Glimpses of new physics through neutrinos

Mehedi Masud IBS-CTPU, Daejeon

Dark Matter as a Portal to New Physics

February 1(Mon.) ~ 5(Fri.), 2021 Online

Plan of the talk

 Basics of oscillation physics and pending issues • Hint for a light (eV) sterile neutrino Non-Standard Neutrino Interaction (NSI) Other BSM options (Dark sector?) Summary

standard oscillation probability

•
$$|\nu_{\alpha}\rangle = \sum_{k} U_{\alpha k}^{*} |\nu_{k}\rangle$$
 ($\alpha = e, \mu, \tau$) - Flavor & Mass related by mixing

- $H |\nu_k\rangle = E_k |\nu_k\rangle$ • Solve Schrodinger's eqn.
- $i \frac{d}{dt} |\nu_k(t)\rangle = H |\nu_k(t)\rangle$

•
$$P_{\alpha\beta}(L, E) = |\langle \nu_{\beta} | \nu_{\alpha}(x) \rangle|^{2}$$

= $\delta_{\alpha\beta} - 4 \sum_{k>j} Re[U_{\alpha k}^{*} U_{\beta j}^{*} U_{\beta k} U_{\alpha j}] \sin^{2} \Delta_{kj}$
+ $\sum_{k>j} Im[U_{\alpha k}^{*} U_{\beta j}^{*} U_{\beta k} U_{\alpha j}] \sin 2\Delta_{kj}$,

(where,
$$\Delta_{ij} = 1.27 imes rac{\Delta m_{ij}^2 [\mathrm{eV}^2] imes L[km]}{E[GeV]}$$
)

• Parameters responsible for neutrino oscillation: $\theta_{13}, \theta_{12}, \theta_{23}, \Delta m_{21}^2, \Delta m_{31}^2, \delta_{cp}$

Status of oscillation parameters

Table: de Salas, Forero, Gariazzo, Martinez-Mirave, Mena, Ternes, Tortola, Valle: 2006.11237

Oscillation parameter	Best fit value	3σ range
$\theta_{12}/^{\circ}$	34.3	[31.4, 37.4]
$\theta_{23}/^{\circ}$	48.8	[41.6, 51.3]
$ heta_{13}/^{\circ}$	8.6	[8.2, 8.9]
δ_{13}/π	-0.8	$[-1,0] \cup [0.8,1]$
$\Delta m^2_{21}/10^{-5}~{ m eV^2}$	7.5	[6.9, 8.1]
$\Delta m^2_{31}/10^{-3}~{ m eV}^2$	2.6	[2.5, 2.7]

3 mixing angles

I CP phase

2 mass squared differences

$$P_{\mu e} = \sin^2 2\theta_{13} \sin^2 \theta_{23} \frac{\sin^2(1-A)\Delta}{\frac{1-A}{A}} + \alpha^2 \sin^2 2\theta_{12} \cos^2 \theta_{23} \frac{\sin^2 A\Delta}{A} + \alpha \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \frac{\sin(1-A)\Delta}{1-A} \frac{\sin A\Delta}{A} \cos(\delta + \Delta)$$

 $A = \frac{2\sqrt{2}EG_F n_E}{\Delta m_{31}^2}$

where,

 $\Delta = \frac{\Delta m_{31}^2 L}{4E}$ $\alpha = \frac{\Delta m_{21}^2}{\Delta m_{31}^2}$

Leptonic CP violation?

Table: de Salas, Forero, Gariazzo, Martinez-Mirave, Mena, Ternes, Tortola, Valle: 2006.11237

Oscillation parameter	Best fit value	3σ range
$ heta_{12}/^{\circ}$	34.3	[31.4, 37.4]
$\theta_{23}/^{\circ}$	48.8	[41.6, 51.3]
$ heta_{13}/^{\circ}$	8.6	[8.2, 8.9]
δ_{13}/π	-0.8	$[-1,0] \cup [0.8,1]$
$\Delta m^2_{21}/10^{-5}~{ m eV}^2$	7.5	[6.9, 8.1]
$\Delta m^2_{31}/10^{-3}~{ m eV}^2$	2.6	[2.5, 2.7]

Is the CP phase nonzero? could help explain baryon asymmetry

where,

$$P_{\mu e} = \sin^2 2\theta_{13} \sin^2 \theta_{23} \frac{\sin^2(1-A)\Delta}{1-A} + \alpha^2 \sin^2 2\theta_{12} \cos^2 \theta_{23} \frac{\sin^2 A\Delta}{A} + \alpha \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \frac{\sin(1-A)\Delta}{1-A} \frac{\sin A\Delta}{A} \cos(\delta + \Delta)$$

$$A = \frac{2\sqrt{2EG_F n_E}}{\Delta m_{31}^2}$$

 $\Delta = \frac{\Delta m_{31}^2 L}{2}$ 4E $\alpha =$ Δm_{31}^2

Esteban, Gonzalez-Garcia, Maltoni, Schwetz, Zhou: 2007.14792

Mass ordering ambiguity

$$P_{\mu e} = \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \frac{\sin^{2}(1-A)\Delta}{1-A} + \alpha^{2} \sin^{2} 2\theta_{12} \cos^{2} \theta_{23} \frac{\sin^{2} A\Delta}{A}$$
 where,
+ $\alpha \sin 2\theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \frac{\sin(1-A)\Delta}{1-A} \frac{\sin A\Delta}{A} \cos(\delta + \Delta)$

$$A = \frac{2\sqrt{2}EG_F n_E}{\Delta m_{31}^2}$$
$$\Delta = \frac{\Delta m_{31}^2 L}{4E}$$
$$\alpha = \frac{\Delta m_{21}^2}{\Delta m_{31}^2}$$

Mass ordering ambiguity (Tension between NOvA & T2K)

Kelly, Machado, Parke, Perez-Gonzalez, Funchal: 2007.08526

Octant degeneracy

Table: de Salas, Forero, Gariazzo, Martinez-Mirave, Mena, Ternes, Tortola, Valle: 2006.11237

$$\theta_{23} > \pi/4 \text{ or } \theta_{23} < \pi/4?$$

Oscillation parameter	Best fit value	3σ range
$\theta_{12}/^{\circ}$	34.3	[31.4, 37.4]
$\theta_{23}/^{\circ}$	48.8	[41.6, 51.3]
$ heta_{13}/^{\circ}$	8.6	[8.2, 8.9]
δ_{13}/π	-0.8	$[-1,0] \cup [0.8,1]$
$\Delta m^2_{21}/10^{-5}~{ m eV^2}$	7.5	[6.9, 8.1]
$\Delta m_{31}^{ar{2}^-}/10^{-3}~{ m eV}^2$	2.6	[2.5, 2.7]

$$P_{\mu e} = \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \frac{\sin^{2}(1-A)\Delta}{\frac{1-A}{A}} + \alpha^{2} \sin^{2} 2\theta_{12} \cos^{2} \theta_{23} \frac{\sin^{2} A\Delta}{A} + \alpha \sin 2\theta_{13} \sin 2\theta_{12} \frac{\sin 2\theta_{23}}{\sin^{2} \theta_{23}} \frac{\sin(1-A)\Delta}{1-A} \frac{\sin A\Delta}{A} \cos(\delta + \Delta)$$

Octant degeneracy

Table: de Salas, Forero, Gariazzo, Martinez-Mirave, Mena, Ternes, Tortola, Valle: 2006.11237

Oscillation parameter	Best fit value	3σ range
$ heta_{12}/^{\circ}$	34.3	[31.4, 37.4]
$\theta_{23}/^{\circ}$	48.8	[41.6, 51.3]
$ heta_{13}/^{\circ}$	8.6	[8.2, 8.9]
δ_{13}/π	-0.8	$[-1,0] \cup [0.8,1]$
$\Delta m^2_{21}/10^{-5}~{ m eV^2}$	7.5	[6.9, 8.1]
$\Delta m^{ar{2}^-}_{31}/10^{-3}~{ m eV}^2$	2.6	[2.5, 2.7]

 $\theta_{23} > \pi/4 \text{ or } \theta_{23} < \pi/4?$

$$\sin 2\theta_{23} = \sin 2(\pi/2 - \theta_{23})$$

Deep Underground Neutrino Experiment (DUNE)

- A proposed long baseline experiment (the erstwhile LBNE) with 1300 km baseline
- likely to have a 40 kt FD with 3.5 yrs. of ν and 3.5 yrs. of $\bar{\nu}$ run.
- The incident ν_μ beam is generated by 80 GeV proton beam delivered at 1.07 MW with a POT of 1.47×10^{21}

Plan of the talk

 Basics of oscillation physics and pending issues Hint for a light (eV) sterile neutrino Non-Standard Neutrino Interaction (NSI) Other BSM options (Dark sector?) Summary

VERY intense proton beam $p + X \rightarrow \pi^+ + X'$ (800 MeV) $\longrightarrow \mu^+ \nu_\mu$ (DAR) $\longmapsto e^+ \nu_e \bar{\nu}_\mu$

Detection signature: IBD ($\bar{\nu}_e p \rightarrow e^+ n$)

LSND detected more $\bar{\nu}_e$ than expected: 87.9 ± 23.2 events (3.8 σ excess)

Measures $\nu_{\mu} \rightarrow \nu_{e}$ osc. Event excess: 381.2 ± 85.2 (4.5 σ)

MiniBooNE:1805.12028

MiniBooNE:1805.12028

Light sterile neutrino (3+1) & oscillation phenomenology

Gandhi, Kayser, MM, Prakash : JHEP (2015) Agarwalla, Chatterjee, Palazzo : JHEP (2016) Giunti : NPB (2016)

Coloma, Forero, Parke : JHEP (2018)

••••

3+1 case :basics

$$P_{\alpha\beta} = \delta_{\alpha\beta} - \sum_{k>j} \operatorname{Re}[U_{\alpha k}^* U_{\beta j}^* U_{\alpha j} U_{\beta k}] \sin^2 \Delta_{kj} - \sum_{k>j} \operatorname{Im}[U_{\alpha k}^* U_{\beta j}^* U_{\alpha j} U_{\beta k}] \sin 2\Delta_{kj}$$

where $\Delta_{ij} = 1.27 \times \frac{\Delta m_{ij}^2 [eV^2] \times L[km]}{E[GeV]}$

• 3 more mixing angles and 2 additional CP phases

Unitarity in 4x4 sector :
$$\sum_{k=1,2,3,4} U_{\alpha k} U^*_{\beta k} = \delta_{\alpha \beta}$$

•
$$\Delta m_{41}^2 \sim 1 \text{ eV}^2, \Delta m_{21}^2 \approx 7.5 \times 10^{-5} \text{ eV}^2, \Delta m_{31}^2 \approx 2.5 \times 10^{-3} \text{ eV}^2$$

 $\Delta m_{41}^2 \approx \Delta m_{42}^2 \approx \Delta m_{43}^2 > > \Delta m_{31}^2 > > \Delta m_{21}^2$

$$P_{\alpha\beta} \approx P_{\alpha\beta}^{3+0} + |U_{\alpha4}|^2 |U_{\beta4}|^2 \sin^2 \Delta_{41} \quad (\alpha \neq \beta) \quad \text{Excess}$$

$$P_{\alpha\alpha} \approx P_{\alpha\alpha}^{3+0} - |U_{\alpha4}|^2 (1 - |U_{\alpha4}|^2) \sin^2 \Delta_{41}$$
 Dip

Gandhi, Kayser, MM, Prakash : JHEP (2015)

3+1 case: Effect on probability

 Significant modification of vacuum probability for both CP conserving and CP violating case

Gandhi, Kayser, MM, Prakash (2015)

3+1 case :Global analysis

$|U_{e4}|^2 \lesssim 0.1, |U_{\mu4}|^2 \lesssim 0.01, |U_{\tau4}|^2 \lesssim 0.17$

$\theta_{14} \lesssim 18.4^\circ, \quad \theta_{24} \lesssim 6.05^\circ, \quad \theta_{34} \lesssim 25.6^\circ$

Phases are unconstrained

Dentler, Kopp, Harnandez, Machado, Maltoni, Martinez-Soler, Schwetz (2018)

3+1 case: Impact on CPV sensitivity

3+1 case:Exploring the phases

Fiza, MM, Mitra (coming soon)

Plan of the talk

 Basics of oscillation physics and pending issues Hint for a light (eV) sterile neutrino Non-Standard Neutrino Interaction (NSI) Other BSM options (Dark sector?) Summary

Non-standard interaction (NSI)

MM,Chatterjee, Mehta : JPG (2016) de Gouvea, Kelly : NPB (2016) Liao, Marfatia, Whisnant : PRD (2016) Deepthi, Goswami, Nath : NPB (2018) Farzan, Tortola : Review (2018)

.....

24

NSI theory background

Wolfenstein (1978), Barger et al. (1991), Grossman (1995), Ohlsson (2012)...

$$\mathcal{L}_{\text{CC-NSI}} = -2\sqrt{2}G_F \,\epsilon_{\alpha\beta}^{ff'X} \left(\bar{\nu}_{\alpha} \gamma^{\mu} P_L \ell_{\beta} \right) \left(\bar{f}' \gamma_{\mu} P_X f \right), \quad f \neq f' \in (u, d)$$
$$\mathcal{L}_{\text{NC-NSI}} = -2\sqrt{2}G_F \,\epsilon_{\alpha\beta}^{fX} \left(\bar{\nu}_{\alpha} \gamma^{\mu} P_L \nu_{\beta} \right) \left(\bar{f} \gamma_{\mu} P_X f \right). \quad f \in (e, u, d)$$

Theory background

Wolfenstein (1978), Barger et al. (1991), Grossman (1995), Ohlsson (2012)...

$$\epsilon_{\alpha\beta} \equiv \epsilon_{\alpha\beta}^{eV} + \frac{N_u}{N_e} \epsilon_{\alpha\beta}^{uV} + \frac{N_d}{N_e} \epsilon_{\alpha\beta}^{dV}$$
Inside sun: $\frac{N_u}{N_e} \approx 2\frac{N_d}{N_e} \approx 1$
Inside earth: $\frac{N_u}{N_e} \approx \frac{N_d}{N_e} \approx 3$
Inside earth: $\frac{N_u}{N_e} \approx \frac{N_d}{N_e} \approx 3$

$$H = H_{vac} + H_{mat} + H_{NSI}$$

$$\mathbf{i}\frac{\mathrm{d}}{\mathrm{d}t}\begin{pmatrix}\nu_{e}\\\nu_{\mu}\\\nu_{\tau}\end{pmatrix} = \frac{1}{2E} \begin{bmatrix} U \begin{pmatrix} 0 & 0 & 0\\ 0 & \Delta m_{21}^{2} & 0\\ 0 & 0 & \Delta m_{31}^{2} \end{bmatrix} U^{\dagger} + A \begin{pmatrix} 1+\varepsilon_{ee} & \varepsilon_{e\mu} & \varepsilon_{e\tau}\\\varepsilon_{e\mu}^{*} & \varepsilon_{\mu\mu} & \varepsilon_{\mu\tau}\\\varepsilon_{e\tau}^{*} & \varepsilon_{\mu\tau}^{*} & \varepsilon_{\tau\tau} \end{bmatrix} \begin{bmatrix} \nu_{e}\\\nu_{\mu}\\\nu_{\tau} \end{pmatrix}$$

NSI at long baseline experiment

- NSI amplitudes with their new CP phases can potentially spoil CPV, MH and octant sensitivities
- Most relevant for $\nu_{\mu} \rightarrow \nu_{e}$: $\varepsilon_{e\mu}$, $\varepsilon_{e\tau}$, ε_{ee} $\nu_{\mu} \rightarrow \nu_{\mu}$: $\varepsilon_{\mu\mu}$, $\varepsilon_{\mu\tau}$

$$\mathbf{i}\frac{\mathrm{d}}{\mathrm{d}t}\begin{pmatrix}\nu_{e}\\\nu_{\mu}\\\nu_{\tau}\end{pmatrix} = \frac{1}{2E} \begin{bmatrix} U \begin{pmatrix} 0 & 0 & 0\\ 0 & \Delta m_{21}^{2} & 0\\ 0 & 0 & \Delta m_{31}^{2} \end{bmatrix} U^{\dagger} + A \begin{pmatrix} 1+\varepsilon_{ee} & \varepsilon_{e\mu} & \varepsilon_{e\tau}\\\varepsilon_{e\mu}^{*} & \varepsilon_{\mu\mu} & \varepsilon_{\mu\tau}\\\varepsilon_{e\tau}^{*} & \varepsilon_{\mu\tau}^{*} & \varepsilon_{\tau\tau} \end{bmatrix} \begin{bmatrix} \nu_{e}\\\nu_{\mu}\\\nu_{\tau} \end{pmatrix}$$

NSI at long baseline experiment (MH)

MH sensitivity at DUNE

Also see, Soumya, Mohanta (2017); Deepthi, Goswami, Nath (2017)

NSI at long baseline experiment (Octant)

Agarwalla, Chatterjee, Palazzo (2016)

 $\theta_{23} - \delta$ exclusion region at DUNE

NSI at long baseline experiment (SI-NSI degeneracy)

Also see Liao, Marfatia, Whisnant (2017) for degeneracy in the χ^2 level

SI-NSI degeneracy and priors

Using priors and adding T2HK data help to reduce degeneracy

Can we distinguish NSI from SI?

Bishai, MM, Mehta (2018)

Can we distinguish NSI from SI?

Bishai, MM, Mehta (2018)

NSI Global analysis (complementarity of experiments)

NSI WITH QUARKS

ϵ_{ee}^{dL}	[-0.3, 0.3]	CHARM
ϵ_{ee}^{dR}	[-0.6, 0.5]	CHARM
ϵ_{ee}^{dV}	[0.030, 0.55]	Oscillation data + COHERENT
$\epsilon_{\Theta\Theta}^{UV}$	[0.028, 0.60]	Oscillation data + COHERENT
$\epsilon^{dV}_{\mu\mu}$	[-0.042, 0.042]	Atmospheric + accelerator
$\epsilon^{UV}_{\mu\mu}$	[-0.044, 0.044]	Atmospheric + accelerator
$\epsilon^{dA}_{\mu\mu}$	[-0.072, 0.057]	Atmospheric + accelerator
$\epsilon^{\it UA}_{\mu\mu}$	[-0.094, 0.14]	Atmospheric + accelerator
$\epsilon_{\tau \tau}^{dV}$	[-0.075, 0.33]	Oscillation data + COHERENT
$\epsilon^{UV}_{\tau\tau}$	[-0.09, 0.38]	Oscillation data + COHERENT
$\epsilon^{qV}_{\tau \tau}$	[-0.037, 0.037]	Atmospheric
NSI WITH	ELECTRONS	
ϵ_{ee}^{eL}	[-0.021,0.052]	Solar + KamLAND
ϵ_{ee}^{eR}	[-0.07, 0.08]	TEXONO
$\epsilon^{ extsf{eL}}_{\mu\mu}$, $\epsilon^{ extsf{eR}}_{\mu\mu}$	[-0.03, 0.03]	Reactor + accelerator
$\epsilon_{\tau \tau}^{eL}$	[-0.12, 0.06]	Solar + KamLAND
$\epsilon_{\tau\tau}^{eR}$	[-0.98, 0.23]	Solar + KamLAND and Borexino
	[-0.25, 0.43]	Reactor + accelerator
$\epsilon_{\tau\tau}^{\Theta V}$	[-0.11, 0.11]	Atmospheric

Biggio, Blennow, Farnandez-Martinez (2009); Gonzalez-Garcia, Maltoni, Salvado ; Tortola, Farzan (2018)

Diagonal NSI

NSI Global analysis (complementarity of experiments)

NSI WITH QUARKS

$\epsilon^{qL}_{e\mu}$	[-0.023, 0.023]	Accelerator
$\epsilon^{qR}_{e\mu}$	[-0.036, 0.036]	Accelerator
$\epsilon^{UV}_{e\mu}$	[-0.073, 0.044]	Oscillation data + COHERENT
$\epsilon^{dV}_{e\mu}$	[-0.07, 0.04]	Oscillation data + COHERENT
$\epsilon_{e au}^{qL},\epsilon_{e au}^{qR}$	[-0.5, 0.5]	CHARM
$\epsilon^{UV}_{arepsilon au}$	[-0.15, 0.13]	Oscillation data + COHERENT
$\epsilon^{dV}_{e au}$	[-0.13, 0.12]	Oscillation data + COHERENT
$\epsilon^{qL}_{\mu au}$	[-0.023, 0.023]	Accelerator
$\epsilon^{qR}_{\mu au}$	[-0.036, 0.036]	Accelerator
$\epsilon^{qV}_{\mu au}$	[-0.006, 0.0054]	IceCube
$\epsilon^{qA}_{\mu au}$	[-0.039, 0.039]	Atmospheric + accelerator
NSI WITH	ELECTRONS	
$\epsilon^{eL}_{e\mu}, \epsilon^{eR}_{e\mu}$	[-0.13, 0.13]	Reactor + accelerator
$\epsilon^{eL}_{e au}$	[-0.33, 0.33]	Reactor + accelerator
$\epsilon_{arepsilon au}^{arepsilon R}$	[—0.28, —0.05] & [0.05, 0.28]	Reactor + accelerator
	[-0.19, 0.19]	TEXONO
$\epsilon^{eL}_{\mu au}$, $\epsilon^{eR}_{\mu au}$	[-0.10, 0.10]	Reactor + accelerator
$\epsilon^{eV}_{\mu au}$	[-0.018, 0.016]	IceCube

Biggio, Blennow, Farnandez-Martinez (2009); Gonzalez-Garcia, Maltoni, Salvado ; Tortola, Farzan (2018)

Off-diagonal NSI

Plan of the talk

 Basics of oscillation physics and pending issues Hint for a light (eV) sterile neutrino Non-Standard Neutrino Interaction (NSI) Other BSM options (Dark sector?) Summary

Neutrinophillic ALP

$$\begin{split} H(t) &= \frac{1}{2E_{\nu}} U \begin{pmatrix} 0 & 0 & 0 \\ 0 & \Delta m_{21}^2 & 0 \\ 0 & 0 & \Delta m_{31}^2 \end{pmatrix} U^{\dagger} \\ &+ \begin{pmatrix} V + \xi_{ee}(t) \ \xi_{e\mu}(t) \ \xi_{e\tau}(t) \\ \xi_{e\mu}^*(t) \ \xi_{\mu\mu}(t) \ \xi_{\mu\tau}(t) \\ \xi_{e\tau}^*(t) \ \xi_{\mu\tau}^*(t) \ \xi_{\tau\tau}(t) \end{pmatrix} \end{split}$$

Huang, Nath (2018)

NSI: Complementarity of detectors

CEVNS, EVNS, Oscillation

$$\varepsilon_{\alpha\beta} = \varepsilon_{\alpha\beta}^{e,V} + 3\varepsilon_{\alpha\beta}^{u,V} + 3\varepsilon_{\alpha\beta}^{d,V}$$

Dutta, Lang, Liao, Sinha, Strigari, Thompson (2020)

Non-unitarity

- Neutral Heavy Leptons (NHL) arise naturally as an extension of SM => Non-unitary mixing matrix
- Can induce Lepton Flavour Violation
- Modification of CP sensitivity due to more unknown phases

Antusch, Biggio, Fernandez-Martinez, Gavela, Lopez-Pavon : JHEP (2006) Forero, Morisi, Tortola, Valle : JHEP (2011) Blennow, Coloma, Hernandez-Garcia, Lopez-Pavon : JHEP (2017)

Summary

Outstanding issues: CPV, mass ordering, octant

- → Tension between T2K/NOvA
 - Stay tuned for DUNE/T2HK...

• Hint for new physics (MiniBoone, LSND..)

ightarrow MB Excess $\gtrsim 4\sigma$

 \rightarrow

- →Wait for SBN
- \Rightarrow Compatible with eV sterile ν !
- \Rightarrow DM sector? Decay of heavy ν ?.....

• Sterile neutrinos, NSI,

- Spoils std. param. measurements
- → Needs more constraints from osc. (SBN, Neutrino-4, atmos expt....) & nosc. data (CE
 NS)

 $\Rightarrow \quad \text{Exploit the complementarity of} \\ \quad \text{DM and } \nu \text{ detectors} \\ \end{aligned}$

 Other possibilities (DM sector?...)

Thank you!

감사합니다

3+1 case: Impact on CPV sensitivity

$$\Delta \chi^{2}(true) \simeq Min_{u,s} \left[\sum_{bins} \frac{\left\{ N_{data}(true) - N_{fit}(u,s) \right\}^{2}}{N_{data}(true)} + \sum \frac{s_{i}^{2}}{\sigma_{i}^{2}} \right] \quad u: \text{osc. parameters} \\ s: \text{systematics}$$

• GLOBES simulation \implies DUNE data for all true CP phase(s) $\in [-\pi, \pi]$

- Fitted with CP phase(s) = $0,\pi$
- Marginalisation over $u(=\{\theta_{23}, \theta_{14}, \theta_{24}, \theta_{34}, |\Delta m_{31}^2|\})$ in the allowed ranges and also over the various systematics(s)
- Small $\Delta \chi^2 \implies$ Better fit with data; large $\Delta \chi^2 \implies$ fit is less compatible with data

Dutta, Gandhi, Kayser, MM, Prakash : JHEP (2016)

•
$$|\nu_{\alpha}\rangle = \sum_{k} U_{\alpha k}^{*} |\nu_{k}\rangle \ (\alpha = e, \nu, \tau)$$

• $H |\nu_k\rangle = E_k |\nu_k\rangle$

•
$$i\frac{d}{dt}|\nu_k(t)\rangle = H|\nu_k(t)\rangle$$

•
$$P_{\alpha\beta}(L, E) = |\langle \nu_{\beta} | \nu_{\alpha}(x) \rangle|^{2}$$

 $= \delta_{\alpha\beta} - 4 \sum_{k>j} Re[U_{\alpha k}^{*} U_{\beta j}^{*} U_{\beta k} U_{\alpha j}] \sin^{2} \Delta_{kj}$
 $+ \sum_{k>j} Im[U_{\alpha k}^{*} U_{\beta j}^{*} U_{\beta k} U_{\alpha j}] \sin 2\Delta_{kj},$
(where, $\Delta_{ij} = 1.27 \times \frac{\Delta m_{ij}^{2} [eV^{2}] \times L[km]}{E[GeV]})$

Kostelecky et al. (2012), Mavromatos et al.

$$\begin{aligned} \widehat{\mathcal{Q}}_{AB} &= \sum_{I} \widehat{\mathcal{Q}}_{AB}^{I} \gamma_{I} \\ &= \widehat{\mathcal{S}}_{AB} + i \widehat{\mathcal{P}}_{AB} \gamma_{5} + \widehat{\mathcal{V}}_{AB}^{\mu} \gamma_{\mu} + \widehat{\mathcal{A}}_{AB}^{\mu} \gamma_{5} \gamma_{\mu} + \frac{1}{2} \widehat{\mathcal{T}}_{AB}^{\mu\nu} \sigma_{\mu\nu}, \end{aligned}$$

$$\gamma^{\nu} p_{\nu} \delta_{AB} - M_{AB} + \widehat{\mathcal{Q}}_{AB} = \widehat{\Gamma}^{\nu}_{AB} p_{\nu} - \widehat{M}_{AB},$$

$$\widehat{\Gamma}_{AB}^{\nu} = \gamma^{\nu} \delta_{AB} + \widehat{c}_{AB}^{\mu\nu} \gamma_{\mu} + \widehat{d}_{AB}^{\mu\nu} \gamma_{5} \gamma_{\mu} + \widehat{e}_{AB}^{\nu} + i \widehat{f}_{AB}^{\nu} \gamma_{5} + \frac{1}{2} \widehat{g}_{AB}^{\kappa\lambda\nu} \sigma_{\kappa\lambda}, \widehat{M}_{AB} = m_{AB} + i m_{5AB} \gamma_{5} + \widehat{m}_{AB} + i \widehat{m}_{5AB} \gamma_{5} + \widehat{a}_{AB}^{\mu} \gamma_{\mu} + \widehat{b}_{AB}^{\mu} \gamma_{5} \gamma_{\mu} + \frac{1}{2} \widehat{H}_{AB}^{\mu\nu} \sigma_{\mu\nu}.$$

Kostelecky et al. (2012), Mavromatos et al.

 The effective hamiltonian can be decomposed into 3x3 blocks:

 $\mathcal{Q} = \mathcal{S} + i\mathcal{P}\gamma_5 + \mathcal{V}^{\alpha}\gamma_{\alpha} + \mathcal{A}^{\alpha}\gamma_5\gamma_{\alpha} + \frac{1}{2}\mathcal{T}^{\alpha\beta}\sigma_{\alpha\beta}$

Induce effective Hamiltonian for neutrino mixing

LIV:Theory background (backup) Kostelecky et al. (2012), Mavromatos et al.

 The effective hamiltonian can be decomposed into 3x3 blocks:

$$\begin{aligned} (h_{eff})_{ab} &= E\delta_{ab} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \frac{1}{2E} \begin{pmatrix} (m^2)_{ab} & 0 \\ 0 & (m^2)^*_{ab} \end{pmatrix} \\ &+ \frac{1}{E} \begin{pmatrix} [(a_L)^{\mu} p_{\mu} - (c_L)^{\mu\nu} p_{\mu} p_{\nu}]_{ab} & 0 \\ 0 & [-(a_L)^{\mu} p_{\mu} - (c_L)^{\mu\nu} p_{\mu} p_{\nu}]^*_{ab} \end{pmatrix} \end{aligned}$$

CPT odd LIV parameters: $((a_L)^{\alpha}_{ab})^* = -(a_R)^{\alpha}_{\bar{a}\bar{b}}$ CPT even LIV parameters: $((c_L)^{\alpha\beta}_{ab})^* = (c_R)^{\alpha\beta}_{\bar{a}\bar{b}}$

Kostelecky et al. (2012), Mavromatos et al.

The effective hamiltonian can be decomposed into 3x3 blocks:

$$\begin{split} \nu - \nu & \text{mixing} \rightarrow \qquad h_{ab} = E\delta_{ab} + \frac{m_{ab^2}}{2E} + (a_L)^{\alpha}_{ab}p_{\alpha} - (c_L)^{\alpha\beta}_{ab}p_{\alpha}p_{\beta}E \\ \bar{\nu} - \bar{\nu} & \text{mixing} \rightarrow \qquad h_{\bar{a}\bar{b}} = E\delta_{\bar{a}\bar{b}} + \frac{m_{\bar{a}\bar{b}^2}}{2E} + (a_R)^{\alpha}_{\bar{a}\bar{b}}p_{\alpha} - (c_R)^{\alpha\beta}_{\bar{a}\bar{b}}p_{\alpha}p_{\beta}E \\ \nu - \bar{\nu} & \text{mixing} \rightarrow \qquad h_{a\bar{b}} = i\sqrt{2}(\epsilon)_{\alpha}(H^{\alpha}_{a\bar{b}} - g^{\alpha\beta}_{a\bar{b}}p_{\beta}E) \end{split}$$

Backup

$$\Delta P_{\mu e}(\varepsilon_{e\mu}) = P_{\mu e}^{NSI}(\varepsilon_{e\mu}) - P_{\mu e}^{SI}$$

 $pprox -4A\Delta \sin \Delta |\varepsilon_{e\mu}| s_{13} s_{2(23)} c_{23} D_1^{e\mu} \sin(\delta + \varphi_{e\mu} - \gamma_1^{e\mu})$

$$\Delta P_{\mu e}(\varepsilon_{e\tau}) \approx 4A\Delta \sin \Delta |\varepsilon_{e\tau}| s_{13} s_{2(23)} s_{23} D_1^{e\tau} \sin(\delta + \varphi_{e\tau} + \gamma_1^{e\tau})$$

where,

$$D_1^{e\mu} = [\sin^2 \Delta + (\tan^2 \theta_{23} \frac{\sin \Delta}{\Delta} + \cos \Delta)^2]^{1/2} \qquad \gamma_1^{e\mu} = \tan^{-1}(\frac{\tan^2 \theta_{23}}{\Delta} + \cot \Delta)$$
$$D_1^{e\tau} = [\sin^2 \Delta + (\frac{\sin \Delta}{\Delta} - \cos \Delta)^2]^{1/2}; \qquad \gamma_1^{e\tau} = \tan^{-1}(\frac{1}{\Delta} - \cot \Delta)$$

3+1 case :basics (backup)

 $U_{\rm PMNS}^{3+1} = V(\theta_{34}, \delta_{34})V(\theta_{24}, \delta_{24})R(\theta_{14})R(\theta_{23})V(\theta_{13}, \delta_{13})R(\theta_{12})$

where,

0

$$V(heta_{24},\delta_{24}) = egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & \cos heta_{24} & 0 & e^{-i\delta_{24}}\sin heta_{24} \ 0 & 0 & 1 & 0 \ 0 & -e^{i\delta_{24}}\sin heta_{24} & 0 & \cos heta_{24} \end{pmatrix} etc.$$

• $\theta_{14} \in [0^{\circ}, 11^{\circ}]$ [DayaBay: PRL 113(2014) 141802] $\theta_{24} \in [0^{\circ}, 7^{\circ}]$ [IceCube: PRL 117(2016) 7, 071801; Ben Jones' talk (2016)] $\theta_{34} \in [0^{\circ}, 26^{\circ}]$ [MINOS: PRL 107(2011) 1, 011802]

•
$$\delta_{13} \in [-\pi, \pi]$$
, $\delta_{24} \in [-\pi, \pi]$, $\delta_{34} \in [-\pi, \pi]$

Can the new phases and mixing angles play roles to affect CPV studies?

Gandhi, Kayser, MM, Prakash : JHEP (2015)

Background and motivation: CPT violation?

- Observation of P violation in weak interactions C.N. Yang & T. D. Lee (Nobel 1957) V-A theory: Weak interaction acts on LH particles and RH antiparticles Marshak & Sudarshan; Feynman & Gell-Mann
- Although rare, CP violation was also observed Kobayashi & Maskawa (Nobel 2008)
- What about CPT violation?
 Can be related to , for e.g., Non-unitarity, Lorentz Invariance Violation (LIV)