Axion-like Particle Searches at Next-Generation Neutrino Experiments: from Decay to Conversion

Doojin Kim (<u>doojin.kim@tamu.edu</u>)

APCTP Workshop: Dark Matter as a Portal to New Physics February 3rd, 2021

Motivations for Axion-like Particle Searches

- QCD axion for solving dynamically the strong CP problem [Weinberg (1978); Wilczek (1978); Peccei and Quinn (1977)]
- More general pseudo-scalar axion-like particles (ALPs) which share similar properties/ pheno. wiith QCD axion, both of which are ubiquitous also in string theory [Arvnitaki, Dimopoulous, Dubovsky, Kaloper, March-Russell (2010); Cicoli, Goodsell, Ringwald (2012)]
- □ A plausible extension of the SM
- □ Axion/ALPs could be dark matter candidates [Preskill,

Wise, Wilczek (1983); Abbott, Sikivie (1983); Dine, Fischler (1983)].

Doojin Kim, Texas A&M University

Motivations for Axion-like Particle Searches

- □ Axion/ALP searches in the low-energy frontier of particle physics (vs. new physics searches at the LHC in the (high-)energy frontier of particle physics) ⇒ Axion/ALP searches in the intensity frontier of particle physics
- □ Many experimental search techniques are based on the ALP-photon coupling.
- Other couplings of ALP are also equally interesting and worth investigating, e.g., ALP-electron coupling, ALP-gluon coupling, ALP-nucleon coupling.

Doojin Kim, Texas A&M University

ALP Searches: Helioscopes

- □ Plenty of photons inside the Sun
 - \Rightarrow Large signal flux expected

[CAST experiment]

ALP Searches: Light-Shining-through-Wall (LSW)

- □ Lab-produced ALP search, i.e., direct probe
- □ High intensity laser beam available
 - \Rightarrow Large signal flux expected
- □ Accessible mass range set by the energy of the laser

[ALPS experiment]

ALP Searches: Polarization Experiments

- □ Lab-produced ALP search, i.e., direct probe
- □ Due to $g_{a\gamma\gamma}a\vec{B}\cdot\vec{E}$, a laser beam with its E-field polarized will have its E_{\parallel} depleted (by $\gamma \rightarrow a$ conversion) and phase delayed (due to $\gamma \rightarrow a \rightarrow \gamma$), resulting in sizable rotation and ellipticity, respectively.

[PVLAS experiment]

Lab-Based Searches vs. Non-Lab-Based Searches

- The PVLAS Collaboration (a polarization experiment and a lab-produced ALP search) claimed an anomaly
 [Zavattini et al., PRL 96 (2006) 110406] (which was later identified as a spurious effect of unknown systematics [Zavattini et al., PRD 77
 (2008) 032006]) which would be explained by the oscillation of photons into ALPs.
- The preferred values for the ALP mass and the coupling were inconsistent with the astrophysical bounds (e.g., CAST), motivating a number of theoretical speculations to make the ALPs compatible with them [E.g., Jaeckel, Masso, Redondo, Ringwald, Takahashi (2006); Ahlers, Gies, Jaeckel, Ringwald (2007); Brax, van de Bruck, Davis (2007)].
- The coupling or the ALP mass can depend on a host of environmental parameters, such as the temperature, matter density, or plasma frequency, as well as the momentum transfer at the ALP-photon vertex.

Lab-based searches: Not only complementary to astrophysical searches but also more conservative!

Current Limits from Lab-Produced ALP Searches

Doojin Kim, Texas A&M University

Why Neutrino Experiments?

✓ High Intensity: Not only neutrinos but also photons, which may create axion/ ALP, are copiously produced.

 "Bonus" Physics Case: The same experimental setup is used for studying neutrino-sector physics (e.g., neutrino oscillations, CEvNS) and ALP physics.

 Complementarity: The ALP searches at neutrino experiments can provide complementary information in exploring relevant parameter space.

A List of Beam-Dump Experiments

Experiment	Beam	$E_{\rm beam}$ [GeV]	$\frac{\text{POT/EOT}}{[\text{yr}^{-1}]}$	Target	Detector	Mass	Distance [m]	Angle
RAON [239]	p	0.6	1.5×10^{23}	${\rm Fe}$	LArTPC	610 t	< 5	On-axis
CCM [240–242]	p	0.8	$1.5 imes 10^{22}$	W	LAr	7 t	20	90°
COHEDENT [242 245]	~	1	1.5×10^{23}	Цæ	CsI[Na]	14.6 kg	19.3	90°
COHEREN I [243–243]	p	1	1.3×10^{-5}	ng	LĂr	24 kg (0.61 t)	28.4	137°
$JSNS^2$ [242, 246, 247]	p	3	3.8×10^{22}	$_{\mathrm{Hg}}$	Gd-LS	$17 \mathrm{t}$	24	29°
MiniBooNE [248]	p	8	$(\sim 3 \times 10^{21})$	Be	Mineral oil	450 t	541	On-axis
MicroBooNE [249, 250]	p	8	6.6×10^{20}	Be	LArTPC	<u>89</u> t	470	On-axis
SBND [249]	p	8	6.6×10^{20}	Be	LArTPC	112 t	110	On-axis
ICARUS [249]	p	8	$6.6 imes 10^{20}$	Be	LArTPC	476 t	600	On-axis
					Water	$\sim 1.9~{\rm t}$		
T2K [251]	p	30	4.8×10^{21}	Graphite	Gas TPC	9 kL	280	2.5°
					Water + PS	2.2 t		
$NO\nu A$ [252]	p	120	6.0×10^{20}	Graphite	PVC-LS	125 t	1,000	0.84°
DUNE [952 954]		190	1.1×10^{21}	Craphita	LArTPC	67.2 t	574	Morabla
DONE $[253, 254]$		120	1.1×10	Graphite	GArTPC	1.8 t	074	Movable
SH;D [255]		400	0.4×10^{20}	TZM	Pb-ECC	<u>9.6</u> t	~ 50	On avia
51117 [255]		400	0.4×10		ECAL/HCAL	—	~ 110	On-axis
LDMX [32]	e^-	4 - 16	10^{16}	W	ECAL/HCAL	_	$\mathcal{O}(1)$	On-axis
BDX [256, 257]	e^-	10.6	$\sim 10^{22}$	Al	ECAL	_	20	On-axis
NA64 [258]	e^-	100	(2.84×10^{11})	PRS/ECAL	HCAL		$\mathcal{O}(1)$	On-axis

Doojin Kim, Texas A&M University

Photon Flux as Neutrino Experiments

□ Expected photon flux based on a GEANT simulation for a MW DUNE-like experiment: ~10²³ photons/yr.

□ Cascade photons, photons from meson decays etc included.

A List of Reactor Neutrino Experiments

Experiment	Thermal power [GW]	Detector	Mass	Distance [m]
CONNIE [259, 260]	3.95	Skipper CCD	52 g	30
CONUS [261]	3.9	Ge	3.76 kg	17.1
MINER [262, 263]	0.001	Ge + Si	4 kg	1 - 2.25
NEON [264]	2.82	NaI[T1]	$\sim 10/50/100 \text{ kg} (\text{Ph}1/2/3)$	24
ν -cleus [265]	4	$CaWO_4 + Al_2O_3$	6.84 g + 4.41 g	$15/40/100 \; (N/M/F)$
νGeN [266]	~ 1	Ge	$1.6-10~\mathrm{kg}$	10-12.5
RED-100 [267, 268]	~ 1	DP-Xe	$\sim 100 \text{ kg}$	19
Ricochet [269]	8.54	Ge + Zn	10 kg	355/469
SBC-CE ν NS [270, 271]	0.68	LAr[Xe]	10 kg	3/10
SoLid [272]	40 - 100	$PVT + {}^{6}LiF:ZnS(Ag)$	1.6 t	5.5 - 12
TEXONO [273]	2.9	Ge	1.06 kg	28
vIOLETA [274]	2	Skipper CCD	$1-10 \mathrm{kg}$	8 - 12

Photon Flux at Reactors

□ Expected photon flux based on a GEANT simulation for a MW MINER-like reactor: ~10¹⁹ photons/s.

□ Cascade photons, photons from isotope decays etc included.

Doojin Kim, Texas A&M University

ALP: Production to Detection

Production of ALP: Sources of Photons

Dedicated simulation using e.g., GEANT is needed to **describe the production of cascade photons** inside the

target material while standard event generators, e.g., PYTHIA, can describe the production of mesons.

□ See also [Verbinski, Weber, and Sund, PRC 7, 1173] for photons at reactors.

Production of ALP: Primakoff Process

□ Primakoff process, $\gamma(p_1) + N(p_2) \rightarrow a(k_1) + N(k_2)$

□ The production cross section is enhanced by the coherency factor Z^2 !

$$\frac{d\sigma_P^p}{d\cos\theta} = \frac{1}{4}g_{a\gamma\gamma}^2 \alpha Z^2 F^2(t) \frac{|\vec{p}_a|^4 \sin^2\theta}{t^2} \qquad t = (p_1 - k_1)^2 = m_a^2 + E_\gamma (E_a - |\vec{p}_a|\cos\theta)$$

Z: atomic number, α : fine structure constant, *F*(*t*): form factor, *E*_{γ}: incident photon energy, $|\vec{p}_a|$: magnitude of the outgoing three-momentum of the ALP at the angle θ relative to the incident photon momentum

$$P_{\rm prod} = \frac{\sigma_{\rm prod}^{\rm fid}}{\sigma_{\rm SM} + \sigma_{\rm prod}^{\rm tot}}$$

- $\sigma_{\text{prod}}^{\text{fid}}$: production cross-section of ALPs moving toward the detector
- $\sigma_{\rm prod}^{\rm tot}$: total production cross-section of ALPs
- σ_{SM} : cross-section of photon standard interactions (e.g., pair conversion)

Doojin Kim, Texas A&M University

Transportation of ALP

□ ALP should neither interact in the target/dump or reactor core nor decay before reaching the detector of interest.

Detection of ALP

□ (Broadly speaking) three channels available

Detection of ALP: Decay

□ ALP decays in flight to a couple of photons which can be detected at detectors.

$$P_{det}^{decay} = 1 - \exp\left(-\frac{L_{det}}{\overline{\ell}_a^{lab}}\right) \cdot \overline{\ell}_a^{lab}: lab-frame mean decay length of ALP} \cdot L_{det}: length of detector$$

Detection of ALP: Scattering

□ ALP can interact with a nucleus via the inverse Primakoff process, $a + N \rightarrow \gamma + N$ [Dent, Dutta, DK, Liao, Mahapatra,

Sinha, Thompson (2019); Brdar, Dutta, Jang, DK, Shoemaker, Tabrizi, Thompson, Yu (2020)]

□ Useful in probing lighter ALPs whose decay rarely happen.

Detection of ALP: PASSAT – Main Idea

- Particle Accelerator helioScopes for Slim Axion-like-particle deTection (PASSAT): Utilizing the principle of the axion helioscope but replaces ALPs produced in the Sun with those produced in a target material. [Bonivento, DK, Sinha (2019)]
- ⇒ ALP-photon conversion: Probing light (slim) ALPs that are otherwise inaccessible to laboratory-based experiments which rely on ALP decay, and complements astrophysical probes that are more modeldependent.

PASSAT vs CAST

Sun is replaced by the **target material** as the source of ALPs.

PASSAT vs Beam-Dump Exp.

ALP decay process is replaced by the **ALP conversion process**.

Doojin Kim, Texas A&M University

Detection of ALP: Probability of Conversion

$$P_{det}^{conv} = \left(\frac{g_{a\gamma\gamma}BL_{det}}{2}\right)^2 \left(\frac{2}{qL_{det}}\right)^2 \sin^2\left(\frac{qL_{det}}{2}\right) \quad \text{with} \quad q = 2\sqrt{\left(\frac{m_a^2}{4E_a}\right)^2 + \left(\frac{1}{2}g_{a\gamma\gamma}B\right)^2}.$$

Form factor reflecting the coherence of the conversion

Applications: NOMAD and DUNE MPD

Doojin Kim, Texas A&M University

Event Rate Calculation

For a given photon (say, *i*th photon)

 $P_i = P_{\text{prod},i} \times P_{\text{tran},i} \times P_{\text{det},i}$

For a sufficiently large $N\gamma$

 $N_{\rm tot} = N_{\rm tot,\gamma} \langle P \rangle$

Sensitivity Reaches: Decay Channel

Doojin Kim, Texas A&M University

Sensitivity Reaches: Scattering and Conversion Channels

Doojin Kim, Texas A&M University

Conclusions

- □ A more dedicated estimate of the photon flux in the target/dump or reactor core allows us to estimate ALP sensitivity reaches at neutrino experiments more precisely.
- The well-known ALP search in the decay channel and the proposed search strategies using ALP scattering and conversion should allow us to probe a wide range of parameter space that none of the lab-produced ALP search experiments have ever explored.
- □ The three channels are complementary to one another and are expected to **provide a complete picture** in investigating ALP parameter space.
- □ The expected experimental sensitivity for the ALP-photon coupling covers regions constrained by astrophysical searches, providing **conservative and complementary limits**.