# The complementarity between neutrino and gravitational wave data in exploring physics beyond the Standard Model

## Jessica Turner

Institute of Particle Physics Phenomenology, Durham University

# Dark Matter as a Portal to New Physics, 02 Feb 2021



**Jessica Turner** 







Institute of Particle Physics Phenomenology

2

# **Neutrino Mixing**

# **Reactor LBL** $P(\overline{\nu_e} \to \overline{\nu_e})$



Jessica Turner

**Institute of Particle Physics Phenomenology** 

# **SNO flux**



# Reactor SBL $P(\overline{\nu_e} \to \overline{\nu_e})$





- Mass ordering?
- Precise LMM structure?
- CP-violation?
- Dirac or Majorana?
- Absolute mass scale?

$$\sum_{i=1}^{3} m_i \le 0.2 \,\mathrm{eV} \quad \underline{\mathsf{PDG}}$$

### It is clear neutrinos much lighter than other known fermions



**Institute of Particle Physics Phenomenology** 



- Mass ordering?
- Precise LMM structure?
- CP-violation? • Dirac or Majorana? • Absolute mass scale? 3  $\sum m_i \leq 0.2 \,\mathrm{eV}$ PDG i=1It is clear neutrinos much lighter than other known fermions







# Lepton Number Violation and Majorana neutrinos

Simple to distinguish an electron from its antimatter counterpart  $\rightarrow$  electric charge.



Neutrino electrically neutral  $\rightarrow$  the anti-neutrino may be "indistinguishable" from neutrino

The nature of the neutrino is linked to lepton number.

lepton number conserved  $\rightarrow$  neutrino Dirac fermions

lepton number violated → neutrino Majorana fermions

**Majorana condition** 

$$\nu = C\overline{\nu}^T$$



# **Neutrinoless double beta decay**



massive neutrinos mediate this process.

NDBD gives important information on the properties of neutrinos as it probes lepton number violation.

Offer important information on masses and possibly CP-violation

**Jessica Turner** 



# **Neutrinoless double beta decay**

 $\Gamma_{1/2} \sim |m_{ee}|^2 M_{\rm nucl}^2$ **Decay rate** 

### effective majorana mass

 $x_{31} - \alpha_{21}) m_2 + s_{13}^2 e^{-2i(\delta + \alpha_{21})} m_3$ QD AND-Zen, EXO, CUORICINO ND-Zen2, SNO+, COBRA, NEXT....  $10^{-2}$ 0.1  $m_l(eV)$ 



# Neutrino masses and the matter anti-matter asymmetry



Jessica Turner







# **Sakharov's Conditions**





# **Insufficient CP-violation**



# No departure from thermal equilibrium

\* assumes CPT conserved

**Institute of Particle Physics Phenomenology** 

Jessica Turner

# **Baryon and Lepton Number Violation**

Kuzmin, Rubakov and Shaposhnikov

Gavela, Hernandez, Orloff, Pene; Huet and Sather

Kajantie, Laine, Rummukainen, Shaposhnikov



• SU2L invariant term mass term for neutrinos



 $-\mathcal{L}_{d=5} = \lambda \frac{L.HL.H}{M}$ 



Institute of Particle Physics Phenomenology

11

• SU2L invariant term mass term for neutrinos

$$-\mathcal{L}_{d=5} =$$

• How can we ultraviolet complete this operator at tree-level?

$$\lambda \frac{L.HL.H}{M}$$





• SU2L invariant term mass term for neutrinos

$$-\mathcal{L}_{d=5} =$$

• How can we ultraviolet complete this operator at tree-level?



$$\lambda \frac{L.HL.H}{M}$$







Jessica Turner

Institute of Particle Physics Phenomenology





14



 $\begin{pmatrix} 0 & m_D \\ m_D^T & M_N \end{pmatrix}$ 

 $m_D = Y_\nu v$ 

Jessica Turner









 $\mathcal{L} = Y_{\nu} \overline{L} \tilde{\Phi}.$ 

 $\begin{pmatrix} 0 & m_D \\ m_D^T & M_N \end{pmatrix} \qquad \begin{array}{c} \text{find eigenvalues} \\ \text{of mass matrix} \end{array}$ 

$$m_D = Y_\nu v$$

Jessica Turner



$$N - rac{1}{2}M_N\overline{N^c}N$$







 $\mathcal{L} = Y_{\nu} \overline{L} \tilde{\Phi}$ 



### Seesaw mechanism qualitatively satisfies Sakharov's conditions!

**Institute of Particle Physics Phenomenology** 



$$N - rac{1}{2}M_N\overline{N^c}N$$





# **Thermal leptogenesis**



$$N \xrightarrow{N \to LH} Ie$$

$$N \xrightarrow{N \to \overline{LH}} Ie$$

$$N \xrightarrow{N \to \overline{LH}} Ie$$

# **Thermal leptogenesis**

epton mmetry



$$N \xrightarrow{N \to LH} Ie asy$$

$$N \xrightarrow{N \to \overline{L}H}$$

Jessica Turner

# **Thermal leptogenesis**

**B-L** conserving sphaleron processes

epton mmetry



![](_page_19_Picture_10.jpeg)

$$N \xrightarrow{N \to LH} Ie asy$$

$$N \xrightarrow{N \to \overline{L}H}$$

### **Decay asymmetry from interference between tree** and loop level diagrams

![](_page_20_Figure_4.jpeg)

**Institute of Particle Physics Phenomenology** 

Jessica Turner

# **Thermal leptogenesis**

![](_page_20_Picture_9.jpeg)

![](_page_20_Picture_10.jpeg)

### Washout and scattering processes

![](_page_21_Figure_2.jpeg)

Jessica Turner

# **Thermal leptogenesis**

$$-n_{N_i}^{\mathrm{eq}})$$

![](_page_21_Picture_9.jpeg)

![](_page_22_Figure_0.jpeg)

**Ite of Particle Physics Phenomen** 

![](_page_22_Picture_3.jpeg)

![](_page_23_Figure_0.jpeg)

![](_page_23_Picture_3.jpeg)

![](_page_24_Figure_0.jpeg)

![](_page_24_Figure_1.jpeg)

**Ite of Particle Physics Phenomen** 

![](_page_24_Picture_5.jpeg)

![](_page_25_Figure_0.jpeg)

### **Region 3:** At T < M, RHN abundance is depleted. Lepton asymmetry freezes out.

**Ite of Particle Physics Phenomen** 

![](_page_25_Picture_5.jpeg)

Casas, Ibarra

 $Y_{\nu} = \frac{1}{v} U_{\rm PMNS} \sqrt{m} R^T \sqrt{M}$ 

Jessica Turner

![](_page_26_Picture_5.jpeg)

Casas, Ibarra

# by neutrino experiments

Jessica Turner

**Institute of Particle Physics Phenomenology** 

![](_page_27_Picture_6.jpeg)

low-energy scale: 3 phases, 3 mixing angles and 3 masses constrained

![](_page_27_Picture_8.jpeg)

Casas, Ibarra

 $Y_{\nu} = -U_{\rm F}$ 

low-energy scale: 3 phases, 3 mixing angles and 3 masses constrained by neutrino experiments

high-energy scale: 3 phases, 3 mixing angles and 3 masses

Jessica Turner

![](_page_28_Picture_7.jpeg)

![](_page_28_Picture_8.jpeg)

Casas, Ibarra

 $Y_{\nu} = -U_{\eta}$ 

low-energy scale: 3 phases, 3 mixing angles and 3 masses constrained by neutrino experiments

high-energy scale: 3 phases, 3 mixing angles and 3 masses

Without any symmetry constraints 18 parameters in total.

Jessica Turner

![](_page_29_Picture_8.jpeg)

![](_page_29_Picture_9.jpeg)

Work in collaboration with Yuber Perez Gonzalez: 2010.03565

Astrophysical BHs require  $M > 3M_{\odot}$ 

For smaller BH mass (between Planck and solar mass scale) require large perturbations in the early Universe : **bubble collision**, collapse of density perturbations...

$$r_S \sim \lambda_C$$
 — PBHs evaporate by emitt

$$\dot{M} = -\sum_{j} \frac{g_j}{2\pi^2} \int_0^\infty \frac{\sigma_{\rm abs}^{s_j}(M, p) p^2}{\exp[E_j(p)/T_{\rm BH}] - (-1)^{2s_j}} p \, dp \qquad T_{\rm BH} = \frac{1}{8\pi GM} \approx 1.06 \left(\frac{10^{13} \text{ g}}{M}\right)$$

PBHs are totally indiscriminate in their particle production: just need  $T_{BH}$ to be close to particle mass

**Jessica Turner** 

**Institute of Particle Physics Phenomenology** 

Carr et al, 0912.5297

ting particles

**Hawking**, **1975** 

![](_page_30_Picture_13.jpeg)

![](_page_30_Picture_14.jpeg)

31

![](_page_31_Figure_1.jpeg)

![](_page_31_Picture_5.jpeg)

- A. PBH evaporate **before** RH are thermally produced from plasma  $\rightarrow$  PBH evaporation creates an initial condition which gets erased by fast interactions in the plasma
- B. PBH evaporation happens during thermal leptogenesis

![](_page_32_Figure_3.jpeg)

$$M_i = 1.7 \,\mathrm{g} \quad \beta_i = 10^{-3} \quad M_N = 10^{11}$$

![](_page_32_Picture_8.jpeg)

![](_page_32_Picture_9.jpeg)

- A. PBH evaporate **before** RH are thermally produced from plasma  $\rightarrow$  PBH evaporation creates an initial condition which gets erased by fast interactions in the plasma
- B. PBH evaporation happens **during** thermal leptogenesis

![](_page_33_Figure_3.jpeg)

$$M_i = 1.7 \,\mathrm{g} \quad \beta_i = 10^{-3} \quad M_N = 10^{11}$$

![](_page_33_Picture_8.jpeg)

![](_page_33_Picture_9.jpeg)

- A. PBH evaporate **before** RH are thermally produced from plasma  $\rightarrow$  PBH evaporation creates an initial condition which gets erased by fast interactions in the plasma
- B. PBH evaporation happens **during** thermal leptogenesis

![](_page_34_Figure_3.jpeg)

**Jessica Turner** 

$$M_i = 1.7 \,\mathrm{g}$$
  $\beta_i = 10^{-3}$   $M_N = 10^{11}$ 

![](_page_34_Picture_9.jpeg)

35

C. PBH evaporation occurs after thermal leptogenesis era

![](_page_35_Figure_2.jpeg)

$$M_i = 10^2 \,\mathrm{g} \quad \beta_i = 10^{-3} \quad M_N = 10^1$$

![](_page_35_Picture_6.jpeg)

![](_page_35_Picture_7.jpeg)

C. PBH evaporation occurs after thermal leptogenesis era

![](_page_36_Figure_2.jpeg)

$$M_i = 10^2 \,\mathrm{g} \quad \beta_i = 10^{-3} \quad M_N = 10^1$$

![](_page_36_Figure_6.jpeg)

![](_page_36_Picture_7.jpeg)

![](_page_36_Picture_8.jpeg)

C. PBH evaporation occurs after thermal leptogenesis era

![](_page_37_Figure_2.jpeg)

$$M_i = 10^2 \,\mathrm{g} \quad \beta_i = 10^{-3} \quad M_N = 10^1$$

![](_page_37_Figure_6.jpeg)

![](_page_37_Picture_7.jpeg)

![](_page_37_Figure_8.jpeg)

![](_page_37_Picture_9.jpeg)

### D. PBH evaporation occurs way after thermal leptogenesis era

![](_page_38_Figure_2.jpeg)

$$M_i = 10^4 \,\mathrm{g} \quad \beta_i = 10^{-3} \quad M_N = 10^{-3}$$

![](_page_38_Picture_6.jpeg)

![](_page_38_Picture_7.jpeg)

### D. PBH evaporation occurs way after thermal leptogenesis era

![](_page_39_Figure_2.jpeg)

$$M_i = 10^4 \,\mathrm{g} \quad \beta_i = 10^{-3} \quad M_N = 10^{-3}$$

![](_page_39_Picture_7.jpeg)

![](_page_39_Picture_8.jpeg)

![](_page_40_Figure_1.jpeg)

Jessica Turner

 $z_{\rm BH} \sim 1$ 

**Institute of Particle Physics Phenomenology** 

41

![](_page_41_Figure_1.jpeg)

![](_page_41_Picture_6.jpeg)

For RHN masses 1000 GeV or less, proving there was a existed a PBH dominated Universe would place leptogenesis under serious tension

PBHs are the epitome of democratic: they produce gravitons as well as all other particle d.o.f

![](_page_42_Figure_3.jpeg)

![](_page_42_Picture_6.jpeg)

![](_page_42_Picture_7.jpeg)

### Half time Summary

- is that light neutrino masses are also explained.
- It is entirely feasible the Universe underwent some non-standard cosmology such as PBH domination
- sufficiently hot.
- produce a giant entropy dump which dilutes the matter anti-matter asymmetry.
- ultrahigh frequency GWs could falsify the intermediate scale leptogenesis.

• Leptogenesis is one of the leading explanations of the matter anti-matter asymmetry. Added bonus

• Due to the democratic nature of PBH, all particle degrees of freedoms are produced if the PBH is

 Non-trivial interplay between leptogenesis era and PBH evaporation. In some regions of the PS there is significant enhancement while in the low mass right-handed neutrino regime, heavier PBHs

• While thermal leptogenesis is a very scale mechanism and therefore difficult to test, future probes of

**Institute of Particle Physics Phenomenology** 

![](_page_43_Picture_14.jpeg)

44

weak nuclear force

electromagnetic force

> strong unclear force

> > Institute of Particle Physics Phenomenology

![](_page_44_Figure_6.jpeg)

![](_page_44_Figure_7.jpeg)

![](_page_44_Picture_8.jpeg)

# The role of GUTs

### GUTs can explain apparent arbitrariness of fermion masses and mixing

![](_page_45_Figure_2.jpeg)

Thanks to Ye-Ling Zhou for figure

![](_page_45_Picture_8.jpeg)

# **GUT** prediction 1: proton decay

Jessica Turner

![](_page_46_Picture_3.jpeg)

# **Proton decay from GUTs**

GUTs unify leptons and quarks into common multiplets and as GUTs broken to SM gauge group, heavy gauge boson integrated out  $\rightarrow$  BNV interactions i.e. proton decay

$$\frac{\epsilon_{\alpha\beta}}{\Lambda_1^2} \left[ (\overline{u_R^c} \gamma^\mu Q_\alpha) (\overline{d_R^c} \gamma_\mu L_\beta) + (\overline{u_R^c} \gamma^\mu Q_\alpha) (\overline{e_R^c} \gamma_\mu Q_\beta) \right] + \frac{\epsilon_{\alpha\beta}}{\Lambda_2^2} \left[ (\overline{d_R^c} \gamma^\mu Q_\alpha) (\overline{u_R^c} \gamma_\mu L_\beta) + (\overline{d_R^c} \gamma^\mu Q_\alpha) (\overline{\nu_R^c} \gamma_\mu Q_\beta) \right],$$

![](_page_47_Figure_3.jpeg)

 $\min[\Lambda_1, \Lambda_2]$  gives dominant PD

![](_page_47_Picture_8.jpeg)

![](_page_47_Picture_9.jpeg)

# Limits (or even finding!) proton decay

The next generation of neutrino oscillation experiments are big vats of stuff sitting around for a long time (forgive me experimentalists .....)

Super-Kamiokande and JUNO ~ 20 kiloton  $\implies 10^{33}$  protons

![](_page_48_Picture_3.jpeg)

![](_page_48_Picture_7.jpeg)

# **Nucleon decay limits**

![](_page_49_Figure_1.jpeg)

**Institute of Particle Physics Phenomenology** 

![](_page_49_Picture_4.jpeg)

# proton decay in SO(10)

![](_page_50_Figure_1.jpeg)

**Jessica Turner** 

**Institute of Particle Physics Phenomenology** 

### 2005.13549 in collaboration with Stephen King, Silvia Pascoli, and Ye-Ling Zhou use PD and GWs to examine viable SO(10) GUT breaking chains.

 $G_x = G_{3221} \text{ or } G_{421}$ 

![](_page_50_Figure_6.jpeg)

![](_page_50_Picture_7.jpeg)

# **GUT prediction 2: cosmic strings**

Jessica Turner

![](_page_51_Picture_3.jpeg)

# topological defects in GUTs

![](_page_52_Figure_2.jpeg)

Strings intersect to form loops and cusps. Loop loss energy / decay via gravitational radiation

![](_page_52_Figure_4.jpeg)

Number of simulations based on velocitydependent one scale model Bennett, Blanco-Pillado, Bouchet, Martins, Olum, Ringeval, Sakellariadou, Shlaer, Shellard, Vanchurin, Vilenkin .....

Jessica Turner

![](_page_52_Figure_9.jpeg)

![](_page_52_Picture_10.jpeg)

# topological defects in SO(10)

ings

unwanted

lefects USY

:5

non-

![](_page_53_Figure_1.jpeg)

**Jessica Turner** 

monopoles and domains walls are unwanted topological defects

 $G_x = G_{3221} \text{ or } G_{421}$ 

### To remove unwanted defects we introduce a period of inflation

![](_page_53_Picture_8.jpeg)

![](_page_53_Picture_9.jpeg)

![](_page_53_Picture_10.jpeg)

# Inflationary period

- $\rightarrow$  GW signal has its usual flat form.
- law behaviour (Cui, Lewicki, Morrissey) <u>1912.08832</u>

![](_page_54_Figure_4.jpeg)

**Jessica Turner** 

Inflation occurs before string formation → string network will produce its normal "scaling" solution

Inflation occurs after string formation → string network will be exponentially diluted and no GW signal

Inflation occurs during string formation → diluted string network → GW spectrum has broken power

![](_page_54_Picture_11.jpeg)

![](_page_54_Picture_12.jpeg)

# Neutrino and GW data as a complementary window

![](_page_55_Figure_1.jpeg)

Jessica Turner

![](_page_55_Picture_4.jpeg)

- will probe the ultrahigh GUT scale determination of the proton lifetime.
- cosmic strings are "well behaved" and can generate GW.
- Presence/absence and nature of cosmic strings is determined by the inflationary scale.
- breaking chains, with recent result from NANOGrav there is a preference for type (a)
- unification of matter and forces at the highest energies.

### Summary

Proton decay is a smoking gun of GUTs and the next generation of neutrino oscillation experiments

• Topological defects are prodigiously produced during GUT symmetry breaking. The undesirable kind are monopoles and domain walls which, if existent, must have been inflated away. As defects

• Study the interplay of these three scales allows us to determine the viability of various types of

• We are entering an exciting era where new observations of GWs from the heavens and proton decay experiments from under the Earth can provide complementary windows to reveal the details of the

![](_page_56_Picture_14.jpeg)

![](_page_56_Figure_15.jpeg)

![](_page_56_Picture_16.jpeg)

![](_page_56_Picture_17.jpeg)

![](_page_57_Picture_0.jpeg)

# Thank you!

H

I

![](_page_57_Picture_2.jpeg)

Green and Liddle, 9903484 Zel'dovich et al, 1977 MacGibbon, 1987 Barrow et al, 1992 Carr et al, 1994

![](_page_58_Figure_1.jpeg)

Jessica Turner

![](_page_58_Picture_5.jpeg)