Computing and Physics

A few reflections about the role of computers in Physics
and life in occasion of prof. X} @’s retirement workshop

Stefano Scopel

R AW CHEE

S0GANG UNIVERSITY

Sogang University, February 26, 2020

OpenSource software in Physics and Cosmology http://pyflation.ianhuston.net/ (just some examples!)

MadGraph + MadEvent

> <

Automated Tree-Level
Feynman Diagram, Helicity
Amplitude,

and Event Generation _
Tim Stelzer
Fabio Maltoni

ournal of Gosmology and Astroparticle Physics

An IOP and SISSA journal

CMBEASY: an object oriented code for

the cosmic microwave background

An alternative way to share knowledge?

PYTHIA Physics : ref 6.4 Manual

xiv.org/abs/ep-phi0603175

1) The first hard interaction is the first step of event machinery :

Computed in pQDC framework with factorization, possibility to select hard process : charm, bottom,
jets, photon -> can tune this steg

X are produced
g EOTEEIT
0520000680000000000 QROEUN 0000000
2o B 0000000V VY
P gk .
§ p

2) MPI (Multiple Parton Interaction) : other processes (soft or hard) can happen in parallel:
PYTHIA model : the first hard interaction is particular, other are reconstructed afterward, ordered
in hardness, in PYTHIA 6, only g,u,d,s available in other interaction,

In PYTHIA 8 : second hard can include charm and bottom

relic density

W

Pyflation: a Python package for calculating
cosmological perturbations during an inflationary

expansion of the universe.

| At this step only partons

indirect rates

Accelerator Physics

Astroparticle

Cosmology

Two examples of concepts that have changed the paradigm in computational physics:

* Object-oriented programming
* Machine learning

Object-oriented programming

Any element in the code is an object. Trivial objects: floats, strings, arrays.
For each of them we can do operations (sum two floats, compare two
strings) or can use them them as inputs of functions.

In object programming can create new, “exotic” objects, with their own

properties and operations, that can be manipulated according to their
nature

unicorn dragon

An explicit example

Suppose you have to calculate a physical process that depends on a target nucleus
1. Create an “element” class

2. ‘instantiate” as many time as needed to create many object belonging to the class “element”:
>>> fluorine=PT.element('F"')

>>> print(fluorine)

fluorine, symbol f, atomic number 9, average mass 17.689, 1 isotopes.

>>> carbon=PT.element('C")
>>> print(carbon)

carbon, symbol c, atomic number 6, average mass 11.182, 2 isotopes.

Now can write a routine that calculates a scattering cross section of a particle off the target:
>>> cross_section_carbon=cross_section(carbon,energy)

>>> cross_section fluorine=cross_section(fluorine,energy) N.B. The user is free to define
what it means to sum two

B. “ ” : - i i q] ram r .
(N.B. the “element” object carries all the needed properties, pass just one parameter) element, of to multiply an

3. Can define operation among elements to create more complicated targets: element times an integer
>>> carbon_tetrafluoride=carbon+4xf LU0 in e el N YRt NPT ST X T AT

>>> print(carbon_tetrafluoride) defined by the user

CF4 contains:
carbon, symbol c, atomic number 6, average mass 11.182, 2 isotopes.

Isotope—-averaged mass: 81.938241fluorine, symbol f, atomic number 9, average mass 17.689, 1 isotopes.
Isotope—-averaged mass: 81.938241

4.If the carbon_tetrafluoride object belongs to the same class as carbon as fluorine the routine cross section will handle it!

>>> cross_section_carbon_tetrafluoride=cross_section(carbon_tetrafluoride,energy)

Can extend this idea to many other concepts.

If the cross section depends on a Hamiltonian of the form:

H = Z C@'(wl, Wwa,)O@

with c(w,, w,, w,...) some Wilson coefficients arbitrary functions of the parameters w;, w,, w,, ...and O, some effective

operators, can define a Hamiltonian object
>>> modell=WD.eft_hamiltonian('modell',wilson_coeff_list1)
>>> print(modell)

Hamiltonian name:modell

Hamiltonian: C_l(r)sk 0p_1+C_4(E: Op_4 N.B.: some operators may
Squared couplings:c_1xc_1, c_4%c_4 interfere, some may not, the
>>> mode1%=WD. ef1):_hamiltonian('mode12',wilson_coeff_list2) 7 class knows how to handle
>>> print(model2 -
Hamiltonian name:model2 that automatically
Hamiltonian:c_1(r)x Op_1+c_3(r)*x Op ?

Squared couplings:c_1%c_1, c_3%c_1, c_3%c_3
Now the cross section routine may depend on both target and Hamiltonian:

>>> cross_section_fluorine_model2=cross_section(fluorine,model2)

>>> cross_section_carbon_modell=cross_section(carbon,modell)

Also in the case of the Hamiltonian objects can define operations such as multiplications times a constant or sum, etc...

H=2H,+3Hy =2 (6101 -+ 6404) + 3 (Clol + 0304) = 5¢101 + 3¢3035 + 2¢,0,4

>>> model=2xmodel11+3*kmodel2

>>> print(model)

>>> Hamiltonian name:model

>>> Hamiltonian:5%c_1(r)*0p_1+2xc_3(r)*0p_3+3%c_4()*0p_4
>>> Squared couplings:25%c_1xc_1, 15%c_3%c_1, 4*c_3*c_3, 9*xc_5*c_5

If 2*modell+3*model2 belongs to the same class as modell and model2 the same cross section routine can handle it:

>>> carbon_tetrafluoride_model=cross_section(carbon_tetrafluoride,model)

Or, directly(!):

>>> carbon_tetrafluoride_model=cross_section(carbon+4xfluorine, 2xmodel1+3*model2)

The key of object-oriented programming: once a certain operation is implemented and tested for a class of
objects, the complexity of the objects can be arbitrary.

Onother important feature: inheritance, which allows to extend the properties of one class to another

Bio
Inspired

Deep

MaChine Learning
Learning

find title machine and learning I Brief format ~ Easy Search

Advanced Search

find j "Phys.Rev.Lett.,105™ :: more 4 Search on INSPIRE beta

Sort by: Display results:

I earliest date j I desc. :I I - or rank by - j I 25 results :l I single list j

HEP 391 records found 1-25P M jump to record: | Search took 0.15 seconds.

1. Reliable Photometric Membership (RPM) of Galaxies in Clusters. I. A Machine Learning Method and its Performance in

the Local Universe

P.A.A. Lopes, A.L.B. Ribeiro. Feb 17, 2020. 14 pp.

e-Print: arXiv:2002.07263 [astro-ph.CO] | PDF
References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote
ADS Abstract Service

Detailed record

2. Machine-learning-assisted insight into spin ice Dy, Ti» O7
Anjana M. Samarakoon et al.. 2020.
Published in Nature Commun. 11 (2020) no.1, 892
DOI: 10.1038/s41467-020-14660-y

References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote
Detailed record

3. Connecting Dualities and Machine Learning
Philip Betzler, Sven Krippendorf. Feb 12, 2020. 35 pp.
LMU-ASC 05/20, MPP-2020-14

The building block of (artificial) intelligence: the neuron

The task of a neuron is to collect information from other neurons through its “synapses” and “decide” whether or
not to “fire” an output to other neurons:

OF
\

inputs: from @ \ f(a)

other
M@ >
® "
popular choice for f: sigmoid

neurons
Wy
1
/ =1

X1, X5, X3, X4 = iNpuUts
W,, W,, W3, W, = weights
a = Xy "W+ X,"W,+ X3°W3+ X,'W, =Z.X.W; =potential

output: number between 0 and 1

f(a)= activation function (depends on potential a, “fires” a exceeds some threshold) e |

The neuron decision will depend on the weights (for instance if w=[1,0,0,0] only the first input will be taken into account).
“Learning” means to choose the weights so that the output is the correct one.

Example: supervised learning

Provide many input examples with correct answer. Fit the weight w, to minimize the error.

Suppose you connect a neuron to the light of a public room. You want to save energy, so the neuron should learn when it is
the best moment to automatically shut off.

Here is the training data:

inputs answers (labels)
Dark Holiday Light on?
Yes Yes No Yes/no -> classificator (discrete number of
Yes No Yes :
possible answers)
No Yes No
No No No

At the beginning the neuron is “ignorant” - random weights w,

Of course this is a trivial example. The output is:

dark AND NOT holiday. If the neuron fires for a
e positive activation function we obtain the correct
oo answer when w,>0 , w,<0 and | w,|>| w,|:
w08 e 1*w, + 1*w,<0
1*w,+ 0*w,>0 = neuron fires when its
0 0*w,+ 1*w,<0 dark and not holiday.
0*w,+ 0*w,=0 However, we want the

code to learn by itself!

Each time we compare the output to the correct answer and change the weights. Each test is called “epoch”

 Compare to correct
f(a)=0(a)=0 answer (1)
* Calculate error (1-0)
* Use errorto
wrong! “adjust” the

weights so that
next time we do
better

v

Holiday
0

The process of adjusting the weights comparing the answers with the correct ones is called “back-propagation”

Delta rule:
t=target

o=output
w; — w; + sz n=learning rate

Aw; =n-(t—o) - x;

Now we can teach the neuron.

neuron=Neuron()
Xl L, 2] 11,00 [0, 1], 10,0]]

y=[0,1,0,0

]

n_epochs=20

for epoch in range(n_epochs):

PRElnE |

'epoch: '+str(epoch))

for i,x in enumerate(X):

('epoch',

('input', 'target’, 'error
('input', 'target’, 'error
('input', 'target’, 'error
('input', 'target’, 'error
('epoch',

("input', 'target’, 'error
('input', 'target’, 'error
("input', 'target’, 'error
('input', 'target’, 'error
('epoch',

('input', 'target’, 'error
('input', 'target’, 'error
("input', 'target’, 'error
('input', 'target’, 'error
('epoch',

("input', 'target’, 'error
("input', 'target’, 'error
('input', 'target’, 'error
('input', 'target’, 'error

target=y[i]

neuron.learn(x,target)

', 0.0)

C Yo —
a0 skt
To o 'target'
\ 0.0) 'target’
', 1.0) At the beginning s lcuraut’
'y -1.0) . ! ! 'target'
', 0.0) the code gives o =
') 0.0) wrong answers e o
:' 1-0) . : : 'target'
0 =Ll (error different ‘input ‘target’
, 0.0) ! ! 'target'
" 0.0) from zero) areet:
7 Weights keep inpac: i

', 0.0)

changing

>>> print neuron.weights

[5.30825383648903e-16,

-0.00999999999999999]

'target’

'target’
'target’
'target’
'target’

The neuron has learnt!

Eventually the
correct answers
are reached. At
this point the
weights stop
changing

From now on we can use the neuron.

>>> neuron.output([1,0])
1.0
=2 neuron . oNEpuE (0)])
0.0

>>> neuron.output([0,1])
0.0
B> neuron output([l 17])
g 0

“Deep learning” refers to a large number of “layers” where neurons work in parallel

DEEP LEARNING NEURAL NETWORK

Multiple hidden layers
process hierarchical features

NX R
»,

\\\‘v V"l‘

2> NS 2547

R IR NN S
2 4!!/‘. N3

ey 6
RN
S0

&

LA
2

Output:
‘George’
LN
R IESIN
y enti

Identify > // \\ combinations
light/dark N or features
pixel value Identify |dentify |dentify

\ edges combinations features /
~—— of edges ——

[W | p— s
2.u= HEF "H® =S HEE
e “CE BRHI N5F

. -- i e | R Q

Each layer takes care of a different
feature and contains many neurons
The number of weights can be HUGE
Need two ingredients:

* CPU power

* lots of DATA to train the code

N.B. today the data is the most valuable asset.

Every time we use a free app with our mobile phone
we are paying with our data (our preferences, our
behavior, our displacements....)

In Machine Learning the critical issue is usually the data. Is
it good quality? Is there noise? Is there some bias?
Sometime unreadable/missing entries: how to handle
them? So usually the Machine Learning itself is taken care
by some library, used as a “black box”. The hard work is the
preparation of the input and the analysis of the output to
estimate if the code is working in a satisfactory way or not.

Home Installation Documentation ~

Classification

Identifying to which category an object
belongs to.

Applications: Spam detection, Image
recognition.

Algorithms: SVM, nearest neighbors,
random forest, ... — Examples

Dimensionality reduction

Reducing the number of random variables to
consider.

Applications: Visualization, Increased
efficiency
Algorithms: PCA, feature selection, non-

negative matrix factorization. — Examples

Scikit-learn: a set of libraries widely used and tested to do machine learning

Examples

jle Custom Search

scikit-learn

Machine Learning in Python

Regression

Predicting a continuous-valued attribute
associated with an object.
Applications: Drug response, Stock prices.
Algorithms: SVR, ridge regression, Lasso,

— Examples

Model selection

Comparing, validating and choosing
parameters and models.

Goal: Improved accuracy via parameter
tuning

Modules: grid search, cross validation,

metrics. — Examples

Clustering

Automatic grouping of similar objects into
sets.

Applications: Customer segmentation,
Grouping experiment outcomes

Algorithms: k-Means, spectral clustering,
mean-shift, ... — Examples

Preprocessing

Feature extraction and normalization.
Application: Transforming input data such as
text for use with machine learning algorithms.
Modules: preprocessing, feature extraction.
— Examples

Machine Learning algorithms can be divided in two big families: classificators and regressors

©
&
&
@ [I o

Given a point, does it mo el

belong to th.e green or to Given a point, what is the predicted

the red family (only two I ;) | er?

options)? value on the y axis (real number)?
Classificator: the output is a category, discrete no. of possibilities Regressor: the output is a real number
Ex: good or bad, a letter of the alphabet (only 26 possibilities), a Ex: a price, a person’s life expectancy, mm of rain

digit (from 0 to 9).

Underfitting and overfitting

X 0 o

.

=~ X O
Xx". o
0.X

X'Q x

Under Fit)

X X
O/ o
X0 o
. O
Xx o
X Qe y
X0 X
-
Appropriate

* Underfit: the model is too simple (wrong algorithm?)
e Overfit: the model captures noise. Excellent accuracy with training data, very bad with new data

'''''

.
. e

.
..
e
-

Over Fit

Understanding overfitting: the analysis of random data (nothing to learn from them!)

Create some totally random data. For instance:

ntot=1000
features=np.random.rand(ntot,5) < ntot 5-tuples containing random entries
labels=np.random.choice([@,1],ntot) ntot random answers (0 or 1)

The code should learn whether to return 1 or 0 based on 5 features per record. However the label
are not correlated to the features, so there is no pattern behind them.

4 d . U O XYY/l

r = r
[0.9155549 , 0.17304614, 0.24717513, 0.00438393, 0.63510001])4j§)
[0.15278207, 0.77034303, 0.24658406, 0.42199945, 0.6968051])y=—6)
[0.55467572, 0.87961429, 0.29340372, 0.41649476, 0.90522071]), D)

[0.52978536, 0.4§37921 6 049490571, 0.82642128]) (D
[0.32303518, 0.5(4 .3 of 22 6= 8038168, 0.060651181), (fy
[0.40775217, 0.4873224%8 (*2 59 05231188, 0.35501642]) =89

[0.64539286, 0.53109127, 0.75920155, 0.31412245, 0.6234719 1), 1)
[0.35637932, 0.91944441, 0.52727547, 0.79082459, 0.58095216]1), 0)
[0.13252523, 0.47428298, 0.84422629, 0.05261698, 0.01594072]1), 0)
[0.1174954 , 0.17767431, 0.6822274 , 0.75150485, 0.79045454]1), 1)

train on it a decision tree classifier and see what happens...

Accuracy score=fraction of correct answers

If you test the classificator on the SAME DATA that was used to train it:

accuracy score on train sample:1.0 m) Good! (all answers are right)

If you test the classificator on DIFFERENT DATA:

At T N DGl =) Bad! (practically half of answers are wrong)

What happened? Simply the classificator has “memorized” the TRAIN data in the weights (one-to-one correspondence, this
means that there were enough weights to do that!). However after training the model is just equivalent to the TRAIN data,

it is only a complicated way to store them. In fact, if you try to use the model on the TEST data (that the model has never
seen) the answers are random, as they should (half correct, half wrong).

‘ IT IS FUNDAMENTAL NOT TO TEST MACHINE LEARNING ON THE SAME DATA USED FOR TRAINING
Data selection is crucial

Image recognition

Use for training the mnist database. 60000 pictures for training and 10000 pictures for testing.
Each image is stored in a 784=20*28 array of float numbers between 0 and 1 that represent a color intensity.

Now instead of some features for each input (ex: size, position, etc of home to predict price) we have
28*28=784 different numbers (features) that characterize each pic. More complex but basically, more of the

same!

Answers from Machine learning after training

Finding peaks with machine learning

* Generate a large number of spectra, some with background+peak and some with only background

e Train a machine learning code to distinguish them
» Test the accuracy of the answer for different sizes of the peak or energy resolution

0.7

0.64

051

0.4

0.31

0.21

014

0.01

Is there a peak?
(Machine
Learning answer)

0.5

0.4

03

0.2

01

0.0

0.4

0.3

0.0

T

L

200 400 600 800 1000

yes

Deceptively easy, the devil is in the detail. For real data
Rescaling problems

Bias

Incompleteness

Noise
Systematics
Etc...

can heavily affect the accuracy!

0.6

0.5

03

0.2

0.1

600 800 1000

0.6

0.5

0.4

0.3

0.2

0.1

* |sthe internet making us stupid?
* More boadly: are computers making us stupid?

o W BEn = susual IV %Y

) _ L . |
The answer from the book: not stupid, just different! 'I' H Nicholas Carr

AUTHOR OF THE BIG SWITCHH

Probably we will loose our capacity to memorize things S H A L I' 0 w S

THE NEW YORK TIMES BESTSELLER

But we will improve our problem solving skills

...and leave more repetitive an boring tasks to machines, to concentrate on more interesting problems

Dear Prof. X[2,

best wishes for a healthy retirement full of interesting
things to see and to do!

