

Nuclear Fusion inside Dark Matter Dark Matter as a Portal to New Physics Feb. 5th 2021

Javier Acevedo

Acevedo, Bramante & Goodman, 2012.10998 Acevedo, Bramante & Goodman, in preparation

양이론물리센터 fic center for al physics

Outline Composite DM 1. Composite-nucleus interactions 2. Direct detection signals З. Astrophysical effects 4.

5.

Conclusions

Composite DM

Consider simple model for asymmetric DM where

$$\mathscr{L}_0 = \frac{1}{2}\partial^2 \phi + \frac{1}{2}m_{\phi}^2 \phi^2 + \bar{X}\left(i\gamma^{\mu}\partial_{\mu} - m_X\right)X + g_{\phi}\bar{X}\phi X$$

Dirac fermion+real scalar

Scalar field provides attractive force for stable bound states:

1707.02313 1407.4121

Consider large-N limit: $N \gg 1$

field

 $\left(i\gamma^{\mu}\partial_{\mu}-(m_{X}-m_{X})\right)$

equations: $\left(\nabla^2 - m_{\phi}^2 - m_{\phi}^2 \right)$

1707.02313

number density n_X

- radius R_X
- Fermi energy/momentum ϵ_F, p_F
- binding energy $m_X \bar{m}_X$

$$\phi(x)$$
 spatially-varying classical field

$$-g_X\phi(x))\bigg)X(x)=0$$

$$g_{\phi}\langle \bar{X}X\rangle \bigg) \phi(x) = 0$$

Thomas-Fermi approximation: $p_F^3(x) \sim n_X(x)$ ($p_F(r > R_X) \equiv 0$)

particle number: $N \sim \left[dr \ r^2 \ p_F^3 \right]$

Solve held equation: $\nabla^2 \phi - m_{\phi}^2 \phi = \frac{1}{\pi}$, +boundary conditions Solve field equation:

Composite total energy:

$$E\left(p_F(x),\phi(x)\right) = \int dr \ 4\pi r^2 \left[\frac{1}{2}\left(\nabla\phi\right)^2 + \frac{1}{2}m_\phi^2\phi^2 + \frac{1}{\pi}\int_0^{p_F} dp \ p^2\sqrt{p^2 + m_*^2}\right]$$

 $= m_*(x)$ effective mass

$$\int_{0}^{p_{F}(\phi)} dp \, \frac{p^{2} \, m_{*}(\phi)^{2}}{\sqrt{p^{2} + m_{*}(\phi)^{2}}}$$

minimization yields radius R_X and binding energy $m_X - \bar{m}_X$

Composite state basic properties are therefore:

mass: radius:

$$M_X = N\bar{m}_X \qquad R_X = \left(\begin{array}{c} R_X = 0 \end{array} \right)$$

relativistic mean-field theory $m_* \ll p_F \ll m_X$ $\longrightarrow \langle \phi \rangle \simeq \frac{m_X}{g_\phi}$ $\longrightarrow \qquad p$ $C_{\phi}^2 \gg 1$

 $\left(\frac{9\pi N}{4\bar{m}_X^3}\right)$

number-density:

 $n_X = \frac{\bar{m}_X^3}{3\pi^2}$

Cosmological formation

 $\overline{X}X$ annihilation Xoverabundance

$$T_{ca} \sim m_X/10$$

fusion in strong binding limit:

process: $2n_Xv_X\sigma_X$ $10^{27} \left(\frac{g_{ca}}{10^2}\right)^{\frac{3}{5}} \left(\frac{T_{ca}}{10^5 \text{ GeV}}\right)^{\frac{9}{5}} \left(\frac{\bar{m}_X}{5 \text{ GeV}}\right)^{\frac{21}{5}} \left(\frac{\zeta}{10^{-6}}\right)^{\frac{6}{5}} 7$

Nuclear coupling

Consider an interaction term with SM nucleons

1812.07573

$\mathscr{L} = \mathscr{L}_0 + g_n \bar{n} \phi n$

boundary conditions impose:

$$\phi(r) = \begin{bmatrix} \langle \phi \rangle e^{-m_{\phi}(r-R_X)} \left(\frac{R_X}{r}\right) & r \ge R_X \\ \langle \phi \rangle \simeq \frac{m_X}{g_{\phi}} & r < R_X \end{bmatrix}$$

$$p_1^2 + m_N^2 = p_2^2 + (m_N - Ag_n \langle \phi \rangle)^2$$

$$(\phi) \ll m_N \longrightarrow Ag_n \langle \phi \rangle \equiv V_n = \frac{p_2^2 - p_1^2}{2m_N}$$

N-X scattering

DM constituents are ultra-relativistic and degenerate:

in saturation limit:
$$\langle \phi \rangle \simeq \frac{m_X}{g_X}$$

 $\mu = \epsilon_F = \sqrt{p_F^2 + (m_X - g_X \langle \phi \rangle)^2}$
 $\mu = m_*^2$
 \hat{p}_z $n_X = \frac{p_F^3}{3\pi^2} \sim \bar{m}_X^3$

allowed phase space for scattering

 $m^* \ll \bar{m}_X \simeq \epsilon_F, p_F \gtrsim \mathcal{O}(\text{GeV})$

naive scaling $\Gamma_{NX} \sim n_X \sigma_{NX} v_{NX}$ wrong

Scattering rate of nuclei:

$$\Gamma_{NX} = 2\pi n_X \int_0^{p_F} \frac{dp \ p^2}{V_F} \int d(\cos \theta) \int d\alpha \int_{(\text{control})}^{p_F} d\mu \int_{(\text{contr$$

Energy loss rate: $\dot{E}_{NX} \simeq \Gamma_{NX} \times \Delta E_{max}$

Consider 2 limits:

 $\dot{E}_{NX} \simeq A^2 g_n^2 g_\phi^2 \bar{m}_X^2 v_X^2$

2004.09539 1911.13293

Pauli-blocking

ativistic kinematics -of-momentum frame)

$$x_X^2 v_X^2$$
, $\bar{m}_X \ll m_N$ 'heavy probe'

 $\dot{E}_{NX} \simeq A^2 g_n^2 g_{\phi}^2 m_N^5 \bar{m}_X^{-3} v_X^8 , \ \bar{m}_X \gg m_N$ 'light probe'

nuclei barely scatter with DM constituents

2012.10998

Ionization (Migdal, collisions) Thermal bremsstrahlung Thermonuclear fusion

Potential signatures of this effect?

- Direct detection
- Type la supernovae
- Earth heating (in progress)

Direct detection signatures

~1 detectable DM event per year requires:

$$M_X^{max} \simeq \rho_X v_X A_{det} t_{exp}$$

 $\rho_X \simeq 0.3 \text{ GeV}$

 $v_X \simeq 220 \text{ km}$

 $t_{exp} \sim 10 \text{ yrs}$

Need $A_{det} \gtrsim 10^6 \text{ cm}^2$ ———

1803.08044

bremsstrahlung + fusion requires $R_X \gtrsim 10^{-7}$ cm $\longrightarrow M_X \gtrsim 10^{21}$ GeV $N_{c} = \left(\frac{2n_{X}\sigma_{X}v_{X}}{3H}\right)^{6/5} R_{X} = \left(\frac{9\pi N_{c}}{4\bar{m}_{v}^{3}}\right)^{\frac{1}{3}}$

$$\frac{\rho_X v_X A_{det} t_{exp}}{M_X} \simeq 1$$

$$\longrightarrow M_X^{max} \simeq 10^{18} \text{ GeV}$$
 e.g. Xenon
 $M \text{ cm}^{-3}$ Lux
 m s^{-1} PandaX

neutrino obs., e.g. IceCube, SNO+

Where in parameter space may these experiments have sensitivity?

Existing bounds on coupling

To trigger detectors: SNO+: ~1 MeV per 100 ns IceCube: ~10 TeV per 100 ns

Composites radiate continuously along path:

$$\dot{E}_{SNO+} \simeq 10^4 \text{ GeV s}^{-1}$$
 $\dot{E}_{IC} \simeq M_X^{max} \simeq 10^{22} \text{ GeV}$ $M_X^{max} \simeq M_X^{max}$

- $\simeq 3 \times 10^{25} \text{ GeV}$
- $\simeq 10^{11} \text{ GeV s}^{-1}$

- (~100 PeV in single crossing)

k K

Ξ ~____

1812.09325

Stellar cooling bounds on coupling limit the kinetic energy:

$$\Delta E \simeq A g_n \left(\frac{m_X}{g_\phi}\right)$$

$$\lesssim \text{keV}\left(\frac{g_n}{10^{-10}}\right) \left(\frac{m_X}{\text{TeV}}\right) \left(\frac{1}{g_\phi}\right) \left(\frac{A}{10}\right)$$

$$\lesssim 10^{-6}$$

$$\lesssim 10^{-9}$$

for ϕ masses < eV 10^{-12} 5th force searches further constrain coupling

10⁻¹⁵ L

1611.05852 1709.07882

Exceleration timescale:

$$ccel \simeq (m_{\phi}v_X)^{-1} \left(1 + \frac{2V_n}{m_N v_X^2}\right)^{-\frac{1}{2}} \lesssim 10^{-18} \text{ s} \left(\frac{10 \text{ ke}^2}{m_{\phi}}\right)^{-\frac{1}{2}}$$

electrons are unbound w/ prob $f_e \gtrsim 10^{-2}$

ionization from e- impacts: $n_e \sim 10^{23} {\rm ~cm^{-3}}$ $\sigma_i \gtrsim 10^{-17} \text{ cm}^2$ $\left(f_e n_e v_N \sigma_i\right)^{-1} \lesssim 10^{-15} \text{ s}$

 $T \gtrsim 100 \text{ eV}$ completely ionized matter

specific emissivity:

$$\omega = \frac{16\pi e^6 n_e^2}{3\sqrt{3}m_e^2} \exp\left(-\frac{\omega}{T}\right), \ n_e \sim 10^{23} \text{ cm}^{-3}$$

radiated energy rate:

$$\dot{E}_{brem} = \int j_{\omega}(T) \, d\omega dV \simeq$$

$$0^{10} \text{ GeV s}^{-1} \left(\frac{m_X}{\text{TeV}}\right)^{\frac{3}{2}} \left(\frac{R_X}{\text{nm}}\right)^3 \left(\frac{g_{\phi}}{1}\right)^{-\frac{1}{2}} \left(\frac{g_n}{10^{-10}}\right)^{\frac{3}{2}} \left(\frac{g_n}{10^{-10}}$$

can also compute stopping length:

$$\frac{1}{V} \int_{-\frac{3}{2}}^{\frac{3}{2}} \left(\frac{m_{\phi}}{10 \text{ keV}}\right)^2 \left(\frac{g_n}{10^{-10}}\right)^{-\frac{1}{2}} \left(\frac{g_{\phi}}{1}\right)^{-\frac{3}{2}} \left(\frac{v_X}{200 \text{ km s}^{-1}}\right)^{-\frac{3}{2}}$$

rare to occur while in detection volume: SNO+ too small $\longrightarrow M_X \lesssim 10^{22} \text{ GeV}$

IceCube requires $T \gtrsim 5$ MeV \longrightarrow ~1 reaction per crossing

reaction rate per unit volume:

$$(T \simeq \text{MeV}) \sim 10^{24} \text{ cm}^{-3} \text{ s}^{-1} \left(\frac{\rho}{1 \text{ g cm}^{-3}}\right)^2$$

Caughlan & Fowler, 1988

average energy release: $\bar{Q} \sim 10 \text{ MeV}$

more complete reaction network left for future work

(e.g. disintegration/recapture)

Parameter space of potential detectability:

LVS = large volume scintillator

increasing radius/mass

2012.10998

coupling)

(fixed

temperature

asing

nCre

energy binding composite increasing

Type la supernovae Thermonuclear explosions of WDs

localized heat deposition leads to runaway fusion

Accretion/double detonation, WD mergers Dark matter accumulation → PBH transit

Consider large composite state crossing WD:

relevant reactions: yield: $^{12}C(^{12}C, \alpha)^{20}Ne + 4.6 \text{ MeV}$ 0.53/0.40/0.07 $\bar{Q} \sim 3 \text{ MeV}$ $^{12}C(^{12}C, p)^{23}Na + 2.2 \text{ MeV}$ rate: $R_{th}(T = \text{MeV}) \simeq 10^{42} \text{ cm}^{-3} \text{ s}^{-1} \left(\frac{\rho_*}{10^9 \text{ g cm}^{-3}}\right)^2$ 20 $^{12}C(^{12}C, n)^{23}Mg - 2.6 \text{ MeV}$

0506.386 1505.07464 1904.11993

ignition requires $T_{crit} \simeq 10^{10} \text{ K} \sim \text{MeV}$ $\rho_* \simeq 10^9 \text{ g cm}^{-3}$ heating rate > heat diffusion 'trigger mass'

Must also consider energy dissipation:

$$\begin{bmatrix} \dot{Q}_{cond} = \frac{4\pi^2 T^4 R_X}{15\kappa_c \rho_*} \simeq 10^{27} \text{ GeV s}^{-1} \left(\frac{R_X}{\mu \text{m}}\right) \\ \dot{Q}_{rad} = \frac{4\pi R_X^2}{\kappa_r \rho_*} \nabla(\sigma T^4) \simeq 10^{22} \text{ GeV s}^{-1} \left(\frac{R_X}{\mu \text{m}}\right)^2 \left(\frac{m_\phi}{\text{keV}}\right) \end{bmatrix}$$

Composite kinetic energy:

$$\frac{1}{2} M_X v_{esc}^2 \gtrsim 10^{28} \text{ GeV} \left(\frac{M_X}{10^{32} \text{ GeV}} \right)$$

 $R_* \simeq 3000 \text{ km}$

Nuclear energy production: $Q_{fus} \simeq QR_{t}$

2012.10998

radiation

heavy composites not significantly stopped

 $v_{esc} \simeq 0.03 \longrightarrow \Delta t_{cross} \simeq 1 \text{ s}$

$$P_{th}\left(\frac{4\pi R_X^3}{3}\right) \simeq 10^{28} \text{ GeV s}^{-1}\left(\frac{R_X}{\mu\text{m}}\right)^3$$

~µm sized composites can ignite core

Trigger mass lines up with ignition simulation results

WD survival on ~Gyr scales imply bounds on coupling, for masses

 $M_X \lesssim 10^{42} \text{ GeV}$

2012.10998

Earth heating

Composite capture, reactions in the mantle:

 $\bullet \dot{E} \sim R_X^3 R_{th} \bar{Q}$

total heat flux ~44 TW

 $\Delta E_{tot} = N_{tot}(t) \times \dot{E} \times \Delta t_{cross}$

 $L_{stop} \simeq 2 \, \mathrm{km} \left(\frac{m_X}{\mathrm{TeV}}\right)^{\frac{3}{2}} \left(\frac{m_\phi}{10 \, \mathrm{keV}}\right)^2 \left(\frac{g_n}{10^{-10}}\right)^{-\frac{1}{2}} \left(\frac{g_X}{1}\right)^{-\frac{3}{2}} \left(\frac{v_X}{200 \, \mathrm{km \, s^{-1}}}\right)^3$

Conclusions

- - Earth's heat flux may be used to set bounds on the coupling.

Large composite states whereby nuclei are coupled to the binding field presents interesting phenomenology:

Radiation and fusion potentially observable at large neutrino observatories.

Can catalyze thermonuclear runaway in WDs, leading to Type Ia SNe.

More to be done

Inclusion of vector field that couples to nuclei:

$$\mu \rightarrow g_V V_0 + \sqrt{k_F^2 + (m_X - g_\phi \phi)^2} \qquad V_0 \equiv \langle V^\mu \rangle \delta_{\mu 0}$$

Migdal effect and searches for weakly-coupled composites.
 Implications for BBN abundances and other cosmological observables.

Stellar and planetary capture and heating.

Look into other composite DM models.

Thank you for your attention!