
Computing and Physics
A few reflections about the role of computers in Physics 
and life in occasion of prof. 임채호’s retirement workshop

Sogang University, February 26, 2020

Stefano Scopel



OpenSource software in Physics and Cosmology http://pyflation.ianhuston.net/ (just some examples!)

Accelerator Physics

Astroparticle

Pyflation: a Python package for calculating 
cosmological perturbations during an inflationary 
expansion of the universe. 

Cosmology

An alternative way to share knowledge?



Two examples of concepts that have changed the paradigm in computational physics:

• Object-oriented programming
• Machine learning



Object-oriented programming

• Any element in the code is an object. Trivial objects: floats, strings, arrays. 
For each of them we can do operations (sum two floats, compare two 
strings) or can use them them as inputs of functions.

• In object programming can create new, “exotic” objects, with their own 
properties and operations, that can be manipulated according to their 
nature  

unicorn dragon



An explicit example

Suppose you have to calculate a physical process that depends on a target nucleus
1. Create an “element” class
2. ‘instantiate” as many time as needed to create many object belonging to the class “element”: 

Now can write a routine that calculates a scattering cross section of a particle off the target:

(N.B. the “element” object carries all the needed properties, pass just one parameter) 

3. Can define operation among elements to create more complicated targets:

4.If the carbon_tetrafluoride object belongs to the same class as carbon as fluorine the routine cross section will handle it!

N.B. The user is free to define 
what it means to sum two 
element, or to multiply an 
element times an integer
Also the output of print() is 
defined by the user



Can extend this idea to many other concepts.

If the cross section depends on a Hamiltonian of the form:

with ci(w1, w2, w3,…) some Wilson coefficients arbitrary functions of the parameters w1, w2, w3, …and Oi some effective 
operators, can define a Hamiltonian object 

N.B.: some operators may 
interfere, some may not, the 
class knows how to handle 
that automatically

Now the cross section routine may depend on both target and Hamiltonian:



Also in the case of the Hamiltonian objects can define operations such as multiplications times a constant or sum, etc…

If 2*model1+3*model2 belongs to the same class as model1 and model2 the same cross section routine  can handle it:

Or, directly(!):

The key of object-oriented programming: once a certain operation is implemented and tested for a class of 
objects, the complexity of the objects can be arbitrary.

Onother important feature: inheritance, which allows to extend the properties of one class to another







The building block of (artificial) intelligence: the neuron
The task of a neuron is to collect information from other neurons through its “synapses”  and “decide” whether or 
not to “fire” an output to other neurons:
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w1,  w2, w3, w4 = weights 
x1,  x2, x3, x4 = inputs

a = x1·w1+ x2·w2+ x3·w3+ x4·w4 =Σixiwi =potential

f(a)= activation function (depends on potential a, “fires” a exceeds some threshold)

popular choice for f: sigmoid

output: number between 0 and 1

inputs: from 
other 
neurons

The neuron decision will depend on the weights (for instance if w=[1,0,0,0] only the first input will be taken into account).
“Learning” means to choose the weights so that the output is the correct one.



Example: supervised learning
Provide many input examples with correct answer. Fit the weight wi to minimize the error.

Suppose you connect a neuron to the light of a public room. You want to save energy, so the neuron should learn when it is 
the best moment to automatically shut off.  

Dark      Holiday   Light on?
Yes         Yes No
Yes         No                   Yes
No          Yes                   No
No          No No

Yes/no -> classificator (discrete number of 
possible answers)

inputs answers (labels)

Here is the training data:

At the beginning the neuron is “ignorant” → random weights wi

Of course this is a trivial example. The output is: 
dark AND NOT holiday. If the neuron fires for a 
positive activation function we obtain the correct 
answer when w1>0 , w2<0 and | w2|>| w1|:
1*w1+ 1*w2<0
1*w1+ 0*w2>0
0*w1+ 1*w2<0
0*w1+ 0*w2=0

neuron fires when its 
dark and not holiday.
However, we want the 
code to learn by itself!



w1 =-0.1

Holiday
0

Dark
1

w1 =0.8

f(a)=Θ(a)=0

wrong!

=-0.1

• Compare to correct 
answer (1)

• Calculate error (1-0)
• Use error to 

“adjust“ the 
weights so that 
next time we do 
better

The process of adjusting the weights  comparing the answers with the correct ones  is called “back-propagation”

Delta rule:
t=target
o=output
η=learning rate

Each time we compare the output to the correct answer and change the weights. Each test is called “epoch”



Now we can teach the neuron.

At the beginning 
the code gives 
wrong answers
(error different 
from zero)
Weights keep 
changing

Eventually the 
correct answers 
are reached. At 
this point the 
weights stop 
changing

The neuron has learnt!



From now on we can use the neuron.

“Deep learning” refers to a large number of “layers” where neurons work in parallel

Each layer takes care of a different 
feature and contains many neurons
The number of weights can be HUGE
Need two ingredients:
• CPU power
• lots of DATA to train the code 

N.B. today the data is the most valuable asset.
Every time we use a free app with our mobile phone 
we are paying with our data (our preferences, our 
behavior, our displacements….)



In Machine Learning the critical issue is usually the data. Is 
it good quality? Is there noise? Is there some bias? 
Sometime unreadable/missing entries: how to handle 
them? So usually the Machine Learning itself is taken care 
by some library, used as a “black box”. The hard work is the 
preparation of the input and the analysis of the output to 
estimate if the code is working in a satisfactory way or not.



Scikit-learn: a set of libraries widely used and tested to do machine learning



Machine Learning algorithms can be divided in two big families: classificators and regressors

Classificator: the output is a category, discrete no. of possibilities
Ex: good or bad, a letter of the alphabet (only 26 possibilities), a 
digit (from 0 to 9).

Regressor: the output is a real number 
Ex: a price, a person’s life expectancy, mm of rain 

Given a point, does it 
belong to the green or to 
the red family (only two 
options)?

Given a point, what is the predicted 
value on the y axis (real number)?



Underfitting and overfitting

• Underfit: the model is too simple (wrong algorithm?)
• Overfit: the model captures noise. Excellent accuracy with training data, very bad with new data



Understanding overfitting: the analysis of random data (nothing to learn from them!)

Create some totally random data. For instance:

The code should learn whether to return 1 or 0 based on 5 features per record. However the label 
are not correlated to the features, so there is no pattern behind them. 

features

train on it a decision tree classifier and see what happens…

ntot 5-tuples containing random entries
ntot random answers (0 or 1)



Bad! (practically half of answers are wrong)

Good! (all answers are right)

What happened? Simply the classificator has “memorized” the TRAIN data in the weights (one-to-one correspondence, this 
means that there were enough weights to do that!). However after training the model is just equivalent to the TRAIN data, 
it is only a complicated way to store them. In fact, if you try to use the model on the TEST data (that the model has never 
seen) the answers are random, as they should (half correct, half wrong). 

IT IS FUNDAMENTAL NOT TO TEST MACHINE LEARNING ON THE SAME DATA USED FOR TRAINING
Data selection is crucial

If you test the classificator on the SAME DATA that was used to train it:

If you test the classificator on DIFFERENT DATA:

Accuracy score=fraction of correct answers



Image recognition

Use for training the mnist database. 60000 pictures for training and 10000 pictures for testing.
Each image is stored in a 784=20*28 array of float numbers between 0 and 1 that represent a color intensity. 
Now instead of some features for each input (ex: size, position, etc of home to predict price) we have 
28*28=784 different numbers (features) that characterize each pic. More complex but basically, more of the 
same!

Answers from Machine learning after training



• Generate a large number of spectra, some with background+peak and some with only background
• Train a machine learning code to distinguish them
• Test the accuracy of the answer for different sizes of the peak or energy resolution

Is there a peak?
(Machine 
Learning answer)

no noyes yes yes

Deceptively easy, the devil is in the detail. For real data
• Rescaling problems
• Bias
• Incompleteness
• Noise
• Systematics
• Etc…
can heavily affect the accuracy!

Finding peaks with machine learning



• Is the internet making us stupid?
• More boadly: are computers making us stupid?

• The answer from the book: not stupid, just different!

Probably we will loose our capacity to memorize things

But we will improve our problem solving skills

…and leave more repetitive an boring tasks to machines, to concentrate on more interesting problems



Dear Prof. 임채호,

best wishes for a healthy retirement full of interesting 
things to see and to do!


