Axion-like Particle Searches at Next-Generation Neutrino Experiments: from Decay to Conversion

Doojin Kim [\(doojin.kim@tamu.edu\)](mailto:doojin.kim@tamu.edu) APCTP Workshop: Dark Matter as a Portal to New Physics

February 3rd, 2021

Motivations for Axion-like Particle Searches

- QCD axion for solving dynamically the strong CP problem [Weinberg (1978); Wilczek (1978); Peccei and Quinn (1977)]
- \Box More general pseudo-scalar axion-like particles (ALPs) which share similar properties/ pheno. wiith QCD axion, both of which are ubiquitous also in string theory [Arvnitaki, Dimopoulous, Dubovsky, Kaloper, March-Russell (2010); Cicoli, Goodsell, Ringwald (2012)]
- \Box A plausible extension of the SM
- \Box Axion/ALPs could be dark matter candidates [Preskill,

Wise, Wilczek (1983); Abbott, Sikivie (1983); Dine, Fischler (1983)].

Motivations for Axion-like Particle Searches

- Axion/ALP searches in the **low-energy frontier of particle physics** (vs. new physics searches at the LHC in the (high-)energy frontier of particle physics) \Rightarrow Axion/ALP searches in the **intensity frontier of particle physics**
- \Box Many experimental search techniques are based on the ALP-photon coupling.
- \Box Other couplings of ALP are also equally interesting and worth investigating, e.g., ALP-electron coupling, ALP-gluon coupling, ALP-nucleon coupling.

 ${\cal L}_{\rm int}\supset -\frac{1}{4}g_{a\gamma\gamma}aF_{\mu\nu}\tilde{F}^{\mu\nu}$

ALP Searches: Helioscopes

 \boldsymbol{a}

- \Box Plenty of photons inside the Sun
	- \Rightarrow Large signal flux expected

[CAST experiment]

ALP Searches: Light-Shining-through-Wall (LSW)

- Lab-produced ALP search, i.e., direct probe
- \Box High intensity laser beam available
	- \Rightarrow Large signal flux expected
- \Box Accessible mass range set by the energy of the laser

[ALPS experiment]

ALP Searches: Polarization Experiments

Lab-produced ALP search, i.e., direct probe

□ Due to $g_{a\gamma\gamma}a\vec{B}\cdot\vec{E}$, a laser beam with its E-field polarized will have its E_{\parallel} depleted (by $\gamma \rightarrow a$ conversion) and phase delayed (due to $\gamma \rightarrow a \rightarrow \gamma$), resulting in sizable rotation and ellipticity, respectively. **[PVLAS experiment]**

Lab-Based Searches vs. Non-Lab-Based Searches

- □ The PVLAS Collaboration (a polarization experiment and a lab-produced ALP search) claimed an anomaly [Zavattini et al., PRL 96 (2006) 110406] (which was later identified as a spurious effect of unknown systematics [Zavattini et al., PRD 77 (2008) 032006]) which would be explained by the oscillation of photons into ALPs.
- \Box The preferred values for the ALP mass and the coupling were inconsistent with the astrophysical bounds (e.g., CAST), motivating a number of theoretical speculations to make the ALPs compatible with them [E.g., Jaeckel, Masso,

Redondo, Ringwald, Takahashi (2006); Ahlers, Gies, Jaeckel, Ringwald (2007); Brax, van de Bruck, Davis (2007)].

 \Box The coupling or the ALP mass can depend on a host of environmental parameters, such as the temperature, matter density, or plasma frequency, as well as the momentum transfer at the ALP-photon vertex.

Lab-based searches: Not only complementary to astrophysical searches but also more conservative!

Current Limits from Lab-Produced ALP Searches

Why Neutrino Experiments?

 \checkmark High Intensity: Not only neutrinos but also photons, which may create axion/ ALP, are copiously produced.

 \checkmark "Bonus" Physics Case: The same experimental setup is used for studying neutrino-sector physics (e.g., neutrino oscillations, CEvNS) and ALP physics.

 \checkmark **Complementarity**: The ALP searches at neutrino experiments can provide complementary information in exploring relevant parameter space.

A List of Beam-Dump Experiments

Photon Flux as Neutrino Experiments

 \Box Expected photon flux based on a GEANT simulation for a MW DUNE-like experiment: \sim 10²³ photons/yr.

□ Cascade photons, photons from meson decays etc included.

A List of Reactor Neutrino Experiments

Photon Flux at Reactors

 \Box Expected photon flux based on a GEANT simulation for a MW MINER-like reactor: \sim 10¹⁹ photons/s.

Cascade photons, photons from isotope decays etc included.

ALP: Production to Detection

Production of ALP: Sources of Photons

Dedicated simulation using e.g., GEANT is needed to describe the production of cascade photons inside the

target material while standard event generators, e.g., PYTHIA, can describe the production of mesons.

□ See also [Verbinski, Weber, and Sund, PRC 7, 1173] for photons at reactors.

Production of ALP: Primakoff Process

D Primakoff process, $\gamma(p_1) + N(p_2) \rightarrow a(k_1) + N(k_2)$

$$
\frac{d\sigma_P^p}{d\cos\theta} = \frac{1}{4}g_{a\gamma\gamma}^2 \alpha Z^2 F^2(t) \frac{|\vec{p}_a|^4 \sin^2\theta}{t^2} \qquad t = (p_1 - k_1)^2 = m_a^2 + E_\gamma(E_a - |\vec{p}_a|\cos\theta)
$$

Z: atomic number, α : fine structure constant, $F(t)$: form factor, E_{ν} : incident photon energy, $|\vec{p}_a|$: magnitude of the outgoing three-momentum of the ALP at the angle θ relative to the incident photon momentum

• $\sigma_{\text{prod}}^{\text{fid}}$: production cross-section of ALPs moving toward the detector

 N and N

 γ $g_{a\gamma\gamma}$ a

 $g_{a\gamma\gamma}$

• $\sigma_{\text{prod}}^{\text{tot}}$: total production cross-section of ALPs

 σ_{SM} : cross-section of photon standard interactions (e.g., pair conversion)

Transportation of ALP

ALP should neither interact in the target/dump or reactor core nor decay before reaching the detector of interest.

$$
P_{\text{tran}} = \exp(-\rho_T \sigma_{\text{prod}}^{\text{tot}} d) \exp\left(-\frac{D}{\bar{\ell}_a^{\text{lab}}}\right)
$$

 \approx 1 in most experiments

- ρ_T : scattering target number density in the target/dump or reactor core
	- \bullet $\sigma_{\text{scat}}^{\text{tot}}$: ALP scattering cross-section in the target/dump or reactor core
- d : thickness of target/dump or reactor core
- $D:$ distance to the detector of interest
- $\bar{\ell}_a^{\text{lab}}$: lab-frame mean decay length of ALP

Detection of ALP

 \Box (Broadly speaking) three channels available

Detection of ALP: Decay

ALP decays in flight to a couple of photons which can be detected at detectors.

$$
a \dots \dots \underbrace{\left\{\begin{matrix} \gamma \\ g_{a\gamma\gamma} \\ g_{a\gamma\gamma} \end{matrix}\right\}}_{\gamma} \Gamma(a \to \gamma\gamma) = \frac{g_{a\gamma\gamma}^2 m_a^3}{64\pi}
$$
\n
$$
P_{\text{det}}^{\text{decay}} = 1 - \exp\left(-\frac{L_{\text{det}}}{\overline{\ell}_a^{\text{lab}}}\right) \cdot \frac{\overline{\ell}_a^{\text{lab}}}{L_{\text{det}}} \cdot \text{ length of detector}
$$

Detection of ALP: Scattering

ALP can interact with a nucleus via the inverse Primakoff process, $a + N \rightarrow \gamma + N$ **[Dent, Dutta, DK, Liao, Mahapatra,**

Sinha, Thompson (2019); Brdar, Dutta, Jang, **DK**, Shoemaker, Tabrizi, Thompson, Yu (2020)]

 \Box Useful in probing lighter ALPs whose decay rarely happen.

Detection of ALP: PASSAT – Main Idea

- \Box Particle Accelerator helioScopes for Slim Axion-like-particle deTection (PASSAT): Utilizing the principle of the axion helioscope but replaces ALPs produced in the Sun with those produced in a target material. [Bonivento, **DK**, Sinha (2019)]
- ALP-photon conversion: **Probing light (slim) ALPs** that are otherwise inaccessible to laboratory-based experiments which rely on ALP decay, and complements astrophysical probes that are more modeldependent.

PASSAT vs CAST

Sun is replaced by the **target material** as the source of ALPs.

PASSAT vs Beam-Dump Exp.

ALP decay process is replaced by the **ALP conversion process**.

Detection of ALP: Probability of Conversion

$$
P_{\text{det}}^{\text{conv}} = \left(\frac{g_{a\gamma\gamma}BL_{\text{det}}}{2}\right)^2 \left(\frac{2}{qL_{\text{det}}}\right)^2 \sin^2\left(\frac{qL_{\text{det}}}{2}\right) \quad \text{with} \quad q = 2\sqrt{\left(\frac{m_a^2}{4E_a}\right)^2 + \left(\frac{1}{2}g_{a\gamma\gamma}B\right)^2}
$$
\n
$$
\text{Form factor reflecting the coherence of the conversion}
$$

Applications: NOMAD and DUNE MPD

Event Rate Calculation

For a given photon (say, *i*th photon)

 $P_i = P_{\text{prod}, i} \times P_{\text{tran}, i} \times P_{\text{det}, i}$

For a sufficiently large $N\gamma$

 $N_{\text{tot}} = N_{\text{tot},\gamma} \langle P \rangle$

Sensitivity Reaches: Decay Channel

Doojin Kim, Texas A&M University APCTP Workshop 2021

26

Sensitivity Reaches: Scattering and Conversion Channels

Conclusions

- \Box A more dedicated estimate of the photon flux in the target/dump or reactor core allows us to estimate ALP sensitivity reaches at neutrino experiments more precisely.
- The well-known ALP search in the decay channel and the proposed search strategies using ALP scattering and conversion should allow us to **probe a wide range of parameter space** that none of the lab-produced ALP search experiments have ever explored.
- \Box The three channels are complementary to one another and are expected to **provide a complete** picture in investigating ALP parameter space.
- The expected experimental sensitivity for the ALP-photon coupling covers regions constrained by astrophysical searches, providing conservative and complementary limits.