 10�3Hinf (right). As initial condition, we have taken A = 10�4MP , � = 15MP

(left) and � = 0.4�end (right).

A = 10�4MP , � = 15MP (left) and � = 0.4�end (right). It is seen that first ⇢A decreases
exponentially but later the mass term begins to dominate and it increases until the end of
inflation.

2.2 Dynamics after inflation

After inflation ends, the kinetic function and mass function is taken to be f ' h ' 1.
The inflaton coherent oscillation behaves as non-relativistic matter until the reheating is
completed at H = �� where �� denotes the inflaton decay width. After the completion of
reheating, the radiation-dominated universe begins. This thermal history is described by the
equation of state parameter w, which takes w = 0 (1/3) for the matter (radiation)-dominated
era.

The equation of motion of the vector field A ⌘ fA/a is given by

Ä+ 3HȦ+

✓
m2
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1� 3w

2
H2

◆
A = 0. (23)

For H � mA, we find the solution to this equation as

A = d1a
�1 + d2a

(3w�1)/2, (24)

with d1 and d2 being some constants. Notice that the d1 term corresponds to the solution
A = const. It is consistent with the solution during inflation for � > 2, which corresponds to
the C1 term in (12) during inflation. For � < �4, on the other hand, the d2 term solution
applies. Below we consider the case of � < �4 and � > 2.
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Rough sketch

where a(t) is the cosmic scale factor and �(t) represents the anisotropic expansion. For a
while we neglect the anisotropy, i.e. � = 0, by assuming that the energy density of the vector
field is much smaller than the inflaton. This will be justified later.

It is often useful to rescale the vector field as Aµ = (aA0,Ai) and use the conformal time
d⌧ = dt/a to obtain the action
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Below we consider the special form of the kinetic function:
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For the new (hilltop) inflation model, it is given by
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They lead to the scaling of f 2 / a� during the standard slow-roll inflation when the e↵ect of
backreaction of the vector field to the inflaton dynamics is negligible. Note also that f ' 1
soon after inflation ends. The case of � = �4 and 2 have been discussed in Ref. [12]. We
will consider the case of � < �4 and � > 2. For the moment we do not assume any specific
functional form of h(�) except that it soon approaches to h(�) ! 1 after inflation ends.

2.1 Dynamics during inflation

Let us describe the vector and inflaton dynamics during inflation neglecting the spatial
fluctuation. We follow the analysis given in Refs. [21–23]. The equation of motion is given
by
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3M2
PH

2 = ⇢� + ⇢A, (9)

3

S =

Z
d

4
x

p
�g

✓
�f

2(�)

4
FMNFMN

◆

Ai = Ai0 + �AiPerturbed action:

�S '
Z

d⌧d3k
⇣
�� ~Ef · � ~Ef (~k)⇣(�~k)

⌘

⇣ = �Hinf
��

�̇

where P0
⇣ = H2

inf/(8⇡
2✏M2

P ).
#4 The unequal time correlator is given by

h
⇣0(~k, ⌧), ⇣0(~k0, ⌧ 0)

i
= � iH2

inf

6✏M2
P

(⌧ 3 � ⌧
03)(2⇡)3�(~k + ~k0). (55)

for the superhorizon limit �k⌧ ! 0.
In the spatially flat gauge, the curvature perturbation is given by ⇣ = �H��/�̇ =
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where we defined �h = 0 for h = 1 and �h = � for h = f , ~Ef = �f ~A0 and we have
taken ~A0 = (Ax, 0, 0) without loss of generality. Due to this interaction term, anisotropic
curvature perturbation power spectrum appears at the level of second order perturbation
in the Hamiltonian Hint. We use the in-in formalism to calculate the two point functionD
⇣(~k, ⌧)⇣(~k0, ⌧)
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For �  �4 and h = 1 the first term in (56) is important to evaluate the two point function,
while for � � 2 and h = f the first term is irrelevant since ~Ef = 0 and the second term
becomes important.

3.2.1 �  �4

First let us consider the case of �  �4 and h = 1. After some computation, using the
correlator (55), we find
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where we used 1� k̂2
x = sin2 ✓k with ✓k being the angle between the background vector field

direction ~A and the wave vector ~k. Note that � ~Ef = f ~A0
T ' (↵ + 1) ~Af

T/⌧ since A0
L ' 0

as explained in App. A. Thus it gives the anisotropic power spectrum of the form (51). By
using the solution (41), the statistical anisotropy parameter g⇤ is calculated as
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Power spectrum at second order
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where we defined �h = 0 for h = 1 and �h = � for h = f , ~Ef = �f ~A0 and we have
taken ~A0 = (Ax, 0, 0) without loss of generality. Due to this interaction term, anisotropic
curvature perturbation power spectrum appears at the level of second order perturbation
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For �  �4 and h = 1 the first term in (56) is important to evaluate the two point function,
while for � � 2 and h = f the first term is irrelevant since ~Ef = 0 and the second term
becomes important.

3.2.1 �  �4

First let us consider the case of �  �4 and h = 1. After some computation, using the
correlator (55), we find
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where we used 1� k̂2
x = sin2 ✓k with ✓k being the angle between the background vector field

direction ~A and the wave vector ~k. Note that � ~Ef = f ~A0
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as explained in App. A. Thus it gives the anisotropic power spectrum of the form (51). By
using the solution (41), the statistical anisotropy parameter g⇤ is calculated as
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On the other hand, the homogeneous mode A at H = mA is evaluated as
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where ai is the scale factor at the initial time, which should be at least 60 e-foldings before
the end of inflation. Thus the isocurvature perturbation is
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where in the last inequality we used ai < ak = k/Hinf .

3.2 Curvature perturbation

Here we briefly describe the statistical anisotropy in the curvature perturbation. Since there
is a vector background during inflation, it can a↵ect the statistical properties of the curvature
perturbation. In particular, the power spectrum of the curvature perturbation may have the
following quadrupolar asymmetric form:
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where P0
⇣ (k) is the isotropic part of the dimensionless curvature perturbation power spec-

trum, normalized as P0
⇣ (k) ' 2.1 ⇥ 10�9 at the present horizon scale [27], ✓k is the angle

between the wave vector ~k and the preferred direction and g⇤ represents the magnitude of the
statistical anisotropy. The observational constraint on this type of quadrupolar asymmetry
is |g⇤| . 10�2 [27]. There are several e↵ects that generates nonzero g⇤ as extensively studied
in e.g. Refs. [23, 25]. The dominant e↵ect comes from the inflaton-vector boson interaction
in the Lagrangian after expanding f ' f��� and ~A = ~A0 + ~�A around the homogeneous
background, which gives the additional contribution to the inflaton 2-point function [23,25].

Neglecting the interaction with the vector boson, the zeroth order solution for ⇣ during
inflation is
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Note that e⇣~k = e⇣�~k. The power spectrum at the zeroth order is given by
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where a(t) is the cosmic scale factor and �(t) represents the anisotropic expansion. For a
while we neglect the anisotropy, i.e. � = 0, by assuming that the energy density of the vector
field is much smaller than the inflaton. This will be justified later.

It is often useful to rescale the vector field as Aµ = (aA0,Ai) and use the conformal time
d⌧ = dt/a to obtain the action
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They lead to the scaling of f 2 / a� during the standard slow-roll inflation when the e↵ect of
backreaction of the vector field to the inflaton dynamics is negligible. Note also that f ' 1
soon after inflation ends. The case of � = �4 and 2 have been discussed in Ref. [12]. We
will consider the case of � < �4 and � > 2. For the moment we do not assume any specific
functional form of h(�) except that it soon approaches to h(�) ! 1 after inflation ends.

2.1 Dynamics during inflation

Let us describe the vector and inflaton dynamics during inflation neglecting the spatial
fluctuation. We follow the analysis given in Refs. [21–23]. The equation of motion is given
by
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for the superhorizon limit �k⌧ ! 0.
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where we defined �h = 0 for h = 1 and �h = � for h = f , ~Ef = �f ~A0 and we have
taken ~A0 = (Ax, 0, 0) without loss of generality. Due to this interaction term, anisotropic
curvature perturbation power spectrum appears at the level of second order perturbation
in the Hamiltonian Hint. We use the in-in formalism to calculate the two point functionD
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For �  �4 and h = 1 the first term in (56) is important to evaluate the two point function,
while for � � 2 and h = f the first term is irrelevant since ~Ef = 0 and the second term
becomes important.

3.2.1 �  �4

First let us consider the case of �  �4 and h = 1. After some computation, using the
correlator (55), we find
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where we used 1� k̂2
x = sin2 ✓k with ✓k being the angle between the background vector field

direction ~A and the wave vector ~k. Note that � ~Ef = f ~A0
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as explained in App. A. Thus it gives the anisotropic power spectrum of the form (51). By
using the solution (41), the statistical anisotropy parameter g⇤ is calculated as
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for the superhorizon limit �k⌧ ! 0.
In the spatially flat gauge, the curvature perturbation is given by ⇣ = �H��/�̇ =
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2✏MP ). The interaction action is then obtained as
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where we defined �h = 0 for h = 1 and �h = � for h = f , ~Ef = �f ~A0 and we have
taken ~A0 = (Ax, 0, 0) without loss of generality. Due to this interaction term, anisotropic
curvature perturbation power spectrum appears at the level of second order perturbation
in the Hamiltonian Hint. We use the in-in formalism to calculate the two point functionD
⇣(~k, ⌧)⇣(~k0, ⌧)
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For �  �4 and h = 1 the first term in (56) is important to evaluate the two point function,
while for � � 2 and h = f the first term is irrelevant since ~Ef = 0 and the second term
becomes important.

3.2.1 �  �4

First let us consider the case of �  �4 and h = 1. After some computation, using the
correlator (55), we find
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where we used 1� k̂2
x = sin2 ✓k with ✓k being the angle between the background vector field

direction ~A and the wave vector ~k. Note that � ~Ef = f ~A0
T ' (↵ + 1) ~Af

T/⌧ since A0
L ' 0

as explained in App. A. Thus it gives the anisotropic power spectrum of the form (51). By
using the solution (41), the statistical anisotropy parameter g⇤ is calculated as
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where ai is the scale factor at the initial time, which should be at least 60 e-foldings before
the end of inflation. Thus the isocurvature perturbation is
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where in the last inequality we used ai < ak = k/Hinf .

3.2 Curvature perturbation

Here we briefly describe the statistical anisotropy in the curvature perturbation. Since there
is a vector background during inflation, it can a↵ect the statistical properties of the curvature
perturbation. In particular, the power spectrum of the curvature perturbation may have the
following quadrupolar asymmetric form:
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where P0
⇣ (k) is the isotropic part of the dimensionless curvature perturbation power spec-

trum, normalized as P0
⇣ (k) ' 2.1 ⇥ 10�9 at the present horizon scale [27], ✓k is the angle

between the wave vector ~k and the preferred direction and g⇤ represents the magnitude of the
statistical anisotropy. The observational constraint on this type of quadrupolar asymmetry
is |g⇤| . 10�2 [27]. There are several e↵ects that generates nonzero g⇤ as extensively studied
in e.g. Refs. [23, 25]. The dominant e↵ect comes from the inflaton-vector boson interaction
in the Lagrangian after expanding f ' f��� and ~A = ~A0 + ~�A around the homogeneous
background, which gives the additional contribution to the inflaton 2-point function [23,25].
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Note that e⇣~k = e⇣�~k. The power spectrum at the zeroth order is given by
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Concrete form
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For �  �4 and h = 1 the first term in (56) is important to evaluate the two point function,
while for � � 2 and h = f the first term is irrelevant since ~Ef = 0 and the second term
becomes important.
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Thus, for a particular case of ↵ = �4, we have
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which reproduces the result of Ref. [25] where N(k) represents the e-folding number of the
inflation after the observable scale k exit the horizon. For ↵ < �4, we have
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where C collectively represents a numerical factor, which is at least O(10) for reasonable
value of �. The energy density is given as ⇢A(⌧) ' (↵ + 1)2(HinfA

f )2/(2a2). Recall that
the value of ↵ can change from � to �4 when the anisotropic inflation happens (case (ii)
described in the beginning of this section). In such a case N(k) should be regarded as an
e-folding number of the standard slow-roll inflation, Nst ' 60�Nani.

3.2.2 � � 2

Next we consider the case of � � 2 and h = f . As already mentioned, the second term of
(56) gives dominant contribution to the anisotropic power spectrum. The computation is
parallel to the previous case of �  �4, except that the longitudinal fluctuation gives the
dominant contribution in this case.#5 Noting Af
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f
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Note that ⇢A(⌧) ' (mAA
f )2/(2a2) in this case. Thus the statistical anisotropy can be

suppressed compared with the previous case.
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Thus the power spectrum has of the dependence of (
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2
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2 ✓k and hence the sign of

g⇤ may be flipped in this case.
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3.3 Constraint

Now we are going to discuss constraint on the vector DM scenario from the isocurvature
perturbation. First we consider � < �4. In this case the isocurvature perturbation is given
by (47) while the statistical anisotropy parameter is given by (62). Combining them we
obtain

|g⇤| ⇠ C
P0

⇣

PS

e�2(↵+4)Nst . (64)

Taking account of the constraint on the isocurvature perturbation, |g⇤| must be much larger
than one and it clearly contradicts with the observational constraint. For � = �4, the factor
e�2(↵+4)Nst should be replaced with (Nst +Nani)2 ⇠ 3600 and this case is also excluded.#6

For � > 2, an important di↵erence from the � < �4 case is that the energy density of
the vector homogeneous background can be extremely small: ⇢A ' m2

AA
2
/2 for h = f , since

the kinetic energy vanishes for the C1 solution in (12). Therefore, the statistical anisotropy
(63) can be suppressed. On the other hand, the longitudinal fluctuation contributes to
the isocurvature perturbation (50) and it gives stringent constraint on this scenario. The
statistical anisotropy parameter (63) is rewritten as

|g⇤| ⇠ C
P0

⇣

PS

e2(↵�2)N(k). (65)

The expression is similar to the previous case and it is clearly too large once we impose the
isocurvature constraint. For � = 2, the factor e2(↵�2)N(k) should be replaced with N2(k) ⇠
3600 and this case is also excluded. The reason that these two constraints (isocurvature
and statistically anisotropic curvature perturbation) are complementary is that the inflaton-
vector coupling is enhanced by 1/✏ in order to realize the scaling f / a↵/2. To suppress the
isocurvature perturbation one requires small Hinf , which makes the 1/✏ coupling stronger
and the statistical anisotropy becomes larger.

A loophole is that the inflaton may not responsible for the observed curvature pertur-
bation. In the curvaton scenario, the observed curvature perturbation is originated from
the other scalar field fluctuation than the inflaton, called the curvaton [28–30]. In this case
P0

⇣ appearing e.g. in Eq. (64) or (65) should be interpreted as the sub-dominant inflaton
contribution to the curvature perturbation, and it can take much smaller value than the
observed value. In such a case the constraint from the statistical anisotropy may be avoided.

4 Conclusions and discussion

In this paper we studied scenario for vector coherent oscillation DM with the action given by
(1). The homogeneous vector condensate can be formed for �  �4 or � � 2. The particular

#6
In Ref. [12] constraint from the statistical anisotropy of the curvature perturbation was not taken into

account.
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Non-standard thermal history after inflation

Vector coherent oscillation DM scenario is not excluded,
but severely constrained and need complicated model.
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3. Gravitational Production

3-2. Gravitational production of vector

3-1. Gravitational production of scalar
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gravity. In Sec. 3 the gravitational particle production rate in supergravity is studied. In
particular, we find that the production rate of a scalar field with minimal Kähler potential
can be suppressed compared with the non-SUSY case. The case of more general classes
of Kähler potential and several additional features of gravitational particle production in
supergravity are discussed in Sec. 4. Some phenomenological implications are discussed in
Sec. 5.

2 Gravitational particle production in non-SUSY the-
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First let us briefly review the gravitational particle production in the non-SUSY case with
Einstein gravity. We introduce a scalar field �, which is minimally coupled to gravity:
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where MP is the reduced Planck scale and R the Ricci curvature, � denotes the canonical
inflaton field and L� is the inflaton Lagrangian, whose concrete form is not specified. We
assume the Friedmann-Robertson-Walker universe where the line element is given by ds2 =
�dt2+ a2(t)d~x2 with a(t) being the cosmic scale factor. To discuss the gravitational particle
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where H = ȧ/a denotes the Hubble parameter and we have used the Friedmann equation in
the last equality:
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with V� being the inflaton potential. Eq. (3) may show that the minimal scalar field � “feels”
the time dependence of the Ricci curvature R.

Particle production phenomenon is related to the (rapid) time-dependence of the e↵ective
mass em2

�. It is clearly seen that the last term in the most right hand side of the expression
(3) is highly time-dependent due to the inflaton dynamics, while the time dependence of the
first and second terms are rather mild compared with the last term.
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production rate in a realistic inflationary cosmology. Sec. 4 is devoted to summary and
discussion.

2 Scalar field in cosmological background

2.1 Model and equations of motion

Let us consider an action

S =

Z
d4x

p�g

✓
1

2
(M2

P � ⇠�2)R� 1

2
gµ⌫@µ�@⌫�� V (�)� 1

2
gµ⌫@µ�@⌫�� 1

2
m2

��
2

◆
, (1)

where MP is the reduced Planck scale, R is the Ricci scalar, � denotes the inflaton field
with V (�) being its potential and � denotes a real scalar field. It has a Z2 symmetry under
which � changes its sign, and hence � is stable and is a candidate of DM. We assume that �
does not have a direct coupling to the inflaton and other standard model fields. It interacts
only through the metric or the gravity. The coupling strength to the gravity is controlled by
the non-minimal coupling ⇠. Pure Einstein gravity corresponds to ⇠ = 0 and the conformal
coupling corresponds to ⇠ = 1/6.

We use the Friedmann-Robertson-Walker metric:
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where the prime denotes the derivative with respect to ⌧ . Thus e� satisfies the equation of
motion
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Treated as classical background, � has the following equation of motion,
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where the dot denotes the derivative with respect to the physical time t and the Hubble
parameter H is given by the Friedmann equation,
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Note on gravitational production

[Ema, Jinno, Mukaida, KN (2015); Ema, KN, Tang (2018); Chung, Kolb, Long (2018)]
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3. Gravitational Production

3-2. Gravitational production of vector

3-1. Gravitational production of scalar



Minimal massive vector
Massive vector boson minimally coupled to gravity

In the massless limit, vector does not “feel” gravity.
Mass term induces gravitational production 

[Graham, Mardon, Rajendran (2015)]

to ⌦ = (1, 0.1, 0.01) ⇥ ⌦
DM

, where ⌦i (i =  ,DM) is the density parameter defined by
⇢i/⇢crit with ⇢crit being the critical energy density of the present universe. Evidently, wide
parameter space exists for the correct DM relic density. Note that we should also include the
contribution from thermal production by gravitational annihilation of SM particles in the
thermal bath [18–21]. See Appendix C for details. In the parameter space we have shown,
however, contributions from thermal production is negligible.

3 Vector boson production

3.1 Vector boson action in the FRW Universe

Let us consider an action of massive vector boson,

S =

Z

d4x
p
�g



�1

4
gµ⇢g⌫�Fµ⌫F⇢� �

1

2
m2gµ⌫AµA⌫

�

, (34)

where Fµ⌫ = @µA⌫ � @⌫Aµ. In the FRW background, this action is rewritten as

S =

Z

d⌧d3x
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4
⌘µ⇢⌘⌫�Fµ⌫F⇢� �

1

2
a2m2⌘µ⌫AµA⌫

�

. (35)

One can impose a Z
2

symmetry under which only Aµ changes its sign to forbid the kinetic
mixing with the standard model hypercharge photon. Then Aµ is stable and a candidate of
DM. See Refs. [38, 39] for concrete model buildings.

The vector boson mass can be regarded as a result of the Higgs mechanism. In this
case, the radial component of the Higgs boson is a physical field but it can be decoupled
from the dynamics if the radial component is heavy enough. This is achieved by assuming
that the gauge coupling constant is much smaller than the Higgs self coupling constant, for
example. Or we can rely on the Stuckelberg mechanism: let the gauge boson mass term be
m2gµ⌫(Aµ + c@µ�)(A⌫ + c@⌫�) by introducing additional real scalar field �. This mass term
respects the gauge symmetry Aµ ! Aµ + @µ� if � transforms as �! ���/c with arbitrary
function �. By setting � = 0 using this gauge degree of freedom, we end up with the massive
vector boson action (34). In this case, there is no physical degree of freedom other than the
vector boson.

It is again convenient to work with the Fourier mode since we are interested in the free
vector boson:

Aµ(~x, t) =

Z

d3k

(2⇡)3
Aµ(~k, t)e

i~k·~x. (36)

Since Aµ(~x, t) is a real field, Aµ(~k, t) = A⇤
µ(�~k, t) must be satisfied. The three physical

components are divided into the transverse and longitudinal mode: ~A = ~AT + k̂AL, where
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Transverse-longitudinal decomposition

S = ST + SL

the transverse mode satisfies ~k · ~AT = 0 with the momentum vector ~k and k̂ ⌘ ~k/|~k|. Note
that A

0

is not dynamical but it is determined by the constraint equation as

A
0

(~k, t) =
i~k · ~̇A

k2 + a2m2

=
ikȦL

k2 + a2m2

. (37)

Substituting this into the action, we find that the transverse mode and longitudinal mode
are decoupled from each other: [40]

S = ST + SL, (38)

ST =

Z

d3kd⌧

(2⇡)3
1

2

⇣
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◆

. (40)

The longitudinal mode is further redefined using the canonical field fAL ⌘ f(⌧)AL with
f(⌧) ⌘ am/

p
k2 + a2m2,
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where the e↵ective mass is given by#6
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. (42)

3.2 Transverse mode production

From the action of the transverse mode (39) it is evident that it is conformal in the limit
m ! 0, i.e., the scale factor dependence disappears in the limit m ! 0. Hence there is no
particle production in this limit. It is similar to the situation of a scalar field with conformal
coupling.

To see this in detail, let us expand ~AT as

~AT (~k, ⌧) =
X

h=±

h

AT (~k, ⌧)~✏ha~k,h +A⇤
T (~k, ⌧)~✏

⇤
ha

†
�~k,h

i

, (43)

where ~✏h denotes the polarization vector for two polarization modes h = + and � which
satisfies ~✏⇤h · ~✏h0 = �hh0 . A concrete expression is ~✏± = (1,±i, 0)/

p
2 if ~k points to the z-

direction. The ladder operators satisfy
h

a~k,h, a
†
~k0,h0

i

= (2⇡)3�hh0�(~k � ~k0),
h

a~k,h, a~k0,h0

i

=
h

a†~k,h, a
†
~k0,h0

i

= 0. (44)

#6 The same expression was also derived in Ref. [41] assuming that the vector boson mass is generated by
the Higgs mechanism.

10

the transverse mode satisfies ~k · ~AT = 0 with the momentum vector ~k and k̂ ⌘ ~k/|~k|. Note
that A

0

is not dynamical but it is determined by the constraint equation as

A
0

(~k, t) =
i~k · ~̇A

k2 + a2m2

=
ikȦL
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Transverse mode is similar to scalar with conformal coupling

Transverse mode production is subdominant
compared with longitudinal mode
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(k/a < m)Low momentum 

High momentum (k/a > m)

which is the same form as a massive scalar coupled to gravity minimally. Thus we can take the
mode function as in the Minkowski form in the high momentum limit (k/a � max[m,H

inf

])
as

fAL(k, ⌧) !
1p
2k

e�ik⌧ . (59)

In the low momentum limit k ⌧ am, we obtain
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a2m2

◆

, (60)

This is always positive definite even in the massless limit m ! 0, which is a unique feature of
massive vector boson, di↵erent from a massive scalar. Now we consider two cases separately:
heavy vector boson m & H

inf

and light vector boson m . H
inf

.

3.3.1 Heavy vector boson case

For the heavy vector boson case m & H
inf

, it is evident that the e↵ective mass squared m2

L is
always positive independently of the wavenumber k, and hence there is no significant growth
of the vacuum fluctuation. In particular, no superhorizon modes are enhanced during the de
Sitter phase. Therefore, in this case, we should only take account of the production of high
momentum modes after inflation. For k � am, we obtain

!2

L ' k2 + a2m2 � a00

a
. (61)

This is the same form as the minimally coupled scalar field. This may be regarded as a
consequence of the Goldstone boson equivalence theorem, which says that the longitudinal
vector boson may be identified with the Goldstone boson in the high energy limit. Similar
to the case of scalar field, we can again make the following parameterization:

fAL(k, ⌧) =
↵k(⌧)p
2!L

e�i
R ⌧ !L(⌧

0
)d⌧ 0 +

�k(⌧)p
2!L

ei
R ⌧ !L(⌧

0
)d⌧ 0 , (62)

where ↵k(⌧) and �k(⌧) are assumed to satisfy

↵0
k(⌧) =

!0
L

2!L

e2i
R ⌧ !L(⌧

0
)d⌧ 0�k, �0

k(⌧) =
!0
L

2!L

e�2i
R ⌧ !L(⌧

0
)d⌧ 0↵k. (63)

It is again checked that these set of equations satisfy the equation of motion (55). The
initial condition is taken to be ↵k ! 1 and �k ! 0 at k⌧ ! �1. The energy density (85)
is expressed as

a4(⌧)⇢L(⌧) = 2

Z

d3k

(2⇡)3
!LfL(k, ⌧), fL(k, ⌧) = |�k(⌧)|2, (64)
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Ref. [14]. Here we present only the results. The number density of the transverse vector
boson is given by

nAT
(t) ' H3

inf



CT
m4

m4

inf

+ ⌘
m

H
inf

�✓

a(t
end

)

a(t)

◆

3

, (51)

where ⌘ is given by the same expression as (31) after reinterpreting m in (31) as the vector
boson mass. It is assumed that m ⌧ m

inf

since otherwise the vector boson production
is suppressed. Taking account of the two polarization degrees of freedom, the numerical
coe�cient CT is found to be 3/(256⇡) if the inflaton potential is well approximated by the
quadratic one [15]. Assuming that the universe is matter-dominated before the completion
of reheating, we obtain the energy to entropy density ratio as

⇢T
s

=
T
R

mnAT
(t

end

)

4H2

inf

M2

P

' T
R

H
inf

m

4M2

P

"

CT
✓

m

m
inf

◆

4

+ ⌘
m

H
inf

#

. (52)

3.3 Longitudinal mode production

The longitudinal mode is more similar to a scalar field, as seen from the action (41). It is
quantized as

fAL(~k, ⌧) = fAL(~k, ⌧)a~k +
fA⇤
L(
~k, ⌧)a†

�~k
, (53)

where the ladder operators satisfy
h

a~k, a
†
~k0

i

= (2⇡)3�(~k � ~k0),
⇥

a~k, a~k0
⇤

=
h

a†~k, a
†
~k0

i

= 0. (54)

The equation of motion of the mode function is

fA00
L + !2

L(k, ⌧)fAL = 0, !2

L = k2 +m2

L. (55)

For convenience, we also present the equation of motion in the original basis:

A00
L +

2f 0

f
A0

L + (k2 + a2m2)AL = A00
L +

2Hk2

k2 + a2m2

A0
L + (k2 + a2m2)AL = 0. (56)

During the de Sitter phase, the e↵ective mass of the longitudinal mode is given by

m2

L = a2m2 � a2H2

inf

k2(2k2 � a2m2)

(k2 + a2m2)2
. (57)

In the high momentum limit k � am, it is approximated as

m2

L ' a2(m2 � 2H2

inf

), (58)
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Again we find that it is peaked around k = k⇤ where k⇤ ⌘ a(H = m)m, which is now
evaluated as k⇤ = a

end

m(H
inf

/H
R

)2/3(H
R

/m)1/2. Thus the total vector boson abundance is
given by

⇢L
s

'
✓

90

⇡2g⇤

◆

1/4
m1/2H2

inf

32⇡2M
3/2
P

' 5⇥ 10�10 GeV
⇣ m

10�6 GeV

⌘

1/2
✓

H
inf

1012 GeV

◆

2

. (75)

It is consistent with Ref. [40].

3.4 Combined Results

Let us summarize the results so far. The abundance of longitudinal vector boson which is
purely gravitationally produced is given by
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'
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>

>

<

>

>

>

>

>

>
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P
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✓

90
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◆

1/4
m1/2H2

inf

32⇡2M
3/2
P

for m < H
R

. (76)

Note that the origin of the vector boson is di↵erent between the case of m > H
inf

and
m < H

inf

. In the former case, the vector boson is dominantly produced at the end of
inflation or during the early stage of reheating and the main produced mode is about the
inflaton mass: k ⇠ a

end

m
inf

. In the latter case, the dominant contribution comes from
the superhorizon mode generated during inflation, which eventually re-enters the horizon at
H ⇠ m. The transverse modes are also produced at the end of inflation and during the
reheating stage, but they are always subdominant compared with the longitudinal mode.

In Fig. 2, we show several contours of the vector boson abundance on the parameter space
of (m,H

inf

) for two sets of inflaton mass and reheating temperature, m
inf

= 1013 GeV and
T
R

= 1011 GeV (Left panel), m
inf

= 1012 GeV and T
R

= 1010 GeV (Right panel). Similar to
the fermion case, thermal production is included, see Appendix C. Three contours (gray solid,
blue dashed, and purple dotted) correspond to ⌦A = (1, 0.1, 0.01)⇥⌦

DM

where ⌦A = ⇢A/⇢crit
is the density parameter of the vector boson. We can see there are wide and viable parameter
regions that can satisfy the current DM relic abundance. Contours without including thermal
productions are shown in thin curves that however almost coincide with thick ones, which
means thermal contributions are negligible in the showed parameter space.

4 Conclusions and discussion

We have studied the DM production mechanism in the case where the DM particle is a
massive fermion or vector boson and has only the gravitational interaction. The produc-
tion takes place through the so-called gravitational particle production under the standard
inflationary cosmology.
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Final vector boson abundance

Note:

[Ema, KN, Tang (2019)]

Gravitational production also works during inflaton oscillation

Final abundance depends on thermal history after inflation
[Ema, KN, Tang (2019), Ahmed, Grzadkowski, Socha (2020)]

Thermal production from SM scattering with graviton exchange
[Garny, Sasndora, Sloth (2015), Tang, Wu (2016)]



[Ema, KN, Tang (2019)]

Vector DM is possible for wide range of mass & inflation scale
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Figure 2: Illustration of the gravitationally produced vector boson abundance with two
sets of inflaton mass and reheating temperature, m

inf

= 1013 GeV and T
R

= 1011 GeV (Left),
m

inf

= 1012 GeV and T
R

= 1010 GeV (Right). Three di↵erent curves (gray solid, blue dashed,
and purple dotted) correspond to ⌦A = (1, 0.1, 0.01)⇥ ⌦

DM

.

For the case of a massive fermion, the presence of mass term violates the conformal invari-
ance and it somehow feels the background time evolution, resulting in particle production.
The dominant production process depends on the fermion’s mass m. For m . H

inf

, the
non-adiabaticity of the fermion wave function is prominent when the fermion becomes non-
relativistic k ⇠ am for each wavenumber k. Those with momentum k such that k ⇠ am and
H ⇠ m gives the dominant contribution to the final fermion abundance as already pointed
out in Ref. [30]. For m � H

inf

, such an e↵ect of the universe expansion is negligible while
the inflaton coherent oscillation produces excites the high momentum fermion modes, since
the cosmic scale factor a(⌧) includes a small but nonzero oscillating part. In both cases, we
have the viable parameter regions that can reproduce the present DM abundance. All these
features are similar to the case of a scalar field with conformally coupled to gravity [14].

For the case of a massive vector boson, the story is a bit complicated. The transverse
mode is conformal in the massless limit, and hence the gravitational production proceeds
only through the presence of mass term. Again it is similar to the case of conformally coupled
scalar field. On the other hand, the longitudinal mode shows more non-trivial behavior. For
m . H

inf

, during the de Sitter phase the vector obtains superhorizon quantum fluctuations
and eventually behaves as non-relativistic matter. In contrast to the scalar field with minimal
coupling, there is a limit for the growth of the superhorizon modes at k ⇠ am, and hence such
a model is not constrained by the presence of DM isocurvature perturbation on cosmological
scales [40]. For m � H

inf

, it is rather close to the minimally coupled scalar field, and the
inflaton coherent oscillation excites the high-momentum longitudinal mode. In both cases
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Comment on XENON1T anomaly

[KN, Tang (2020)]

XENON1T found excess electronic recoil events

Hidden photon DM with small kinetic mixing can explain it
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Figure 1: The signal shape for hidden photon with mV = 2.7 keV and ✏ = 7 ⇥ 10�16. The
blue dots are the events observed by XENON1T [1], the black solid curve is the background,
and the red dashed curve displays the events including the absorption of hidden photon.

Recently, the XENON1T collaboration has reported excess events in the electronic recoil
with the recoil energy around 2–7 keV [1]. The excess may be interpreted as a contribution
from the solar axion [1], but this interpretation is inconsistent with the stellar cooling con-
straint, in particular the observation of white dwarfs and red giants [2]. On the other hand,
various connections of the XENON1T excess with particle physics models, constraints and
implications have been investigated in [3–18]. Absorption of bosonic dark matter (DM) may
also give similar signals [19,20]. One of the good candidates is the hidden photon DM with
mass mV ' 3 keV and the kinetic mixing parameter ✏ ⇠ 10�15, which is also shown to be
consistent with the anomalous cooling of horizontal branch stars [5].

The viable production of keV DM is not trivial since the constraints from astrophysical
observations are severe for keV DM produced from thermal plasma. For example, the recent
Lyman-↵ gives the lower bound & 5.3 keV [21] if it is thermally produced. Hence, a keV
DM candidate would require other viable production mechanism. In this short note, we
focus on the hidden photon DM interpretation and show that the gravitational production
mechanism is consistent with such a ⇠ 3 keV hidden photon DM with explicit parameter
dependence on the inflationary energy scale and the reheating temperature.

The most relevant action of the hidden photon Vµ and the Standard Model (SM) elec-
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Figure 2: The illustration of the energy density of dark photon ⇢HP for mV = 3keV. The
solid line shows how the correct relic abundance would require the proper values of inflation
scale Hinf and reheating temperature TR. The dotted and dashed lines correspond to ten
times larger and smaller, respectively. The turning points indicate HR ' mV .

the isocurvature constraint. Another aspect is that it is an unavoidable contribution since
the gravity is universal. In this sense it gives lower bound on the hidden photon abundance.
It is possible that hidden photon has interactions with other sector and the production is
more e�cient, which, however, is highly model-dependent. For example, the inflaton may
decay into hidden photon pair if there is a coupling between them. Assuming that hidden
photons are non-relativistic in the present universe, such a contribution can be evaluated as

⇣⇢HP

s

⌘

�!2V
' Br�!2V

3TR

2

mV

m�

(17)

⇠ 5⇥ 10�9 GeV ⇥ Br�!2V

✓
TR

1010 GeV

◆⇣ mV

3 keV

⌘✓
1013 GeV

m�

◆
, (18)

where m� denotes the inflaton mass and Br�!2V denotes the branching ratio of the inflaton
into two hidden photons. It can be much smaller than the DM abundance if the branching
ratio is much smaller than unity. Note that the hidden photons produced in this way could
be relativistic even in the present universe if m�/TR � 106. In such a case the hidden
photon may be regarded as dark radiation and the requirement is just Br�!2V . O(0.1)
to avoid constraint on the e↵ective number of extra neutrino species. Actually the inflaton
decay to the hidden photon can easily be suppressed if the inflaton is charged under some
(approximate) symmetry so that the coupling like �Vµ⌫V

µ⌫ is forbidden.
Because of the kinetic mixing, there is also a thermal contribution due to scattering, for

instance, e� + � ! e� + Vµ. The production rate for such a process is given by � ⇠ ✏2↵2T ,
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Figure 1: The signal shape for hidden photon with mV = 2.7 keV and ✏ = 7 ⇥ 10�16. The
blue dots are the events observed by XENON1T [1], the black solid curve is the background,
and the red dashed curve displays the events including the absorption of hidden photon.

Recently, the XENON1T collaboration has reported excess events in the electronic recoil
with the recoil energy around 2–7 keV [1]. The excess may be interpreted as a contribution
from the solar axion [1], but this interpretation is inconsistent with the stellar cooling con-
straint, in particular the observation of white dwarfs and red giants [2]. On the other hand,
various connections of the XENON1T excess with particle physics models, constraints and
implications have been investigated in [3–18]. Absorption of bosonic dark matter (DM) may
also give similar signals [19,20]. One of the good candidates is the hidden photon DM with
mass mV ' 3 keV and the kinetic mixing parameter ✏ ⇠ 10�15, which is also shown to be
consistent with the anomalous cooling of horizontal branch stars [5].

The viable production of keV DM is not trivial since the constraints from astrophysical
observations are severe for keV DM produced from thermal plasma. For example, the recent
Lyman-↵ gives the lower bound & 5.3 keV [21] if it is thermally produced. Hence, a keV
DM candidate would require other viable production mechanism. In this short note, we
focus on the hidden photon DM interpretation and show that the gravitational production
mechanism is consistent with such a ⇠ 3 keV hidden photon DM with explicit parameter
dependence on the inflationary energy scale and the reheating temperature.

The most relevant action of the hidden photon Vµ and the Standard Model (SM) elec-
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Recently, the XENON1T collaboration has reported excess events in the electronic recoil
with the recoil energy around 2–7 keV [1]. The excess may be interpreted as a contribution
from the solar axion [1], but this interpretation is inconsistent with the stellar cooling con-
straint, in particular the observation of white dwarfs and red giants [2]. On the other hand,
various connections of the XENON1T excess with particle physics models, constraints and
implications have been investigated in [3–18]. Absorption of bosonic dark matter (DM) may
also give similar signals [19,20]. One of the good candidates is the hidden photon DM with
mass mV ' 3 keV and the kinetic mixing parameter ✏ ⇠ 10�15, which is also shown to be
consistent with the anomalous cooling of horizontal branch stars [5].

The viable production of keV DM is not trivial since the constraints from astrophysical
observations are severe for keV DM produced from thermal plasma. For example, the recent
Lyman-↵ gives the lower bound & 5.3 keV [21] if it is thermally produced. Hence, a keV
DM candidate would require other viable production mechanism. In this short note, we
focus on the hidden photon DM interpretation and show that the gravitational production
mechanism is consistent with such a ⇠ 3 keV hidden photon DM with explicit parameter
dependence on the inflationary energy scale and the reheating temperature.

The most relevant action of the hidden photon Vµ and the Standard Model (SM) elec-
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Gravitational production works for this mass range
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from the solar axion [1], but this interpretation is inconsistent with the stellar cooling con-
straint, in particular the observation of white dwarfs and red giants [2]. On the other hand,
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Recently, the XENON1T collaboration has reported excess events in the electronic recoil
with the recoil energy around 2–7 keV [1]. The excess may be interpreted as a contribution
from the solar axion [1], but this interpretation is inconsistent with the stellar cooling con-
straint, in particular the observation of white dwarfs and red giants [2]. On the other hand,
various connections of the XENON1T excess with particle physics models, constraints and
implications have been investigated in [3–18]. Absorption of bosonic dark matter (DM) may
also give similar signals [19,20]. One of the good candidates is the hidden photon DM with
mass mV ' 3 keV and the kinetic mixing parameter ✏ ⇠ 10�15, which is also shown to be
consistent with the anomalous cooling of horizontal branch stars [5].

The viable production of keV DM is not trivial since the constraints from astrophysical
observations are severe for keV DM produced from thermal plasma. For example, the recent
Lyman-↵ gives the lower bound & 5.3 keV [21] if it is thermally produced. Hence, a keV
DM candidate would require other viable production mechanism. In this short note, we
focus on the hidden photon DM interpretation and show that the gravitational production
mechanism is consistent with such a ⇠ 3 keV hidden photon DM with explicit parameter
dependence on the inflationary energy scale and the reheating temperature.
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1



4. Summary



Summary

Gravitational production is one of the 
simple scenario for vector DM for

Vector coherent oscillationDM scenario is 
(almost) excluded. 

Other production mechanims are also viable.

Cosmic string,  Higgs decay,  axion coupling…
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[Agrawal et al (2018), Bastero-Gil et al (2018), Co et al (2018)]

Axion coupling

Axion couling to vector boson L = C
a

f
Fµ⌫

eFµ⌫

Axion dynamics induces vector production

One polarization mode even becomes tachyonic for k . Cȧ/f

Backreaction stops the tachyonic growth
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Cosmic string
Vector mass comes from 
hidden U(1) Higgs field

Cosmic strings

Light vector boson
 (longitudinal component) 

is emitted
by string dynamcis.

[Long, Wang (2019)]
7

cosmological dilution, nA ⇠ t�1, but the comoving density is
growing, a3nA / t3/2nA / t1/2. The relic abundance of
dark photons today (time t = t

0

) is given by

⌦Ah
2

=

mA YA(t0) s(t0)

3H2

0

M2

pl

/h2

(23)

where H
0

= 100h km/sec/Mpc is the Hubble constant and
M

pl

' 2.43⇥10

18

GeV is the reduced Planck mass. Here, we
have also introduced the yield, YA(t) = nA(t)/s(t), where
s = (2⇡2/45)g⇤S(t)T (t)3 is the cosmological entropy den-
sity at time t when the plasma temperature is T (t). Dark pho-
ton radiation becomes negligible at t = t⇤, and afterward the
yield is conserved, Y (t

0

) = Y (t⇤). Then, using the expres-
sion for nA(t⇤) from Eq. (22), we have

⌦Ah
2 '

�
0.12

� ⇣ mA

10

�13

eV

⌘
1/2
 p

µ(t⇤)

10

14

GeV

!
2

(24)

⇥
✓
⇠(t⇤)

16

◆✓
¯EA

H

◆�1

✓
H(t⇤)

mA

◆�1/2

,

where we have taken the effective number of relativistic
species to be g⇤ = g⇤S = 106.75.

IV. DISCUSSION AND CONCLUSIONS

We show the relevant parameter space in Fig. 2. Since the
model has four free parameters (v,�, e, T

rh

), we show only
the two-dimensional slice of parameter space with � = 1.
Our results are insensitive to the postinflationary reheat tem-
perature, T

rh

, as long as it is high enough for symmetry
restoration; see the discussion in Sec. III A. The value of
the string tension today is given by Eq. (5), which evalu-
ates to µ(t

0

) ⇡ (⇡/2�)m2

⇢ log[m⇢/mA], and since this is
only logarithmically sensitive to the dark photon mass, we fix
mA = 10

�10

eV and show the corresponding value of µ(t
0

)

on the top of the plot.
Recall from the discussion in the Introduction that the prob-

lem of dark photon dark matter production can be solved by
inflationary quantum fluctuations (gravitational particle pro-
duction) for mA & 10

�5

eV [14]; this is indicated by the
blue line in Fig. 2. Additionally, models of particle dark mat-
ter with mass m . 10

�21

eV are inconsistent with probes
of cosmological structure, namely Lyman-↵ forest observa-
tions [70]; this is indicated by the orange line in Fig. 2.

Along the diagonal red lines, the relic abundance of longi-
tudinally polarized dark photons matches the measured dark
matter relic abundance, ⌦

dm

h2 ' 0.12. Larger values of mA

and m⇢ (above the red line) are ruled out, because dark pho-
ton dark matter is overproduced. Regarding the dark photon
production problem that we discussed in the Introduction, it
is clear from these results that dark photon dark matter can
be produced from its own near-global, Abelian Higgs cos-
mic string network for a wide range of dark photon masses.
Models with smaller dark photon masses allow for viable dark
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FIG. 2. The relic abundance of dark photon dark matter, given by
Eq. (24), matches the observed dark matter relic abundance along the
red lines labeled “⌦Ah

2 ' 0.12” for an interesting region of param-
eter space where the dark photon’s mass is sub-eV and the scale of
symmetry breaking is somewhat below the GUT scale. The two red
lines serve to quantify the uncertainty in our calculation associated
with evolution of the string network.

matter production as long as they have correspondingly higher
symmetry breaking scales, represented here by the string ten-
sion and the scalar singlet mass.

The symmetry breaking scale is bounded from above in two
ways. In order to form the string network via a cosmological
phase transition, the symmetry must be restored after inflation.
This imposes a lower bound on the postinflationary reheating
temperature, T

rh

. For the Abelian-Higgs model we have stud-
ied here, this bound is roughly T

rh

& v; see the discussion in
Sec. III A. On the other hand, measurements of the cosmic
microwave background constrain the energy scale of infla-
tion [71], which implies an upper bound on the reheating tem-
perature that is at least as strong as T

rh

. 10

16

GeV and pos-
sibly stronger depending on the model of inflation and reheat-
ing. Taken together these constraints imply v . 10

16

GeV orp
µ(t

0

) . v log1/2 ⇠ 10

17

GeV. Thus, we conclude that the
parameter space shown in Fig. 2 can still be consistent with
cosmological limits on the symmetry breaking scale.

Gravitational wave radiation provides a more direct test
of the symmetry breaking scale. As we have discussed in
Sec. III B the collapse of string loops produces gravitational
wave radiation, which is expected to survive in the Universe
today as a stochastic gravitational wave background [72]. Pul-
sar timing array (PTA) observations provide stringent con-
straints on the presence of such a gravitational wave radia-
tion in the Universe today. For a network of Nambu-Goto or
Abelian-Higgs cosmic strings, the loops are long lived and

Higgs decay also emits
vector boson

[Dror, Harigaya, Narayan (2018)]
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Ȧ2

z

� 1

2
m2A2

z

, T
zz

= �f 2

2
Ȧ2
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In the deep oscillating regime m/f � H and f ' const, we have T
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= T
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= 0 after
the oscillation average, implying the zero pressure. Thus the coherently oscillating vector
field just behaves as non-relativistic matter and does not induce anisotropic expansion. On
the other hand, if the vector condensate during its slow-roll phase is a dominant component
of the universe, it induces anisotropic expansion. In our scenario studied below, the vector
boson begins a coherent oscillation well before it dominates the universe, and hence the
isotropy of the universe is not a↵ected by the vector background.
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3.3 Zero mode dynamics

First we study the evolution of the zero mode. Assuming A
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Ai = (0, 0, Az)

Tij = 0 (i 6= j)

Isotropic (pressure-less matter) during oscillation (H <<m)

Background expansion is isotropic

Anisotropic during slow-roll (H>>m)

However, vector energy is negligible in this stage

Vector background



Delta-N and isocurvature mode

inflation models. A simple and even plausible way is to introduce additional light scalars.
In the curvaton [14, 15, 16] and/or ungaussiton [17] scenarios, those light scalars can
generate sizable non-Gaussianity [18, 19, 20]. In the presence of additional light scalars
with quantum fluctuations, it is generically expected that isocurvature perturbation may
arise. In particular, the non-Gaussianity hinted by the recent observations may originate
from a small admixture of isocurvature perturbations [15, 21, 22].

We recently presented a formulation on non-Gaussianity in the isocurvature perturba-
tions, and studied in detail how it exhibits itself in the CMB temperature anisotropy [23].
In Ref. [23], we found that the non-Gaussianity in the isocurvature perturbations leave
distinctive signatures in the CMB; the non-Gaussianity is enhanced at large scales. Such
features will enable us to distinguish the non-Gaussianity in isocurvature perturbations
from that mainly in the adiabatic perturbation. As an example we considered the non-
Gaussianity in the CDM isocurvature perturbations [23] and the baryonic isocurvature
perturbations [24].

In this paper we extend our previous study in order to include possible correlations
between the curvature and the isocurvature perturbations. We will give explicit examples
in which there actually exist such correlations. Furthermore, as we did in the previous
paper, we will present how the CMB temperature anisotropies are affected by the presence
of the non-Gaussianities in the isocurvature perturbations correlated with the curvature
perturbations.

This paper is organized as follows. In Sec. 2 we extend our formalism to include
correlation of adiabatic and isocurvature perturbations. In Sec. 3 this formalism is applied
to some explicit models. We study features in the bispectrum of CMB anisotropy in Sec. 4.
Sec. 5 is devoted to discussion and conclusions.

2 Formalism

In this section, we extend the formalism developed in [23], where the formulation to
calculate the non-Gaussianity of the isocurvature perturbation was provided, to include
more general case that isocurvature perturbations have correlations with adiabatic one.
To be definite, we consider CDM isocurvature perturbation, but an extension to other
types of the isocurvature perturbations is straightforward.

2.1 Non-linear isocurvature perturbations and constraints

We write the perturbed spacetime metric as

ds2 = −N 2dt2 + a2(t)e2ψγij
(

dxi + βidt
) (

dxj + βjdt
)

, (1)

where N is the lapse function, βi the shift vector, γij the spatial metric, a(t) the back-
ground scale factor, and ψ the curvature perturbation. On sufficiently large spatial scales,
the curvature perturbation ψ on an arbitrary slicing at t = tf is expressed by [25]

ψ(tf , x⃗) = N(tf , ti; x⃗)− log
a(tf )

a(ti)
, (2)

2
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Spatial curvature on arbitrary time slice [Lyth, Malik, Sasaki (2004)]

⇣i(~x) �⇢i(~x) = 0Define as curvature on the slice

DM isocurvature perturbation: SDM ⌘ 3(⇣DM � ⇣r)

[Wands, Malik, Lyth, Liddle (2000)]
[Kawasaki, KN, Sekiguchi, Suyama, Takahashi (2008)]

= �N(tf , ti; ~x)
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Inflationary quantum fluctuation

production rate in a realistic inflationary cosmology. Sec. 4 is devoted to summary and
discussion.

2 Scalar field in cosmological background

2.1 Model and equations of motion

Let us consider an action

S =

Z
d4x
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✓
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where MP is the reduced Planck scale, R is the Ricci scalar, � denotes the inflaton field
with V (�) being its potential and � denotes a real scalar field. It has a Z2 symmetry under
which � changes its sign, and hence � is stable and is a candidate of DM. We assume that �
does not have a direct coupling to the inflaton and other standard model fields. It interacts
only through the metric or the gravity. The coupling strength to the gravity is controlled by
the non-minimal coupling ⇠. Pure Einstein gravity corresponds to ⇠ = 0 and the conformal
coupling corresponds to ⇠ = 1/6.

We use the Friedmann-Robertson-Walker metric:

gµ⌫dx
µdx⌫ = a2(⌧)(�d⌧ 2 + d~x2), (2)

where a(⌧) denotes the cosmic scale factor with ⌧ being the conformal time, which is related
to the physical time as dt = ad⌧ . Defining e� ⌘ a�, the action of e� is given by

S =

Z
d⌧d3x
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where the prime denotes the derivative with respect to ⌧ . Thus e� satisfies the equation of
motion

e�00 � @2
i e�+m(e↵)2

� e� = 0. (4)

Treated as classical background, � has the following equation of motion,

�̈+ 3H�̇+
@V

@�
= 0, (5)

where the dot denotes the derivative with respect to the physical time t and the Hubble
parameter H is given by the Friedmann equation,

H2 =
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ȧ

a

◆2

=
1

3M2
P

✓
1

2
�̇2 + V (�)

◆
, (6)

2

production rate in a realistic inflationary cosmology. Sec. 4 is devoted to summary and
discussion.

2 Scalar field in cosmological background

2.1 Model and equations of motion

Let us consider an action

S =

Z
d4x

p�g

✓
1

2
(M2

P � ⇠�2)R� 1

2
gµ⌫@µ�@⌫�� V (�)� 1

2
gµ⌫@µ�@⌫�� 1

2
m2

��
2

◆
, (1)

where MP is the reduced Planck scale, R is the Ricci scalar, � denotes the inflaton field
with V (�) being its potential and � denotes a real scalar field. It has a Z2 symmetry under
which � changes its sign, and hence � is stable and is a candidate of DM. We assume that �
does not have a direct coupling to the inflaton and other standard model fields. It interacts
only through the metric or the gravity. The coupling strength to the gravity is controlled by
the non-minimal coupling ⇠. Pure Einstein gravity corresponds to ⇠ = 0 and the conformal
coupling corresponds to ⇠ = 1/6.

We use the Friedmann-Robertson-Walker metric:

gµ⌫dx
µdx⌫ = a2(⌧)(�d⌧ 2 + d~x2), (2)

where a(⌧) denotes the cosmic scale factor with ⌧ being the conformal time, which is related
to the physical time as dt = ad⌧ . Defining e� ⌘ a�, the action of e� is given by

S =

Z
d⌧d3x

1

2

⇥
e�02 � (@ie�)2 �m(e↵)2

� e�2
⇤
, m(e↵)2

� ⌘ a2m2
� � (1� 6⇠)

a00

a
, (3)

where the prime denotes the derivative with respect to ⌧ . Thus e� satisfies the equation of
motion

e�00 � @2
i e�+m(e↵)2

� e� = 0. (4)

Treated as classical background, � has the following equation of motion,

�̈+ 3H�̇+
@V

@�
= 0, (5)

where the dot denotes the derivative with respect to the physical time t and the Hubble
parameter H is given by the Friedmann equation,

H2 =

✓
ȧ
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with the � contribution to the energy density neglected. Thus for any given inflation model,
we can calculate the production rate of � through the time dependence of the scale factor a
in (3). These equations are written in terms of the conformal time as

�00 + 2H�0 + a2
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= 0, (7)

where the conformal Hubble parameter H is
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The Friedmann equation of the second kind is given by
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2.2 Quantization and adiabatic vacuum

Since m
(e↵)2
� is time-dependent in the expanding Universe, we should be careful about the

choice of mode function and vacuum state. Let us define the Fourier mode as
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The Fourier mode satisfies the equation of motion:
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From the canonical commutation relation

[e�(~x), e�0(~x0)] = i�(~x� ~x0), (13)

we obtain the normalization condition
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0
k = i. (14)

The vacuum state |0i is defined as a~k |0i = 0 for some mode function �k at some initial time
⌧ = ⌧i. In the Heisenberg picture, the state does not evolve once we fix it at the initial time.
Instead, the mode function develops with time, which may be interpreted as the particle
production as will be shown later.
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with V (�) being its potential and � denotes a real scalar field. It has a Z2 symmetry under
which � changes its sign, and hence � is stable and is a candidate of DM. We assume that �
does not have a direct coupling to the inflaton and other standard model fields. It interacts
only through the metric or the gravity. The coupling strength to the gravity is controlled by
the non-minimal coupling ⇠. Pure Einstein gravity corresponds to ⇠ = 0 and the conformal
coupling corresponds to ⇠ = 1/6.

We use the Friedmann-Robertson-Walker metric:

gµ⌫dx
µdx⌫ = a2(⌧)(�d⌧ 2 + d~x2), (2)

where a(⌧) denotes the cosmic scale factor with ⌧ being the conformal time, which is related
to the physical time as dt = ad⌧ . Defining e� ⌘ a�, the action of e� is given by

S =

Z
d⌧d3x

1

2

⇥
e�02 � (@ie�)2 �m(e↵)2

� e�2
⇤
, m(e↵)2

� ⌘ a2m2
� � (1� 6⇠)

a00

a
, (3)

where the prime denotes the derivative with respect to ⌧ . Thus e� satisfies the equation of
motion

e�00 � @2
i e�+m(e↵)2

� e� = 0. (4)

Treated as classical background, � has the following equation of motion,

�̈+ 3H�̇+
@V

@�
= 0, (5)

where the dot denotes the derivative with respect to the physical time t and the Hubble
parameter H is given by the Friedmann equation,

H2 =

✓
ȧ
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In de-Sitter background, zero-point fluctuation is enhanced
at superhorizon regime (inflationary fluctuation).



Inflationary quantum fluctuation

Mode equation:
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Given initial conditions, one can directly solve (12), but here we use a di↵erent tech-
nique [18]. Let us rewrite �k(⌧) as follows:
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Since both ↵k(⌧) and �k(⌧) are time-dependent, one can always write �k in this form. Still
there is a degree of freedom for the choice of ↵k(⌧) and �k(⌧). One can impose the following
condition, which is consistent with the equation of motion (12):
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Instead of solving (12), one may solve (16), which is often much easier for the purpose of
evaluating the particle production numerically. Note that (14) ensures

|↵k(⌧)|2 � |�k(⌧)|2 = 1. (17)

In order to extract the number density from ↵k and �k, we must first specify the initial
condition for the mode function (which corresponds to the choice of the vacuum state) and
the observer state which counts the number density. In general, there is no preferred choice
for the states of the vacuum and the observer in curved spacetime. In our case, however, we
may formally assume that the spacetime is asymptotically static in the far past ⌧ ! �1
(deep in the inflationary era) as well as in the far future ⌧ ! +1 (deep in the MD or RD
era). In such a case, it is natural to take the vacuum/observer as the negative frequency
modes in the limit ⌧ ! �1/1, respectively. The negative frequency mode approaches to
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in the limit ⌧ ! �1. Thus we take ↵(⌧i) = 1 and �(⌧i) = 0 in the limit ⌧i ! �1 as the
initial condition. Note that it represents the adiabatic vacuum of the infinite order [2], since
the spacetime is assumed to be static in the far past/future regions.#2 In our numerical
calculation, however, it is of course impossible to run from ⌧i = �1, and hence we start
our numerical calculation with ↵(⌧i) = 1 and �(⌧i) = 0 at some large but finite ⌧i. We will
discuss how to infer the result with ⌧i ! �1 from our numerical results with finite ⌧i in the
next section.

Here is a comment on the size of m2
� and ⇠. The exact solution to (12) during the (pure)

de Sitter era with the initial condition (18) is given by

�k(⌧) = e
i(2⌫+1)⇡

4
1p
2k

r
�⇡k⌧

2
H(1)

⌫ (�k⌧), ⌫2 ⌘ 9

4
� 12⇠ � m2

�

H2
, (19)

#2 One can show that our definition of f� is equivalent to the number density defined by the Bogoliubov
coe�cient where the vacuum and the observer states are taken as the zero-th order adiabatic vacuum as long
as !0

k/!k = 0 at ⌧ = ⌧i and ⌧f , where ⌧f is the conformal time at which the number density is evaluated.
Since the adiabatic expansion is exact in the limit in the far past/future regions, our f� coincides with the
number density defined by the adiabatic vacuum of the infinite order for �⌧i, ⌧f ! 1 as well.

4

Solution:

�k(⌧) '

8
><

>:

1p
2k

e�ik⌧
for k/a � Hinf

i
aHinfp
2k3/2

for k/a ⌧ Hinf

: subhorizon limit

: superhorizon limit

h�k�
⇤
k0i =

a2H2
inf

2k3
(2⇡)3�(~k � ~k0)

Power spectrum in 
superhorizon limit

(k/a)�1

H�1

t

�k
/ a

inflation MD or RD



Observational constraint on DM isocurvature fluctuation

�⇢A
⇢A

⇠ |�AT |
A

⇠ Hinf

⇡Ai

SDM =

D
��(~k)��⇤(~k0)

E
=

2⇡2a2

k3
P�(k)(2⇡)

3�(~k � ~k0) P�(k) '
✓
Hinf

2⇡

◆2

Scalar (inflaton) fluctuation

Transverse vector fluctuation

3.1.1 Transverse mode (�  �4)

The equation of motion of the transverse mode during inflation is given by

eAf 00
T (k) +

✓
k2 +

a2h2m2
A

f 2
� ↵(2 + ↵)

4
H2

◆
eAf
T (k) = 0. (39)

where we substituted f 2 / a↵. As explained in Sec. 2.1, for � < �4, the standard slow-
roll inflation happens when the vector boson energy density is negligible and in this regime
we have ↵ = �. However, the inflationary universe will eventually enter the regime of
anisotropic inflation supported by the vector condensate and in this regime we have ↵ = �4
independently of the value of ↵. Let us define ⌧ani as the conformal time when the anisotropic
inflation regime starts. We have

↵ =

(
� for ⌧ < ⌧ani

�4 for ⌧ > ⌧ani
. (40)

Thus the property of fluctuations of the observable scale depends on whether the present
cosmological scale, k�1

0 , is longer or shorter than |⌧ani|.
Neglecting the mass term, i.e., assuming hmA/f ⌧ Hinf , the solution to this equation is

given by

eAT (k, ⌧) = e
i(2⌫+1)⇡

4
1p
2k

r
�⇡k⌧

2
H(1)

⌫ (�k⌧), ⌫ ⌘ |1 + ↵|
2

, (41)

where H
(1)
⌫ (x) is the Hankel function of the first kind. The limiting form in the subhorizon

and superhorizon limit are given by

eAf
T (k, ⌧) '

8
>><

>>:

1p
2k

e�ik⌧ for k/a � Hinf

e
i(2⌫�1)⇡

4
aHinfp
2k3/2

�(⌫)

�(3/2)

✓
2

�k⌧

◆⌫�3/2

for k/a ⌧ Hinf

. (42)

Actually we have chosen the overall coe�cient so that the mode function coincides with the
Minkowski form in the short wavelength limit. Thus it evolves as a⌫�1/2 after the horizon
exit. The “physical” field AT = eAf

T/a evolves as a⌫�3/2. It is the same scaling as that of the
homogeneous mode A (13), as expected.

The transverse power spectrum after inflation is defined as
D
~AT (k) · ~A⇤

T (k
0)
E
=

4⇡2a2

k3
PT (k)(2⇡)

3�(~k � ~k0). (43)

Now we evaluate it at the end of inflation. The shape of the spectrum depends on the case
(i)–(iii). First, for the case (i) all the cosmologically relevant scales correspond to the modes
that exit the horizon during the standard slow-roll inflation. Thus

PT (k) =

✓
Hinf

2⇡

◆2 ✓ �(⌫)

�(3/2)

◆2 ✓2aHinf

k

◆2⌫�3

. (44)
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PT (k) ⇠
✓
Hinf

2⇡

◆2 ✓2aHinf

k

◆�↵�4

⇠ |� ~AT |

Vector fluctuation is independent of the inflaton

Isocurvature fluctuation constrained by CMB.
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FIG. 3. Limits on dark photon dark matter from: Ne↵ (purple); µ- and y-type distortions (resonant and non-resonant correspond
to teal and yellow, respectively); the depletion of dark matter at the level of 10% (resonant and non-resonant correspond to
blue and green, respectively), as in Eq. (12); energy deposition during the cosmic dark ages (pink solid) and enhancements in
the integrated optical depth produced by resonant conversions (pink dotted), as in Eq. (14); and heating of the IGM around the
epoch of helium reionization (resonant and non-resonant correspond to brown and red, respectively), as in Eq. (15). Existing
cosmological constraints on modifications to �Ne↵ during BBN and recombination [11], spectral distortions [11], the depletion
of dark matter [11], stellar cooling [46–48], and the Ly-↵ forest [59], are shown in grey for comparison. Dashed black lines denote
astrophysical bounds derived from thermodynamic equilibrium of gravitationally collapsed objects: the Milky Way [29] (labeled
‘Dubovsky et al’) and the ultra-faint dwarf galaxy Leo T [30] (labeled ‘Wadekar et al’). The mean plasma frequency today is
shown for reference with a vertical line, along with the redshift dependence of the plasma frequency, neglecting reionization, on
the upper axis. We include alongside this publication an ancillary file outlining the strongest constraint for each dark photon
mass in order to ease reproduction of our bounds.

tions Ji are given by

Jbb(t) = Exp

"
�
✓

z

zµ

◆
5/2

#
(9)

Jy(t) =

"
1 +

✓
1 + z

6 ⇥ 104

◆
2.58

#�1

(10)

Jµ(t) = 1 � Jy . (11)

Here, zµ = 1.98⇥106 (⌦bh
2/0.022)�2/5 [(1 � Yp/2)/0.88]�2/5

is the redshift at which DC begins to become ine�-
cient. These equations are only valid for z & 103,
explaining the somewhat unphysical truncation of
bounds derived from resonant transitions shown in
Fig. 2 and Fig. 3 at mA0 ' 10�9 eV. We confirm the
existing bounds from the FIRAS instrument in the

range 10�14 eV . mA0 . 10�9 eV [11], and we scale
these to future sensitivity expected by PIXIE/PRISM.
In the scenario that dark photons constitute the entirety
of dark matter, we show for completeness in Fig. 3
constraints derived from non-resonant dark photon
absorption, obtained by combining Eq. (5) with Eqs. (7)
and (8).

VI. DARK MATTER SURVIVAL

After recombination, dark photon dark matter can be
depleted via the processes shown in Fig. 1. The total
change in the dark matter energy density is given by in-
tegrating Eq. (2) using Eqs. (4) and (5) from redshift 0
to z ⇠ 103. Should this change in density be su�ciently

L = � ✏

2
F (Y )
MNFMNKinetic mixing with standard model gauge

[McDermott, Witte (2019)]



String theory and light field

Hodge-number of Calabi-Yau manifold
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Light field in typeIIB theory
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