DM as a Portal to New Physics @ APCTP

Fermion portal dark matter and muon anomalies

Junichiro Kawamura

Institute for Basic Science, CTPU

arXiv:2002.12534, 1706.04344 [JHEP] [PRD]

in collaboration with

Y.Omura [Kindai U., Japan] and S.Okawa [Victoria U., Canada]

Dark Matter [DM]

- dark matter
 - dark and cold (particle)
 - 27% of energy of the universe
 - discovered only by gravitational int.
- particle candidates
 - Weakly Interacting Massive Particle [WIMP]
 - axion, ALP
 - SIMP, FIMP, asymmetric, self-interacting, …

WIMP is still an interesting candidate

Freeze-out of WIMP

- DM decouples from thermal bath and "freeze-out"
- Electro-Weak [EW] coupling and mass can explain relic density
- WIMP can be in beyond SM e.g. models for muon anomalies

Probes of WIMP

annihilation

- indirect detection
- annihilation in DM rich env.
- e.g. Fermi-LAT, CTA, HESS,

- > scattering
 - direct detection
 - scattering with nucleus/e
 - e.g. XENON, PANDA, LZ

Minimal WIMP models

SM + EW singlet DM

- quartic coupling $X^2 H^{\dagger} H$ and DM mass • are the parameter
- direct detection excludes most region ullet
- resonant or heavy region still alive ۲

Fermion portal model

SM + EW singlet DM + mediator

- Yukawa coupling, DM and mediator masses are parameter
- co-annihilation of DM and mediator occurs if degenerate
- pure bino + slepton in SUSY is in this class
- We focus on EW singlet DM cf. non-singlet case: 0512090 M.Cirelli, N.Fornengo, A.Strumia (DM)

1804.00009, L.Calibbi, R.Ziegler, J.Zupan (DM+g-2) 6

Outline

- 1. Introduction
- 2. minimal lepton portal dark matter
- 3. simultaneous explanation with muon anomalies
- 4. Conclusion

Minimal lepton portal model

SM + EW singlet DM + 1 mediator (s)lepton

there are $2 \times 2 \times 2 = 8$ possibilities

Scalar DM models

- fermion mediator should be vector-like
- Yukawa coupling is non-zero only for muon
- Higgs portal is neglected
- Fermion DM models
 - mediator is "s"lepton (complex scalar)
 - special case of Majorana DM (= bino) is realized in SUSY

LHC limits

mediator decays to DM and muon

 \rightarrow $p p \rightarrow L L \rightarrow \mu \mu + MET$ is the same as SUSY slepton signal

limit from 139 fb⁻¹ data at ATLAS [1908.08215]

FeynRules, Madgraph5

Annihilation

2-2 annihilation

velocity expansion: $\sigma v = a + b v^2 + cv^4 + \cdots$ $\langle v^2 \rangle \simeq 0.24, \langle v^4 \rangle \simeq 0.1$ s-wavep-waved-waveat freeze-out

- s-wave is helicity suppressed, i.e. $\propto m_{\mu}^2/m_X^2$, except Dirac DM
- p-wave is also helicity suppressed for real DM

Annihilation

relative importance of higher-order processes

 $\mathsf{Ratio} = \frac{\langle \sigma(XX \to \mu\mu V/VV')v \rangle}{\langle \sigma(XX \to \mu\mu)v \rangle}$

$$m_X = 500 \text{ GeV}$$

 $r = m_L/m_X$

LI

- higher-order processes can be sizable for real DM
- these are less than 0.1 for ulletother cases

Virtual Internal Bremsstrahlung

e.g. 1203.1312 T.Bringmann, X.Huang et.al

Final State Radiation [FSR]

Virtual Internal Bremsstrahlung [VIB]

photon spectrum from VIB

$r = m_L/m_X$

- peak at $E_{\gamma} \sim m_X$ if $m_L \sim m_X$
- γ from $XX \rightarrow \gamma\gamma$, $Z\gamma$ also has

sharp spectral structure 1405.6917 A.Ibarra, T.Toma et.al

Direct detection

0907.3159, J.Kopp etl.al

tree-level is absent

1-loop penguin

 $\blacktriangleright \quad \mathcal{L}_{\rm eff} \supset C \ i \left(X^{\dagger} \partial_{\mu} X - \partial_{\mu} X^{\dagger} \cdot X \right) \overline{N} \gamma^{\mu} N$

- dominant in complex scalar DM
- vanishing for real scalar DM

- 2-loop two photon exchange
 - dominant in real scalar DM
 - very much suppressed

Current status of scalar DM

 $r = m_E/m_X$

- \checkmark excluded by direct detection
- ✓ Δa_{μ} is too small

- co-annihilation is needed for abundance
- direct detection bound is absent
- indirect detections give bounds

Current status of fermion DM

 $r = m_E/m_X$

Yukawa is fixed to explain thermal relic density via (co-)annihilation

10 E $= -5 \times 10^{\circ}$ 5 -2×10^{-11} $\lambda(m_{\chi}) > \sqrt{4\pi}$ $\Lambda = 1 \, \text{TeV}$ LHC 0.50 0.10 0.05 MicrOmegas 10TeV 100TeV 0¹⁵GeV 0.01 100 1000 5000 10^{4} 500 m_{γ} [GeV]

Majorana DM, singlet mediator

- ✓ XENON excludes wide region
- ✓ Δa_{μ} is too small

- p-wave allows larger mass difference
- direct detection bound is absent
- indirect detections give no bound

Summary of minimal models

	real	complex	Majorana	Dirac
relic density $XX \rightarrow \mu\mu$	d-wave	p-wave	p-wave	s-wave
direct det. $XN \rightarrow XN$	2-loop	1-loop	1-loop <i>v</i> -suppressed	1-loop
indirect det. $\sigma_{\mu\mu\gamma}/\sigma_{\mu\mu}$	≳ 0.1	≲ 0.1	$\lesssim 0.1$	≲ 0.1

- complex/Dirac DM is strongly constrained by XENON
- real DM is partially constrained by indirect detections
- Majorana DM is less constrained
- Analytic formulas are in paper

Outline

- 1. Introduction
- 2. minimal lepton portal dark matter
- 3. simultaneous explanation with muon anomalies
- 4. Conclusion

Muon g - 2

- discrepancy is resolved if lattice result for hadronic contribution is true
- we would have new experimental result soon

Δa_{μ} in lepton portal model

SM + singlet DM + 2 mediator (s)leptons

$$\mathcal{L} \supset \lambda_L \overline{\ell_L} X L_R + \lambda_R \overline{E}_L X^* \mu_R + \kappa \overline{L}_L H E_R \qquad E'_{L(R)} \in L_{L(R)}$$
$$\longrightarrow \qquad \left(\begin{array}{cc} E'_R \\ E_R \end{array} \right) = \begin{pmatrix} c_R & s_R \\ -s_R & c_R \end{pmatrix} \begin{pmatrix} E_{R_1} \\ E_{R_2} \end{pmatrix}, \quad \begin{pmatrix} E'_L \\ E_L \end{pmatrix} = \begin{pmatrix} c_L & s_L \\ -s_L & c_L \end{pmatrix} \begin{pmatrix} E_{L_1} \\ E_{L_2} \end{pmatrix}$$

mixing is induced by Yukawa coupling κ

$$\Delta a_{\mu} \sim \frac{m_{\mu}}{16\pi^2 m_X^2} \left[\lambda_L \lambda_R \ c_R s_L m_{E_1} + \mathcal{O}(m_{\mu}) \right]$$

sizable Δa_{μ} comes only from mixing

Correlation to DM density

Annihilation rate

$$\langle \sigma v \rangle \sim \frac{|\lambda_L \lambda_R|^2}{\pi} \left(\frac{c_R s_L m_{E_1}}{m_X^2 + m_{E_1}^2} - \frac{c_L s_R m_{E_2}}{m_X^2 + m_{E_2}^2} \right)^2$$

no suppression by muon mass in the s-wave contribution

 \succ Correlation to Δa_{μ}

 $\langle \sigma v \rangle \sim 3 \times 10^{-26} \, [\mathrm{cm}^3/s]$

 $\rightarrow \Delta a_{\mu} \sim \frac{m_{\mu}}{16\pi^2} \sqrt{2\pi \langle \sigma v \rangle} \sim 5 \times 10^{-8}$ is too large if maximal mixing

 \rightarrow co-annihilation and/or $\lambda_L \ll \lambda_R (\lambda_R \ll \lambda_L)$ and/or non-maximal mixing is/are needed

Result in real DM

λ_R is fixed to explain relic density

 $m_{E_2} - m_{E_1} = 100 \text{ GeV}$ $r = m_{E_1}/m_X$

 Δa_{μ} can be explained if $m_{E_1} \sim 1.1 imes m_X$ and $\lambda_L \sim 0.01 imes \lambda_R$

Result in Majorana DM

 λ_R is fixed to explain relic density

- Δa_{μ} can be explained if $m_{E_1} \sim 1.1 \times m_X$ and $\lambda_L \sim 0.01 \times \lambda_R$
- requirement for degeneracy is relaxed due to p-wave contribution

 $b \rightarrow s \ell \ell$ anomaly

$$\mathcal{H}_{eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{\alpha}{4\pi} \sum_{j=9,10} (C_j O_j + C'_j O'_j) + h.c.$$

$$\mathcal{O}_9^{(\prime)\mu} = (\bar{s}\gamma_\mu P_{L(R)} b) (\bar{\mu}\gamma^\mu \mu) \qquad \mathcal{O}_{10}^{(\prime)\mu} = (\bar{s}\gamma_\mu P_{L(R)} b) (\bar{\mu}\gamma^\mu \gamma_5 \mu)$$

> anomalies in B decays

- $R_K = 0.846^{+0.060}_{-0.054} \, {}^{+0.016}_{-0.014}$ is 2.5 σ below the SM prediction
- Branching ratios in $B \rightarrow \phi \mu \mu$, $K \mu \mu$ are (2 - 3) σ below the SM pred.
- discrepancy in angular observables

$$\sqrt{\chi^2_{SM} - \chi^2} > 6 \sigma$$

l

 $b \rightarrow s \ell \ell$ anomaly

$$\mathcal{H}_{eff} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{\alpha}{4\pi} \sum_{j=9,10} (C_j \,\mathcal{O}_j + C_j' \mathcal{O}_j') + h.c.$$

$$\mathcal{O}_9^{(\prime)\mu} = (\bar{s}\gamma_\mu P_{L(R)} b) (\bar{\mu}\gamma^\mu \mu) \qquad \mathcal{O}_{10}^{(\prime)\mu} = (\bar{s}\gamma_\mu P_{L(R)} b) (\bar{\mu}\gamma^\mu \gamma_5 \mu)$$

> anomalies in B decays

- new result on $B^+ \rightarrow K^{*+} \mu \mu$ also favors Re $C_9 \sim -1.9$
- Significance from SM is 3.1 σ

Explanation in fermion portal

preferred pattern may be LL-type: $C_9 = -C_{10} \sim -0.5$

 $\mathcal{O}_{9}^{\mu} = \left(\bar{s}\gamma_{\mu}P_{L}b\right)(\bar{\mu}\gamma^{\mu}\mu) \qquad \mathcal{O}_{10}^{\mu} = \left(\bar{s}\gamma_{\mu}P_{L}b\right)(\bar{\mu}\gamma^{\mu}\gamma_{5}\mu)$

Complex DM X + doublet VL quark Q + VL lepton L Yukawa coupling: $\mathcal{L} \supset \lambda_{\mu} \overline{\ell_2} X L_R + \lambda_b \overline{q}_3 X Q_R + \lambda_s \overline{q}_2 X Q_R$

flavor violation is necessary in quark sector $\rightarrow B_s - \overline{B}_s$, $D - \overline{D}$ mixing

Direct detection

VL quark mediator affects to direct detection significantly

Processes

- there is, in general, tree-level scattering via CKM mixing $\propto \lambda_s V_{uc}$
- γ/Z penguin tends to dominate, Z-penguin enhanced by top mass
- γ and Z penguins are destructive
- gluon scattering is subdominant

Result

λ_{μ} is fixed to explain relic density. Typically $\lambda_{\mu} \sim 2$

1706.04344 JK, Y.Omura, S.Okawa

- $C_9 = -C_{10} \sim -0.3$ is compatible with LHC limit and direct detection
- cancellation in direct detection rate happens

Summary

> Muon g - 2

- both singlet and doublet mediators are necessary for sizable Δa_{μ}
- can be explained with DM in real scalar and Majorana cases
- tends to be too big, mild tuning O(0.1) may be needed

$\succ b \rightarrow s\ell\ell$

- both doublet VL quark and VL lepton are necessary
- we considered complex scalar DM
- $C_9 = -C_{10} \sim -0.3$ is possible where direct detection rate is canceled

Outline

- 1. Introduction
- 2. minimal lepton portal dark matter
- 3. simultaneous explanation with muon anomalies
- 4. Conclusion

Conclusion

Minimal lepton portal models

- we studied real, complex, Majorana and Dirac singlet DM w/1 mediator
- complex and Dirac DM are almost excluded by direct detection
- real DM may predict peaked signal
- Majorana DM is tough to be tested
- Simultaneous explanation with muon anomalies
 - Δa_{μ} can be explained in models with singlet and doublet mediators
 - $b \rightarrow s \mu \mu$ can be partially explained in narrow parameter space

Thank you !!

Backup

Direct detection of fermion DM

• $b_{\chi} = \mu_{\chi} = d_{\chi} = 0$ for Majorana DM

• anapole a_{χ} contribution is suppressed by velosity v or recoil energy E_R

Current status of scalar DM

Current status of fermion DM

g-2 in scalar DM

g-2 in fermion DM

Result

λ_μ is fixed to explain relic density. Typically $\lambda_\mu \sim 2$

LHC limit: 36 fb^{-1}

- $C_9 = -C_{10} \sim 0.3$ is compatible with LHC limit and direct detection
- cancellation in direct detection rate happens

LHC limit on VL quark

integrated luminosity is 36 fb^{-1}

ΔC_9 vs collider constraints

Figure 3: ΔC_9 on the plane of $m_{L'}$ and m_X with $|\lambda_{\mu}| = 2$, $|\lambda_b \lambda_s| = 0.15$ and $m_{Q'} = 1.1$ TeV. The size of $\Delta C_9 = -\Delta C_{10}$ on each black line is -0.1 (thick), -0.2 (dashed), -0.3 (dotted), and -0.5 (solid), respectively. The (light) red region is the 1σ (2σ) region of R_K . The (dashed) green line depicts the lower limit from $B_s - \overline{B_s}$ mixing in Eq. (7) at $m_{Q'} = 1.1$ TeV (1 TeV). The blue region is excluded by $\mu\mu + E_T^{\text{miss}}$ at the LHC [31].