Searches for Dark Sectors in Neutrino Experiments

Kevin Kelly, FNAL APCTP: Dark Matter as a Portal to New Physics 4th Feb., 2021

[1912.07622] with Jeffrey M. Berryman, André de Gouvêa, Patrick J. Fox, Boris J. Kayser, and Jennifer L. Raaf;

Theoretical Motivation

- The DUNE Near Detector Complex
- DUNE as a Meson Facility
- Sensitivity to New Particle Decays

Theoretical Motivation

Dark Matter Exists!

Abundance of evidence for dark matter, but no clear answer from a particle physics perspective.

Previous Standard-Bearer: WIMP Paradigm

Highly predictive paradigm: dark matter initially in thermal equilibrium with standard model. DM undergoes freeze-out, locking in its relic abundance. Weak-scale mass interacting via the SM W/Z bosons gives correct abundance.

Lack of Signal: Where do we look now?

- Lighter DM is a possibility, but in order for freeze-out to give the correct relic abundance, new mediators are required.
- How should these mediators talk to SM particles?
- Using renormalizability as a guiding principle

$$F^{\mu\nu}F'_{\mu\nu} \qquad \qquad \left|H\right|^2 S^2$$

$$V^{\mu}J^{
m SM}_{\mu}$$

The DUNE Experiment

The Next Generation of Neutrino Experiments

- Long-baseline neutrino experiment, beam originating at Fermilab, with four liquid argon detectors in South Dakota (each 10 kilotons).
- Broad-energy beam, several GeV in energy
- Liquid argon TPC provides excellent particle identification and energy measurements.

Liquid Argon TPC

DUNE Goals

- Measure electron neutrino appearance spectrum to obtain knowledge of the muon-to-electron neutrino oscillation probability.
- Determine whether CP is violated in the lepton sector, etc.

The DUNE Near Detector Complex

Mission of the Near Detector

In order to study far detector oscillation physics precisely, DUNE plans to have a liquid argon near detector (same material as far detector) that will constrain the flux to the percent level.

Caveats

- Because the ND is small compared to the FD, containment is an issue – many charged tracks will exit the liquid argon, and their energy cannot be measured precisely.
 - Solution: Place a gaseous argon TPC downstream of the liquid argon one precision measurements of any tracks that exit the

LAr.

Caveats

Many uncertainties exist with the neutrino cross section on argon, especially in the energy range DUNE intends on operating

Near Detector Hall

Our Focus

The DUNE Multi-Purpose Detector, consisting of the Gas TPC, ECAL surrounding it, and potentially a muon tagger (to separate muons and pions that exit the Gas TPC).

A theorist's view of the DUNE target & Near Detector Hall

DUNE: The Next Generation Neutrino Facility Meson

Common Element of all four Renormalizable Portals

- All of the mediator scenarios we focus on predict that the new physics particle can be produced in a variety of meson decays.
- DUNE's intense proton beam (120 GeV) produces a huge number of charged and neutral mesons.

A theorist's view of the DUNE Target/Focusing Horn System

Meson Production Part 1: Neutral Mesons

Of interest for our simulations are pions, etas, and kaons.
 Number produced on average per proton on target (120 GeV):

Species	π^0	η	K_L^0	K_S^0
Mesons/POT	2.9	0.33	0.19	0.19

- We want these mesons to decay into new physics particles that themselves are directed toward the DUNE Near Detector – far away and in the beam direction.
- Pythia8 gives us four vectors of neutral mesons after 120 GeV protons hitting protons/neutrons in the lab frame.

Neutral Mesons — Kinematic Boost Focusing

Meson Production Part 2: Charged Mesons

- DUNE is more than just a meson factory its goal is to produce an intense, pure neutrino beam. To do so, the magnetic focusing horns select mesons of a particular sign, which decay to either neutrinos or antineutrinos.
- Because charged pions generate the bulk of the neutrino flux, the goal is to focus one sign of pion over the other as best as possible.

Spe	cies	π^+	π^{-}	K^+	K^-	
Mesons	s/POT	2.7	2.4	0.24	0.16	
D^+	D^{-}		D_s^+		D_s^-	

 3.7×10^{-6} | 6.0×10^{-6} | 1.2×10^{-6} | 1.6×10^{-6}

Effects of Focusing Horns

The DUNE Beam Interface Working Group has the output from GEANT/FLUKA simulations, taking into account focusing horns.

How (de)focused are the (negatively) positively charged mesons?

How (de)focused are the (negatively) positively charged mesons?

Decays of New Physics Particles

[1912.07622] with Jeffrey M. Berryman, André de Gouvêa, Patrick J. Fox, Boris J. Kayser, and Jennifer L. Raaf

Why Decays?

- If searching for new physics via a scattering process, signal and background (from neutrino-related events) both scale like detector mass.
- On the other hand, if searching for a decay, signal will scale like detector volume, whereas neutrino-related scattering background still scales like mass.

Overarching Approach

Assume a new physics particle X that can be produced in the decays of some SM particle P.

 $P \rightarrow SX$

- Fixing the mass of X, we simulate the decays of P into S and X, and keep track of the fraction of X that are pointing to the DUNE MPD (as well as their energies).
- Given this energy spectrum, and the various decay channels of X, we can determine how many "interesting" decays will occur within the DUNE MPD in a certain operation time.

Dark Photons

Kinetically-Mixed with the Standard Model

Assumptions about the Model

Assume a new U(1) exists that can mix with the SM hypercharge group,

$$\mathscr{L} \supset -\frac{1}{4} F'_{\mu\nu} F^{\prime\mu\nu} - \frac{\varepsilon}{2} F^{\mu\nu} F'_{\mu\nu} + \frac{M_{A'}^2}{2} A'_{\mu} A^{\prime\mu}$$

Such mixing allows for production via neutral meson decays and proton bremsstrahlung,

 $\pi^{0} \rightarrow \gamma A'$ $\eta \rightarrow \gamma A'$ $pp \rightarrow ppA'$

Branching ratios: $\operatorname{Br}(\mathfrak{m} \to \gamma A') = \operatorname{Br}(\mathfrak{m} \to \gamma \gamma) \times 2\varepsilon^2 \left(1 - \frac{M_{A'}^2}{m_{\mathfrak{m}}^2}\right)^3$

Flux of Dark Photons at the Near Detector

Taking into account geometrical acceptance,

Decay Modes of A'

Depending on its mass, A' can decay into pairs of charged leptons or hadrons,

Backgrounds for A' Decay Search

Decays to electron/positron pairs

Unlike in liquid argon, photons in the gaseous argon tend not to convert (conversion length of a couple of meters). Those that do can fake electron/positron pairs. The biggest backgrounds of this sort will come from neutral current single pion events

$$\nu + Ar \rightarrow \nu + Ar + \pi^0,$$
 $\pi^0 \rightarrow \gamma\gamma$

- Decays to muon/pion pairs
 - These can be faked by muon charged-current events with a single charged pion, where the particles are misidentified kinematical cuts and a muon tagger should mitigate this background.

$$\nu + X \to X' + \mu^- + \pi^+$$

Existing Limits for Dark Photon Searches

Existing Limits for Dark Photon Searches

DUNE MPD Sensitivity

Similar Model to Search for: Leptophilic Gauge Bosons

Heavy Neutral Leptons

Model Assumptions

- ▶ HNL N with mass M_N that couples to the standard model only via mixing with the lepton doublet, via $\mathscr{L} \supset -y_N LHN$
- For simplicity, we assume that N mixes with only one flavor of SM lepton at a time, i.e. only one of $|U_{eN}|^2$, $|U_{\mu N}|^2$, $|U_{\tau N}|^2$ is nonzero.
 - This allows for predictable production and decay channels for N. A nontrivial combination of mixing angles could be analyzed, in principle.

Let's take mixing with the muon as an example. We include seven different production channels:

$$\pi^{+} \rightarrow \mu^{+}N$$

$$K^{+} \rightarrow \mu^{+}N$$

$$K^{+} \rightarrow \pi^{0}\mu^{+}N$$

$$D^{+} \rightarrow \mu^{+}N$$
$$D^{+} \rightarrow \pi^{0}\mu^{+}N$$
$$D^{+} \rightarrow \overline{K^{0}}\mu^{+}N$$
$$D_{s}^{+} \rightarrow \mu^{+}N$$

Two-body decays into charged leptons and SM neutrinos are helicity suppressed – having N be as massive as (or more massive than) the charged lepton can lead to enhanced branching ratios into HNL.

N Flux at Near Detector

• Assuming $|U_{\mu N}|^2 = 10^{-6}$, 5 years each in neutrino/antineutrino modes

Helicity enhancement when N is heavier than the muon

No such enhancement in three-body decays

N flux, Electron Coupling

Helicity enhancement, relative to decays like $\pi^{\pm} \rightarrow e^{\pm}\nu$, is readily apparent.

How does N Decay?

Again, assuming only one mixing, the decay widths of N are well-prescribed. Additional new physics (such as a light Z') could modify this significantly.

Irrelevant decays: those with just neutrinos ($N \rightarrow \nu \nu \overline{\nu}$) or those with a neutrino and one other neutral particle.

HNL Sensitivity, Electron-Coupled

HNL Sensitivity, Electron-Coupled

HNL Sensitivity, Muon-Coupled

HNL Sensitivity, Muon-Coupled

HNL Sensitivity, Tau-Coupled

HNL Sensitivity, Tau-Coupled

Further Discovery Potential?

Regions of currently unexplored parameter space where DUNE will cover – potential for way more than ~10 signal events. Can we do something with this?

Can we deduce the nature of these HNL?

Only positively-charged kaons decaying – negatively-charged ones are not produced, deflected, or absorbed, etc. If the HNL is a Dirac fermion, it carries lepton number and its decays must conserve LN

Measure the ratio of these final states in your detector (assuming you can identify the charges/particles on an event-by-event basis)

How Pure is the Beam?

Toy Exercise: Assume we identify every decay perfectly

Going Further: Muon-Coupled Channel

Going Further: Muon-Coupled Channel

Going Further: Muon-Coupled Channel

Conclusions

- The upcoming DUNE experiment has a ton to offer, even beyond "standard" neutrino oscillation physics.
- Its near detector complex has a suite of instruments that can be leveraged in new ways.
- We have shown that the gaseous argon Multi-Purpose Detector is well-suited to search for decays of long-lived particles that could be mediators to a dark sector.
- Also, the movable DUNE-PRISM concept can reduce systematic uncertainties and enable us to search for dark matter scattering in the detector.

Thank you!

Meson Production – 80 GeV vs. 120 GeV

Meson Type	Particle ID	80 GeV pp	$80 { m ~GeV} pn$	$120~{\rm GeV}~pp$	$120 {\rm ~GeV} pn$
π^+	211	2.5	2.2	2.8	2.5
π^{-}	-211	1.9	2.2	2.2	2.6
K^+	321	0.21	0.19	0.24	0.23
K^-	-321	0.12	0.12	0.15	0.16
D^+	411	1.1×10^{-6}	1.4×10^{-6}	$3.6 imes 10^{-6}$	$3.7 imes 10^{-6}$
D^{-}	-411	2.3×10^{-6}	2.8×10^{-6}	5.7×10^{-6}	$6.2 imes 10^{-6}$
D_s^+	431	2.8×10^{-7}	4.4×10^{-7}	1.1×10^{-6}	1.2×10^{-6}
D_s^-	-431	4.3×10^{-7}	$6.7 imes 10^{-7}$	$1.5 imes 10^{-6}$	$1.7 imes 10^{-6}$
π^0	111	2.49	2.52	2.86	2.89
η	221	0.28	0.28	0.32	0.33
K_L^0	130	0.15	0.16	0.18	0.19
K_S^0	310	0.15	0.16	0.18	0.19

Three-Body Decay Simulations

Leptophilic Gauge Boson Production

Dark Higgs Boson Production

Dark Higgs Boson Sensitivity

Kinematics for Dirac/Majorana Distinction

