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Precision Holography

e Usually refers to the comparison of classical supergravity
solutions and large-N QFT computations.

e In early days of AdS/CFT, anomaly coefficients and CFT
quantities which are independent of coupling constants.

e Can account for more non-trivial quantities, now using
supersymmetric localization results.



Free energy of ABJM using Localization

Saddle point approx. makes us treat
the integration variables as particles
on complex plane under 1-particle
and 2-particle interactions
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1. A perturbative
approach in holography
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Sphere Partition Functions
with Mass terms

e | ocalization formula is independent of superpotential
iInteractions, but does depend on mass.

e EXxhibits interesting phase transition.

e For small mass, the free energy (In Z) calculation is not
too difficult and the results are available.



ABJM
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N=2* deformation of N=4 SYM

d3Fga ,ma(m?a® + 3)
— 9N ,
d(ma)3 (m2a? 4 1)?

Brandhuber-Oz D4-D8, USp(2N) with
massless hyper and massive fundamental

T 2
P N, — 1 5 2\5/2 5/2
() = = (( F= Dl - \/S_Nf(9+2u) )N




e For all the field theory side considerations in the last slide,
we know of the holographic side BPS equations in certain
Einstein-scalar systems.



Example: Dual of N=1~
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BPS equations
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Expansion near AdS
boundary

(z1+220+23+24+21+220+ 23+ 24)/4 = (1 52) (2u1p + v1 — spaus) e 20 4 (9(,026_4”)
(21— 220+ 23— 244+21 — 22+ 23— 24)/4 = (1 52) (2u2p + vo — sp1u3) e %P + O(p26_4p)
(21420 —23—244+21+ 22— 23— 24) /4 = (1 2) (2usp + v3 — spipo) e 2P + O(p?e ),
(21— 20— 23+ 24+21 — 29— 23+ 24)/4 =25 — (1 — 8 ) (,ul -+ ,u2 + ,LL3) e 2P + O(pe~P),

1
(21—22—Z3+Z4—51—|—22+Z3—24)/4=—5
— 25 (u1v1 + pove + ugvy) — 4s (,u% + ui + ,ug) p] e %" + O(pe°P).
Holographic Renormalization
(Gravity action after regularization and including counterterm)

83F - N2 82’07;
O 2 Oui

[/




Our result

Numerical method is too demanding because there are many DOF.
We can treat the integration constants as small perturbation and
Impose regularity at each order (in IR)
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Prediction of AdS/CFT, to be verified in QFT W
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Gaugino condensate
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Results of other models

e ABJM: exact solutions are known, which can be
constructed using our method.

e D4-D8: the series form of F can be summed. Disagrees
with the field theory prediction.

* Mass deformed ABJM (An N=2 Fixed point when one

bifundamental in ABJM is given mass): Consistent with
field theory and numerical results.



2. GK geometry
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Wrapped D3 and M2

e |n 2005, | found the general form of supergravity solutions
for D3 wrapped on 2-cycles. (M2 case essentially the
same in higher dimensions)
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vs. Sasaki-Einstein

e The construction is similar to the relation between CY
with conical singularity, whose base space is Sasaki-

Einstein, which is in turn a twisted U(1) fibration over
Kahler-Einstein

e |n this case of wrapped branes, the metric cone is not
Kahler, although the base of the U(1) fibration is Kahler



Example Solutions
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where Dy = dy + 3B, Dz = dz — g(y) D1 and
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And many more.
Interpreted as
Lower-dim SCFTs and their central charge
or Near horizon geometry of AdS BHs




Volume Minimization

e Recently, a “master-volume” formula was devised whose
minimization, given toric data and choosing magnetic flux,
gives the central charge/BH entropy. Couzens, Gauntlett,
Martelli, Sparks 2018-2019

e Since it is a generalization of “volume minimization” for
toric Sasaki-Einstein, let me sketch Martelli, Sparks, Yau
2005 instead.



Toric geometry

Definition: Symplectic manifold (M, 2n-dim) with U(1)"
Killing isometry

Symplectic 2-form (@) is closed (dw = 0) and its n-th
power is Volume form (1/n!w” = Vol(M)).

Hamiltonian mechanics is described in terms of symplectic
geometry: when X is time-evolution vector field, iy = dH

Thus having n Killing vector means we have n
“Hamiltonians”, and their range gives toric data.
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Moment map

. S2 (CP1) is symplectic @ = —d¢p Asin0de

(Kahler in fact) and the Y — i

moment map y (Hamiltonian) O

is easily obtained iy@w = — sin 6d@
= d(cos )

e Toric diagram for S is an
interval: For S% X S? etc, one

nas the square. In general, Vol(M) = | dy,d¢,...
polygons or polytopes (A), J
and its area is related to the = (2m)"Vol(A)

volume of toric manifold



Toric Cone and
Sasakian manifold

One application is for vacuum moduli space of supersymmetric
gauge field theory

e The description is modified: (1) toric manifold is non-compact,
and (2) we use the normal vector to the faces of the polytope

D-term conditions and identification of gauge orbits lead to Kahler
quotient: GLSM (gauged linear sigma model)

One considers theories with U(1) vector multiplets and charged
chiral multiplets

For each U(1), D-term condition and gauge redundancy reduces
the dimensionality by 2.



An example: the conifold

e |n terms of gauge theory, in abelian version one has
U(l) x U(1), A, A, with charge (1,-1) and B, B, with
charge (-1,1).

e D-term condition | A, \2 + |A2\2 — | B, \2 — \Bz\z =0

 Gauge redundancy: | | | |
(A, Ay, B|,B,) ~ (¢"“A;,e'"A,, e "B, e "'“B,)

« The result is conifold: ds? = dr? + rzdS%l,l



Moment map of the conifold
(0411238)
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* Metric (Sasaki-Einstein, with

SU(2) x SU2) x U(1) isometry) e = % b o
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e 3 commuting Killing vectors 2 T 36 20w
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* Moment maps, giving a “convex
rational polyhedral cone”, i = (1r2(cos 01+ 1), 1rz(cos 02+ 1), 173) .
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generated by 4 edge vectors

e Alternatively defined by “outward
pointing primitive normal vectors”

v, =[1,0,-1], wvy=10,1,-1], wv3=1[0,—1,0], wvy=[-1,0,0].

Toric Data



How to relate toric data to
gauge theory

The kernel of a matrix made of toric data gives charge
assignment for Kahler quotient (GLSM). Delzant
construction

For the 3 X 4 matrix for conifold, the kernel is (1,1,-1,-1)
and matches the matter contents of gauge theory dual.

Calculating the volume of the base space requires
choosing r = const slice, or equivalently the Reeb vector

Shown to equal to the extremized value of Ricci scalar.
Martelli, Sparks, Yau 0503183



(Master) Volume formulas
for 5d Sasaki-Einstein
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