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01. Recent LIGO/VIRGO data seem
to imply that we need to consider
gquantum gravity more seriously.



http://physics.aps.org/assets/f2ba470a-f818-44d6-825f-72174f593ae0/e17_2.png
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« We open the strong gravity test era of GR,
beyond the weak gravity tests in solar
system !!

« Cf. Multi-Messenger Astronomy ! (after
GW 170817); some strong constraints on
alternatives to GR !!



Cf. Event Horizon Telescope:
black hole shadows.




Cf'. Schwarzschild black hole

Photon ring
iale? & Aring of light composed of multiple distorted
Image Of the dISK S far SIde wmagcés of the diskahe light making up these
The black hole's gravitational field alters the images has orbited the black hole two, three
path of light from the far side of the disk, or even more times before escaping to us.
producing this part of the image. They become thinner and fainter closer to the
black hole.

Black hole shadow
This is an area roughly twice the size of the
event horizon — the black hole's point of no
H < return — that is formed by its gravitational
Doppler beammg lensing and capture of light rays.
Light from glowing gas in the accretion disk is >
brighter on the side where material is moving
toward us, fainter on the side where it's moving
away from us.

Accretion disk
The hot, thin, rotating disk formed by matter
slowly spiraling toward the black hole.

Image of the disk’s underside

Light rays from beneath the far side of the disk
are gravitationally “lensed” to produce this part
of the image.




02. Renormalization has been a
powerful constraint on Quantum
Theory of Particle Interactions.

» Higgs particle is its a (natural)
consequence.

Q: What if we require renormalizability in
quantum gravity ?



The renormalizable Q.G. can not
be realized in Einstein’s gravity or
its (relativistic) higher-derivative
generalizations (1977,Stelle).

* There are ghosts, in addition to massless
gravitons: In R+R”"2 gravity, the full
(quantum) propagator becomes
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Massless gravitons Ghosts (!)



03. Horava (or HL) gravity has been
proposed as a renormalizable
gravity

* There is no ghost by abandoning equal-footing
treatment of space and time (i.e., Lorentz
symmetry) in UV (2009, Horava)

« Power counting renormalizable: But no (complete)
proof of renormalizability yet !

(Cf. 2015,Barvinsky et al: proof for projectable case)

Cf. Yang-Mills theory (1954,Yang-Mills; Criticized by
Pauli;1959,Glashow, Salam-Ward; 1967 Weinberg;
1972,'t Hooft, Veltman)



» Today, | will consider the Hamiltonian
dynamics in Horava gravity, which has
not been fully understood yet.

* This is related to the long-standing
issue of the scalar graviton problem in
Horava gravity.
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l. Horava (HL) Gravity: Basic Idea

Quick Summary. Renormalizable gravity theory by
abandoning Lorentz symmetry in UV : Foliation

Preserving Diffeomorphism (FPDIft.).

Horava gravity ~ Einstein gravity (with a Lorentz
deformation parameter ) )

+ non-covariant deformations with higher
spatial derivatives (up to 6 orders)

+ “detailed balance” in the coefficients
( 5 constant parameters: «. A, v, Ay )

Cf. Einstein gravity: A=1 ¢ G. A



The Action Construction:
* Einstein-Hilbert action:

1
.Sr — I!r —_ -il R|4 - ‘:}-\L
4 167Gy /” - \/
Lorentz invariant ! Lorentz scalars

L A = LR eid g2 .

' ;
in ADM decomposition R

ds® = —N22dt* + gi; (af.f.;r"i + ;“f"ifh‘) (ff;rj + N7 a.’f.f)




 Here, we have used the Gauss-Godacci
relation (up to boundary terms)

RI4 .!!-"!|.-g__.il.!!-1!|..E-"iI — .!!-1!-.

P

Extrinsic curvature of
t=constant hypersurface

T

Intrinsic curvature :
3 curvature

~tlinitial



* In order not to introduce higher-time
derivatives to avoid the possible”
ghost problems, we do not consider
“simply” the following terms

(WY 1R
but only consider

R?, R, R, VR, VR4 ...
But in order that this action form is not
changed in different coordinates, we
need to restrict the coordinate

transformations into FPDIff! In more
technical terms,..



 In the anisotropic scaling (mom.) dimensions,
[x] = —1, t] = —=z,

we do not need to keep the Lorentz invariant
combinations only. (Planck unit)

* For example, we may consider

(KyKY — AK?) +3R

, iIn which the Lorentz symmetry is explicitly

broken for
A=l 3+#1

but there is still Foliation Preserving
diffeomorphisms (FPDiff).



« Then, the action can be written as

— |.:|| . . :
L"I—Ic:u ava = —5 dt dPx v alN {fk ii SR JJ‘JE} Kinetic term
g

+ f dt d¥x \/GN Vgi] Potential term



Why 6 order spatial derivatives

k2

The renormalizable quantum gravity can
not be realized in Einstein’s gravity or its
(relativistic) higher-derivative
generalizations: There are ghosts, in
addition to massless gravitons, and
unitarity violation: In R+R”2 gravity, the
full propagator becomes

1 11
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Massless gravitons Ghosts (!)
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« But, for anisotropic (scaling) dimensions,

x|=-1,  [t]=—=.
the propagator for V=R+R”"z becomes (?)
| G: Dimensionless
W — k2 — G(K2)? coupling

At high energy with (z>1), this expands as,
1 1 1 1

— .'.:|. . — — .'-:|. - —I_ — .'}._\. L‘Ekz .'-:| — .'J._\.
w? —2k? — G(k?) w? -Gk w? -Gk w? — G(k2)?

+ ...

Improved UV divergences but no ghost,
i.e., no unitarity problem.

 Whereas at low energy,
1 1 1

—g 4 2":-
T = — + s Gk
2 KGR -k kO




Dimension counting

* For an arbitrary spatia/ dimension D,

[9i5] = 0, (Ni| =2 -1, [N] = 0.

dt dx] = —D — =,

k] = - D Dimensionless coupling for z=D:
2 Power counting

Sv = [ dit d”x Vv aN V{gi;|

-D-z D+z



* So, in D=3 (3+1 space-time), we need
the potential V with [V]=6: 6'th-order
spatial derivatives with “dimension-less”
couplings !

* From

Vil = [V =1 [Ry] = [RY] =2,

we have large numbers of possible
terms, which are invariant by
themselves, like

ViR VERY,  ViRyV'R™, RAR,  RYARy;

R,  R.R\RY,  RRyRY,



Detailed Balance Condition:

« We need (foliation preserving Diff
invariant) potential term having 6"
order spatial derivatives at most

(power-counting renormalizable with
z=3) :

Sy o= f-'if-‘iﬂi".'. WOV V[g:-j]
* There are too large numbers of

possible terms, which are invariant by
themselves.



* Horava required the potential to be of

by demanding D-dimensional
P Euclidean action

1-’5 E Oy R

for some action 177 and G;;i.¢. the inverse of
De Witt metric,

— 1 J. F T F il . .
ikl _ > (g.ﬂ.g_;-f n g.fgj.:] _ AE.JEH

Cf. Kinetic part is also given by/

L1 — 1 . . ik . .
S5 = afdt EiD.'.'-'{ v {m 'Lfan,j' — Tz_ﬁ'l-_i. — TJI_.‘IILE_.I {:rq'?kf | G — Tk_ﬁif — Tf.ﬁ'l.k]

F=



* For D=3, W is 3-dimensional Euclidean

action.
* First, we may consider Einstein-Hilbert
action,
1
W = — f d7x TR — 20y ).
|kl.-1_-1_.

then, this gives 4'th-order spatial
derivative potential, with a dimensionful

coupling,
v = [araPx ygN (B9 — LRg 4 Aypg ) Gone [ R — RGH 4 Agy g™
V= ey Koo 5 q Aw g ik 9 g Aw g :
= 1-1_

 So, this is not enough to get 6'th order !!



 In 3-dim, we also have a peculiar, 3'rd-
derivative-order action, called
(gravitational) Chern-Simons action.

1
W ﬁfu:gl:r;.
w= v

2 il 2
wa() = Tr (l’ Adl + El_ AT A I') = g" (fﬁﬁjfim + EI""@TEMI‘:L) dx

* This produces the potential
—'—Et?iﬂ-r:ff

Etll__l-'i o

- ~vij _ ki i Lo
with the Cotton tensor €% =:=*v; (Hi-"‘ Eﬁﬁf)



* Then, in total, we get the 6'th order action

_ 2 ikt HE J. —r JL'. 1

. 1 ke B ke 1 ke

—

from

W=— [ wyil') 4+ u fdgr-:,k_.-ﬁ[ﬁ’ — 2A ).

So, we have 5 constant parameters, which
seem to be minimum, from the detailed
balancing.



 Some improved behaviors, without
ghosts, are expected, i.e., renormalizability

‘ Predictable Quantum Gravity !!(?)

 But, it seems that the detailed-balance
condition is too strong to get a physically
viable universe !

* For example, there is no Minkowski , i.e.,
vanishing c.c. vacuum solution ! (Lu, Mei,
Pope '09): There is no Newtonian gravity
limit !!

« We need to break the detailed balance but
without altering UV behaviors: It is called,
soft breaking in IR or “IR modification”.



 On the other hand, in UV we need some
modification for
cosmological perturbations:

« With the detailed balance, tensor
spectrum is “ but scalar

spectrum is not ! (Brandenberger et al,
Gong et al, 2010).

 We need to break the detailed balance
but without altering UV behaviors of

tensor modes: It is called,
“UV modification” (S. Shin, MIP, 2017).



ll. Hamiltonian Dynamics of
Horava Gravity: Set-Up

« We start with the action (up to
boundary terms),

' ) .
s = [ dtaPx/GN {; (K, K9 = \K?) - V[gfj-.vij}

M K2
« with
ds® = —N?dt* + g;; (dz' + N'dt) (dz’ + Nidt)

Kij = 577 (9 — Vil = V; Vi)



 The action is invariant under the
foliation-preserving Diff (FPDiff) for an
arbitrary lambda:
bt = —('(t,x), ot = —f(t),
5g;; = 0:C*gir + 0;C g + CF0hgi; + [ i,
SN; = 8;(°N; + (P0;N; + (gi; + fN; + N,
SN = (J9;N + fN + fN.

 For GR case (lambda=1, V=R), there is
an accidental symmetry which do not
preserve the foliation so that the full

Diff is recovered: Recovery of GR in
lambda=1, V=R limit !



 For simplicity of our analysis, we
consider but in arbitrary dimension D,
p[gﬂ '_ — L’IIR]

« with 2xD (spatial) derivatives for the
(power-counting) renormalizable
theory.

* Then, the first-order action is given by

S =/ dtd"x {ng;; — NH' — N;H’

« with the conjugate momentum

4 05 }gg

s = a7 (K7 —AKgY)
i







lll. Dirac’s Constraints Analysis
1. Primary constraints:
=y =0, &, =75 =0
from the definition of conjugate mom.
Ty = 65/ N and 7y = 6S/6N.
2. Preservation of primary constraints
b, — {®,.H,} ~ 0,

i

with the canonical Hamiltonian,

H, = [ dPx {NH' + N;H'}

gives the secondary constraints,
HE~0, H' =0.



« With the constraints, one can consider
the extended Hamiltonian (with Lagrange
multipliers u,,),

Hyp — H, + [_ dPx [u" @,
« Dynamical Eq. (Cf. Wald for GR case):
5H,
ami

K2\ 2N ~ , :

7= {7 H) = —

E}ij — {Qij~Hf:} —

o0H,
é.gij

. (3) % 307 (™ — %) — 2 ("}, — e
~N\/g Eg@'vm} _ R’UV’(R)} ~ V3 |V'V! (NV/(R)) - ¢"V,,V™ (NV'(R))]
V0 (Nmﬁirf) - (vmm’i) rim (?mﬂu’j) T,
where, § _\/pr_1)




« After tedious computations, we obtain

{< t?‘ft{l‘:l> ~ <{*’Ht - — / dP » (?f?}gf — ..gf?ﬂf) C*(z),
(' H! (@) (CH( J) = — [d"z OV H ).
{(rHl@)) (CH; W)} = [ d°2 (V.0 = V) Hy (),

with (A= - 1)/0r-1)

)

e

i — (_f) (M +2AV'n) VI(R) + 2 (7 — Ag¥im) V,;V/(R)]

for the smeared constraint, (7H) = [d"znH
* For _V(R)=A+aR+¢R™,

(" = (i) [(’H +2\V'r) (a+ &nR™) +2 (79 — Ag¥m) énV,; R

—



« ForGRcase (A =1.ie. A=0 & =0),

{-ﬂ_{ ,-’2}[1*?{1“"’

and Hamiltonian constraint 4‘ = 0 becomes
the first-class constraints, with a closed
constraints algebra

For a more general case with arbitrary
lambda but ¢ = 0, (no higher-derivative
potential), called AR model or lambda-
deformed GR we have the same results
with 7 =~ () (maximal slicing) !



« But, for the most general cases
(i) with the higher derivatives or

(i) non-maximal slicing in AR model, the
Hamiltonian constraint becomes second-
class!
 Whereas, the momentum constraint H: = 0

is still the first-class constraint, as in GR.

* For the local constraints, we obtain
[Hi(z),H(y)} = C'(z)VZ (x —y) — C'(y)VYP (x — y),
{Hi(z), Hily)} = —H(y)V¥eP(x —y).

[Hi(z). H;i(y)} = Hily)V5" (x —y) + H;(z) V6" (x —y).



« 3. Preservation of the secondary
constraints,

Hi(z) = {H!(z), Hp)

1 | . 1 -
= FViN2C) + ViN'H) & ZVI(N°CY),

Hi(z) = {Hi(z), Hr)
— vaiﬂ." + Tf’j{f"ﬁ?{i) -+ ?{j?if"\"j ~ D._

produces a tertiary constraint,
() = V,(N?C*) ~ 0,
where

(" = (h;) [Eiviﬂ (cr — fnﬁﬂ_l) + 2 (?rij — igij?r) 5?1?jH“_1] .



« 4. Preservation of the tertiary constraint
gives,

Q(z) = {Q(z), Hp)
) i
— [O(2), H.) + 20 (ﬂi ) +2CIN?Y, ( 1)
- -~ k' t
(Q(z), H,} + 20 N2V, (%) ~ 0.

* Then, there are two cases depending on
whether ¢ ~ 0 or not.

&



A. Case Ci=0

* The Lagrange multiplier u”t is not
determined, but we have
Qz) ~ {Qz), H,)

~ V. (N2RINI| = BIN] ~
with ~ Vi (N’B[N]) = @[N] ~ 0

B'[N] =

{2\ + 1)g?7 —2(AD — )7 NV, + V' N}

e

i)
t:lﬁ'
| | =
[a—
A
tx.:-|:‘kt-\'.,
~—
i
[}

+2aA(D — 1) (%) JaV" !(&R + %) N — QFEN} :

 For GR case (A —0,¢=0), this is trivially
satisfied, as it should be.

 Otherwise, we have a new constraint
HIN] ~ 0.



* Preservation of the new constraint,

®(z) = {P(z), Hp}
= {®(z), H.} + V; (N*B[u'])

gives, after a long computation,

| ﬁ 242 ) DA
V. (NB'[u]) ~ 4aA(D - 1) (%) v, {NE P_.w( D —1)\/GrV, ((aR + ﬁ) N a-?ﬁﬁ.r)

+ aV' (7% (RjN? — 2NV, VN — V;NVN) )|}

+ (7, V;m — dependent terms) . (35)

 This would determine u”~t and no more
constraints !



 The constraints . = (7y. H. 1. ®) =~ 0 are the
second-class,
{mn(z), H (y)} =
{mn(z), v} = —zv‘* (NCH ()5 (x —y)) =0,

(z)

(z)
{mn(z), @ }}=iﬂfi—u
(H!(x), Hi(y)} = ( }vffﬂ”( —y) — C'(y)V{6"(z —y) = 0,
{H'(z),y)} = {7n(z), P ()}, ete.

» with a non-vanishing determinant generally,

{mn (), ®(y) HH (), Aw) Hx), H () HP (), 7 (v) )
(Al —y)Aly — 2))°

det({xalz), xplv)})

EE e

- . O (.
Alx—y) = -V? [ENB’(H'} §P(x —y) + N%(y) (i;f;)]

i i 5P (z — ) . 56 (y)
— _2b — ON?6'(a }'ﬂ( e ) Vi ["* v ](fawr )]




The constraints ', = (7v..H:) ~ 0 are 15t-
class, as in GR.

DOF - -(P-2nv -y

% P = (D+ 1)(D + 2
= 5[(D+1)(D+2) —2x2D —4]

2 -

éEDJrl]{D 2), (N 7N, Nis TN, Gigs i)

GR: Ni = 2(D +1),N; = 0
Horava gravity: N, = 2D N, = 4

=

2 first-class constraints ™. H' in GR
become 4 second-class constraints in
Horava gravity, maintaining the total 2
degrees of freedom !!



B. Case ¢ £ 0

 The constraints .= (mv.H.Q)~0 gre 2"9-
class,

det({xa(z), Xp(y)}) = —{mn(z). Qu) H{HH (z). H () {Qz). 7n (u) }
= 4V} (NC (9)s" (z — ) Vi (NC*(2)6" (z — y)) C'(x)Vi6 (= — v)
— (T < )

with the same first-class constraints,r, = (7, . %)

%[(DJrl D+2)—2x2D (3
SULEIO
/ ™ 1DOFin
GR’'s DOF

phase space

5



VI. Future Directions

Other Basic Problems:
1. Birkhoff's Theorem ?
(arXiv: 1804.05698 [PRD])

2. Bianchi Identity ? (to be appeared)

3. Boundary actions ? (in progress)
(cf. Gibbons Hawking term in GR)



* 4. We have identified a new (extended)

constraints algebra for Horava gravity. It
seems that this new constraints structure
could be valid more generally, i.e., with
Ricci, etc. The general proof for FPDiff

gravity theory would be a challenging
problem !

[H(z),H (y)} = C I'W“dn(w—\’)—C"'{y)V?éD(X—y).
{H’m Hi(y)} = —H (y)VY6P(x —y).
{Hi(z),H;(y)} = Hil V’fo”(x—\) Hi(z)VZeP (x —y),



All truth passes through three stages. First, it is
ridiculed. Second, it is violently opposed. Third, it
Is accepted as being self-evident.

(Arthur Schopenhauer)

izquotes.com

Thank you !!



https://www.facebook.com/muin.park/posts/981519321981192?story=S:_I100003694004637:981519321981192
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