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Precision Holography

• Usually refers to the comparison of classical supergravity 
solutions and large-N QFT computations.


• In early days of AdS/CFT, anomaly coefficients and CFT 
quantities which are independent of coupling constants.


• Can account for more non-trivial quantities, now using 
supersymmetric localization results.



Free energy of ABJM using Localization 

Saddle point approx. makes us treat

the integration variables as particles

on complex plane under 1-particle 


and 2-particle interactions



1. A perturbative 
approach in holography
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Sphere Partition Functions 
with Mass terms 

• Localization formula is independent of superpotential 
interactions, but does depend on mass.


• Exhibits interesting phase transition.


• For small mass, the free energy (ln Z) calculation is not 
too difficult and the results are available.



N=2* deformation of N=4 SYM

Brandhuber-Oz D4-D8, USp(2N) with  
massless hyper and massive fundamental

ABJM



• For all the field theory side considerations in the last slide, 
we know of the holographic side BPS equations in certain 
Einstein-scalar systems.



Example: Dual of N=1*

10 real scalars and 1 warp factor 
Regular solutions parametrized by  

3 mass parameters



BPS equations



Expansion near AdS 
boundary

Holographic Renormalization  
(Gravity action after regularization and including counterterm)



Our result
Numerical method is too demanding because there are many DOF. 
We can treat the integration constants as small perturbation and 

Impose regularity at each order (in IR)

Prediction of AdS/CFT, to be verified in QFT

Gaugino condensate

with 
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Results of other models

• ABJM: exact solutions are known, which can be 
constructed using our method.


• D4-D8: the series form of F can be summed. Disagrees 
with the field theory prediction.


• Mass deformed ABJM (An N=2 Fixed point when one 
bifundamental in ABJM is given mass): Consistent with 
field theory and numerical results.



2. GK geometry
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Wrapped D3 and M2
• In 2005, I found the general form of supergravity solutions 

for D3 wrapped on 2-cycles. (M2 case essentially the 
same in higher dimensions)



vs. Sasaki-Einstein

• The construction is similar to the relation between CY 
with conical singularity, whose base space is Sasaki-
Einstein, which is in turn a twisted U(1) fibration over 
Kahler-Einstein


• In this case of wrapped branes, the metric cone is not 
Kahler, although the base of the U(1) fibration is Kahler



Example Solutions

And many more. 
Interpreted as  

Lower-dim SCFTs and their central charge 
or Near horizon geometry of AdS BHs

J. Gauntlett et al 

0606221



Volume Minimization

• Recently, a “master-volume” formula was devised whose 
minimization, given toric data and choosing magnetic flux, 
gives the central charge/BH entropy. Couzens, Gauntlett, 
Martelli, Sparks 2018-2019


• Since it is a generalization of “volume minimization” for 
toric Sasaki-Einstein, let me sketch Martelli, Sparks, Yau 
2005 instead.



Toric geometry
• Definition: Symplectic manifold ( -dim) with  

Killing isometry


• Symplectic 2-form ( ) is closed ( ) and its -th 
power is Volume form ( ).


• Hamiltonian mechanics is described in terms of symplectic 
geometry: when X is time-evolution vector field, 


• Thus having  Killing vector means we have  
“Hamiltonians”, and their range gives toric data.

M, 2n U(1)n

ω dω = 0 n
1/n!ωn = Vol(M)

ιXω = dH

n n



dH(q, p) =
∂H
∂q

dq +
∂H
∂p

dp

= − ·pdq + ·qdp
= Xqωqpdp + Xpωpqdq

X =
∂
∂t

= ·q
∂
∂q

+ ·p
∂

∂p

ω = dq ∧ dp



Moment map
•  (CP1) is symplectic 

(Kahler in fact) and the 
moment map  (Hamiltonian) 
is easily obtained


• Toric diagram for  is an 
interval; For  etc, one 
has the square. In general, 
polygons or polytopes ( ), 
and its area is related to the 
volume of toric manifold

S2

y

S2

S2 × S2

Δ

ω = − dϕ ∧ sin θdθ

X =
∂

∂ϕ
ιXω = − sin θdθ

= d(cos θ)

Vol(M) = ∫ dy1dϕ1…

= (2π)nVol(Δ)



Toric Cone and  
Sasakian manifold

• One application is for vacuum moduli space of supersymmetric 
gauge field theory


• The description is modified: (1) toric manifold is non-compact, 
and (2) we use the normal vector to the faces of the polytope


• D-term conditions and identification of gauge orbits lead to Kahler 
quotient: GLSM (gauged linear sigma model)


• One considers theories with  vector multiplets and charged 
chiral multiplets


• For each , D-term condition and gauge redundancy reduces 
the dimensionality by 2.

U(1)

U(1)



An example: the conifold

• In terms of gauge theory, in abelian version one has 
,  with charge (1,-1) and  with 

charge (-1,1).


• D-term condition 


• Gauge redundancy:



• The result is conifold: 

U(1) × U(1) A1, A2 B1, B2

|A1 |2 + |A2 |2 − |B1 |2 − |B2 |2 = 0

(A1, A2, B1, B2) ≃ (eiαA1, eiαA2, e−iαB1, e−iαB2)

ds2 = dr2 + r2ds2
T1,1



Moment map of the conifold 
(0411238)

• Metric (Sasaki-Einstein, with 
 isometry)


• 3 commuting Killing vectors 
( )


• Moment maps, giving a “convex 
rational polyhedral cone”, 
generated by 4 edge vectors


• Alternatively defined by “outward 
pointing primitive normal vectors”

SU(2) × SU(2) × U(1)

ψ = 2ν

Toric Data



How to relate toric data to 
gauge theory

• The kernel of a matrix made of toric data gives charge 
assignment for Kahler quotient (GLSM). Delzant 
construction


• For the  matrix for conifold, the kernel is (1,1,-1,-1) 
and matches the matter contents of gauge theory dual.


• Calculating the volume of the base space requires 
choosing  slice, or equivalently the Reeb vector


• Shown to equal to the extremized value of Ricci scalar. 
Martelli, Sparks, Yau 0503183

3 × 4

r = const



(Master) Volume formulas 
for 5d Sasaki-Einstein

volume of  

SE5 and cycles

#D3

Flux


