Anomaly on Tabletop

PILJIN YI Korea Institute for Advanced Study

Research Directions in Quantum Field Theory and String Theory Seoul, February 2020

Ho-Ung Yee & P.Y. arXiv:1909.12409

Weyl Semi-Metals

Chiral Anomaly with Nonlinear Dispersion

Chern Monopole and Nielsen-Nynomia Theorem

Eta Invariant with Nonlinear Dispersion

 $\mathcal{H} = \sigma^i \mathcal{P}_i(\vec{k}) + \Delta(\vec{k})$

 ${\rm det} C^* < 0$ anti-chiral isospinor

Weyl semi-metal

$$\int dx^4 \mathcal{L} = \int dx^4 \, \bar{\psi} \, \sigma^{\mu} \mathcal{P}_{\mu}(-iD) \, \psi$$

$$\sigma^{\mu=i} = \sigma^{i}$$
$$\sigma^{\mu=0} = 1_{2\times 2}$$
$$D_{\mu} = \partial_{\mu} + A_{\mu}$$

Weyl semi-metal

$$\int dx^4 \mathcal{L} = \int dx^4 \,\bar{\psi} \,\sigma^{\mu} \mathcal{P}_{\mu}(-iD) \,\psi$$

$$\mathcal{P}_i = \mathcal{P}_i(-i\vec{D})$$

 $\mathcal{P}_0 = -i\partial_0 + \Delta(-i\vec{D})$

 $\mathcal{H} = \sigma^i \mathcal{P}_i(\vec{k}) + \Delta(\vec{k})$

Chiral Anomaly with Nonlinear Dispersion

chiral anomaly

$$\int dx^4 \mathcal{L} = \int dx^4 \, \bar{\psi} \, \sigma^{\mu} \mathcal{P}_{\mu}(-i(\partial + A)) \, \psi$$
$$\sigma^{\mu=i} = \sigma^i$$

 $\sigma^{\mu=4} = -i_{2\times 2}$

$$Z(A) \equiv \int [d\psi d\bar{\psi}] e^{-\int dx^4 \,\bar{\psi} \,\sigma^{\mu} \mathcal{P}_{\mu}(-i(\partial + A)) \,\psi}$$

chiral basis for 4d fermions

$$\begin{split} \gamma^{\mu} \mathcal{P}_{\mu} &= \begin{pmatrix} 0 & \mathcal{D} \\ \mathcal{D}^{\dagger} & 0 \end{pmatrix} = \begin{pmatrix} 0 & -i\mathcal{P}_{4} + \sigma^{k}\mathcal{P}_{k} \\ i\mathcal{P}_{4} + \sigma^{k}\mathcal{P}_{k} & 0 \end{pmatrix} \\ &\\ \gamma^{k=1,2,3} = \begin{pmatrix} 0 & \sigma_{2\times 2}^{k} \\ \sigma_{2\times 2}^{k} & 0 \end{pmatrix} \\ &\\ \gamma^{4} = i \begin{pmatrix} 0 & -1_{2\times 2} \\ 1_{2\times 2} & 0 \end{pmatrix} \\ &\\ \Gamma = -\gamma^{1}\gamma^{2}\gamma^{3}\gamma^{4} = \begin{pmatrix} 1_{2\times 2} & 0 \\ 0 & -1_{2\times 2} \end{pmatrix} \end{split}$$

recall how one compute axial anomaly via Feynman diagram for a relativistic Dirac fermion

linear divergence \rightarrow finite anomaly after Pauli-Villar's regularization

$$\psi = \sum a_n \Psi_L^{(n)} \qquad \mathcal{D}\Psi_L^{(n)} = \lambda_n \Psi_R^{(n)}$$
$$\bar{\psi}^{\dagger} = \sum \bar{a}_m^{\dagger} (\bar{\Psi}_L^{\dagger})^{(m)} \qquad \mathcal{D}^{\dagger} (\bar{\Psi}_L^{\dagger})^{(n)} = \lambda_n (\bar{\Psi}_R^{\dagger})^{(n)}$$

$$[d\psi d\bar{\psi}] = \prod_{n} da_n \prod_{m} d\bar{a}_m$$

$$e^{-i\alpha\Gamma}[d\psi d\bar{\psi}] = \prod_{n} e^{i\alpha} da_n \prod_{m} e^{-i\alpha} d\bar{a}_m$$

path integral of 4d Weyl fermions

$$\psi = \sum a_n \Psi_L^{(n)}$$

$$\bar{\psi}^{\dagger} = \sum \bar{a}_m^{\dagger} (\bar{\Psi}_L^{\dagger})^{(m)}$$

$$[d\bar{\psi}d\psi] \simeq \prod_{n} da_{n} \prod_{m} d\bar{a}_{m} \qquad e^{-i\alpha\Gamma} \left([d\psi d\bar{\psi}] \right) \simeq e^{i\alpha\operatorname{Tr}(\Gamma)} \prod_{n} da_{n} \prod_{m} d\bar{a}_{m}$$

trace over Dirac spinor even though we consider a Weyl !!!

the Dirac operator pairs the opposite chirality, possibly except at zero eigenvalue sector

$$\gamma^{\mu} \mathcal{P}_{\mu} = \left(\begin{array}{cc} 0 & \mathcal{D} \\ \mathcal{D}^{\dagger} & 0 \end{array} \right)$$

which is finite & topological

$$\gamma^{\mu}\mathcal{P}_{\mu} = \left(egin{array}{cc} 0 & \mathcal{D} \\ \mathcal{D}^{\dagger} & 0 \end{array}
ight)$$

$$\operatorname{Tr}(\Gamma) = \lim_{s \to 0} \operatorname{Tr}\left(\Gamma e^{-sQ}\right) = \lim_{s \to 0} \operatorname{Tr}\left(\Gamma e^{-s(i\gamma^{\mu}D_{\mu})^{2}}\right)$$

$$Q \equiv (i\gamma^{\mu}D_{\mu})^{2} = -\gamma^{\mu}\gamma^{\nu}D_{\mu}D_{\nu}$$
$$= -\delta^{\mu\nu}D_{\mu}D_{\nu} + \frac{1}{2}\gamma^{\mu}\gamma^{\nu}F_{\mu\nu}$$
$$= -\delta^{\mu\nu}\partial_{\mu}\partial_{\nu} + \dots + \frac{1}{2}\gamma^{\mu}\gamma^{\nu}F_{\mu\nu}$$
$$= Q^{(0)} + Q^{(1)}$$

heat kernel expansion

$$\operatorname{Tr}\left(\Gamma e^{-sQ}\right) = \int dx^4 \operatorname{tr}\left(\Gamma \langle x|e^{-sQ}|x\rangle\right) = \int dx^4 \operatorname{tr}\left(\Gamma G_s(x;x)\right)$$
$$G_s(x;y) = \langle x|\exp\left[-sQ\right]|y\rangle = G_s^{(0)} + G_s^{(1)} + G_s^{(2)} + \cdots$$

heat kernel expansion

$$\operatorname{Tr}\left(\Gamma e^{-sQ}\right) = \int dx^4 \operatorname{tr}\left(\Gamma \langle x | e^{-sQ} | x \rangle\right) = \int dx^4 \operatorname{tr}\left(\Gamma G_s(x;x)\right)$$
$$G_s(x;y) = \langle x | \exp\left[-sQ\right] | y \rangle = G_s^{(0)} + G_s^{(1)} + G_s^{(2)} + \cdots$$

$$\begin{aligned} G_{\beta}^{(n+1)}(x;y) &= -\int_{0}^{\beta} ds \int_{z} \ G_{\beta-s}^{(0)}(x;z) Q^{(1)}(z) G_{s}^{(n)}(z;y) \\ G_{s}^{(0)}(x;y) &= \langle x | e^{-sQ^{(0)}} | y \rangle \qquad \lim_{s \to 0} G_{s}^{(0)}(x;y) = \delta(x;y) \end{aligned}$$

heat kernel expansion

$$\begin{split} G_s^{(0)}(x;y) &= \langle x | e^{-sQ^{(0)}} | y \rangle \\ &= \int \frac{d^d k}{(2\pi)^d} \langle x | k \rangle \langle k | e^{-sQ^{(0)}} | k \rangle \langle k | y \rangle \\ &= \int \frac{d^d k}{(2\pi)^d} e^{-sQ^{(0)}(k)} e^{ik(y-x)} \end{split}$$

$$G_s^{(0)}(x;y) = \langle x | e^{-sQ^{(0)}} | y \rangle$$
 $\lim_{s \to 0} G_s^{(0)}(x;y) = \delta(x;y)$

heat kernel expansion

$$G_s^{(0)}(x;y) = \langle x | e^{-sQ^{(0)}} | y \rangle$$
$$= \frac{1}{(4\pi s)^{d/2}} e^{-(x-y)^2/4s} \qquad Q^{(0)} = -\partial^2$$

$$G_s^{(0)}(x;y) = \langle x | e^{-sQ^{(0)}} | y \rangle \qquad \lim_{s \to 0} G_s^{(0)}(x;y) = \delta(x;y)$$

small s limit allows enormous simplifications !

$$\operatorname{Tr}(\Gamma) = \lim_{s \to 0} \operatorname{Tr} \left(\Gamma e^{-sH} \right) = \lim_{s \to 0} \operatorname{Tr} \left(\Gamma e^{-s(i\gamma^{\mu}D_{\mu})^{2}} \right)$$
$$= \lim_{s \to 0} \int dx^{4} \, \frac{e^{-\vec{0}^{2}/4s}}{(4\pi s)^{2}} \operatorname{tr} \left(\Gamma \frac{[s\gamma^{\mu}\gamma^{\nu}F_{\mu\nu}/2]^{2}}{2} \right)$$
$$= \int dx^{4} \, \frac{1}{2^{7}\pi^{2}} \operatorname{tr} \left(\Gamma \gamma^{\mu}\gamma^{\nu}\gamma^{\alpha}\gamma^{\beta} \right) F_{\mu\nu}F_{\alpha\beta}$$
$$= -\int dx^{4} \, \frac{1}{2^{5}\pi^{2}} \epsilon^{\mu\nu\alpha\beta}F_{\mu\nu}F_{\alpha\beta}$$

4d chiral anomaly of a single relativistic Weyl fermion is measured by the Dirac index density, a la Fujikawa

$$\frac{\partial}{\partial \alpha} \log Z(A) = i \operatorname{Tr}(\Gamma)$$
$$= -i \int dx^4 \, \frac{1}{2^5 \pi^2} \epsilon^{\mu\nu\alpha\beta} F_{\mu\nu} F_{\alpha\beta}$$
$$= -i \int \, \frac{1}{8\pi^2} F \wedge F$$

 ${\rm Tr}(\Gamma)$ would compute the index, an integer, if the Hilbert space is fully discrete

$$\operatorname{Tr}(\Gamma) = \dim (\operatorname{Kernel of} \mathcal{D}^{\dagger}) - \dim (\operatorname{Kernel of} \mathcal{D})$$

$$\operatorname{Tr}(\Gamma) = \lim_{s \to 0} \operatorname{Tr}\left(\Gamma e^{-s(\gamma^{\mu} \mathcal{P}_{\mu}(-iD))^{2}}\right)$$

$$(\gamma^{\mu}\mathcal{P}_{\mu})^{2} = \gamma^{\mu}\gamma^{\nu}\mathcal{P}_{\mu}\mathcal{P}_{\nu} = \delta^{\mu\nu}\mathcal{P}_{\mu}\mathcal{P}_{\nu} + \frac{1}{2}\gamma^{\mu}\gamma^{\nu}[\mathcal{P}_{\mu},\mathcal{P}_{\nu}]$$
$$= \underbrace{\delta^{\mu\nu}\mathcal{P}_{\mu}(k)\mathcal{P}_{\nu}(k)}_{Q^{(0)}} + \underbrace{\cdots}_{Q^{(1)}} + \frac{1}{2}\gamma^{\mu}\gamma^{\nu}F_{\alpha\beta}\tilde{\partial}^{\alpha}\mathcal{P}_{\mu}(k)\tilde{\partial}^{\beta}\mathcal{P}_{\nu}(k) + \cdots$$

modified heat kernel expansion

$$\begin{split} G_s^{(0)}(x;y) &= \langle x | e^{-sQ^{(0)}} | y \rangle \\ &= \int \frac{d^d k}{(2\pi)^d} \langle x | k \rangle \langle k | e^{-sQ^{(0)}} | k \rangle \langle k | y \rangle \end{split}$$

$$G_s^{(0)}(x;y) = \langle x | e^{-sQ^{(0)}} | y \rangle \qquad \lim_{s \to 0} G_s^{(0)}(x;y) = \delta(x;y)$$

modified heat kernel expansion

$$\begin{aligned} G_s^{(0)}(x;y) &= \langle x | e^{-sQ^{(0)}} | y \rangle \\ &= \int \frac{d^d k}{(2\pi)^d} \langle x | k \rangle \langle k | e^{-sQ^{(0)}} | k \rangle \langle k | y \rangle \\ &= \int \frac{d^d k}{(2\pi)^d} e^{-s\mathcal{P}_{\mu}(k)\mathcal{P}_{\mu}(k)} e^{ik(y-x)} \end{aligned}$$

$$G_s^{(0)}(x;y) = \langle x | e^{-sQ^{(0)}} | y \rangle \qquad \lim_{s \to 0} G_s^{(0)}(x;y) = \delta(x;y)$$

modified heat kernel expansion

$$\operatorname{Tr}(\Gamma) = \lim_{s \to 0} \operatorname{Tr}\left(\Gamma e^{-s(\gamma^{\mu} \mathcal{P}_{\mu}(-iD))^{2}}\right)$$

$$= \lim_{s \to 0} \int dx^4 \int \frac{d^4k}{(2\pi)^2} e^{-s\mathcal{P}(k)^2} \times \operatorname{tr}\left(\Gamma\frac{\left[(s/2)\gamma^{\mu}\gamma^{\nu}F_{\alpha\beta}\tilde{\partial}^{\alpha}\mathcal{P}_{\mu}\tilde{\partial}^{\beta}\mathcal{P}_{\nu}\right]^2}{2}\right)$$

modified heat kernel expansion

$$\operatorname{Tr}(\Gamma) = \lim_{s \to 0} \operatorname{Tr} \left(\Gamma e^{-s(\gamma^{\mu} \mathcal{P}_{\mu}(-iD))^{2}} \right)$$
$$= \lim_{s \to 0} \int dx^{4} \int \frac{d^{4}k}{(2\pi)^{2}} e^{-s\mathcal{P}(k)^{2}} \times \operatorname{tr} \left(\Gamma \frac{\left[(s/2)\gamma^{\mu}\gamma^{\nu}F_{\alpha\beta}\tilde{\partial}^{\alpha}\mathcal{P}_{\mu}\tilde{\partial}^{\beta}\mathcal{P}_{\nu} \right]^{2}}{2} \right)$$
$$= \lim_{s \to 0} \frac{s^{2}}{2} \int d^{4}x \operatorname{tr} \left(\frac{1}{4}\Gamma\gamma^{\mu}\gamma^{\nu}\gamma^{\mu'}\gamma^{\nu'} \right) F_{\alpha\beta}(x)F_{\alpha'\beta'}(x)$$
$$\times \int \frac{d^{4}k}{(2\pi)^{4}} \frac{\partial \mathcal{P}_{\mu}(k)}{\partial k_{\alpha}} \frac{\partial \mathcal{P}_{\nu}(k)}{\partial k_{\beta}} \frac{\partial \mathcal{P}_{\nu'}(k)}{\partial k_{\alpha'}} \frac{\partial \mathcal{P}_{\nu'}(k)}{\partial k_{\beta'}} e^{-s\mathcal{P}(k)^{2}}$$

modified heat kernel expansion

$$\operatorname{Tr}(\Gamma) = \lim_{s \to 0} \operatorname{Tr} \left(\Gamma e^{-s(\gamma^{\mu} \mathcal{P}_{\mu}(-iD))^{2}} \right)$$

$$= \lim_{s \to 0} \int dx^{4} \int \frac{d^{4}k}{(2\pi)^{2}} e^{-s\mathcal{P}(k)^{2}} \times \operatorname{tr} \left(\Gamma \frac{\left[(s/2)\gamma^{\mu}\gamma^{\nu}F_{\alpha\beta}\tilde{\partial}^{\alpha}\mathcal{P}_{\mu}\tilde{\partial}^{\beta}\mathcal{P}_{\nu} \right]^{2}}{2} \right)$$

$$= \lim_{s \to 0} \frac{s^{2}}{2} \int d^{4}x \operatorname{tr} \left(\frac{1}{4} \Gamma \gamma^{\mu}\gamma^{\nu}\gamma^{\mu'}\gamma^{\nu'} \right) F_{\alpha\beta}(x)F_{\alpha'\beta'}(x)$$

$$\times \int \frac{d^{4}k}{(2\pi)^{4}} \frac{\partial \mathcal{P}_{\mu}(k)}{\partial k_{\alpha}} \frac{\partial \mathcal{P}_{\nu}(k)}{\partial k_{\beta}} \frac{\partial \mathcal{P}_{\nu'}(k)}{\partial k_{\alpha'}} \frac{\partial \mathcal{P}_{\nu'}(k)}{\partial k_{\beta'}} e^{-s\mathcal{P}(k)^{2}}$$

$$= \lim_{s \to 0} \frac{s^{2}}{\sqrt{\pi^{4}}} \int d^{4}k \operatorname{det} \left(\frac{\partial \mathcal{P}_{\mu}}{\partial k_{\alpha}} \right) e^{-s\mathcal{P}(k)^{2}} \times \left(-\frac{1}{8\pi^{2}} \int F \wedge F \right)$$

chiral anomaly for Weyl with nonlinear dispersion

$$\operatorname{Tr}(\Gamma) = \lim_{s \to 0} \operatorname{Tr} \left(\Gamma e^{-s(\gamma^{\mu} \mathcal{P}_{\mu}(-iD))^{2}} \right)$$
$$= \lim_{s \to 0} \frac{s^{2}}{2} \int d^{4}x \operatorname{tr} \left(\frac{1}{4} \Gamma \gamma^{\mu} \gamma^{\nu} \gamma^{\mu'} \gamma^{\nu'} \right) F_{\alpha\beta}(x) F_{\alpha'\beta'}(x)$$
$$\times \int \frac{d^{4}k}{(2\pi)^{4}} \frac{\partial \mathcal{P}_{\mu}(k)}{\partial k_{\alpha}} \frac{\partial \mathcal{P}_{\nu}(k)}{\partial k_{\beta}} \frac{\partial \mathcal{P}_{\nu'}(k)}{\partial k_{\alpha'}} \frac{\partial \mathcal{P}_{\nu'}(k)}{\partial k_{\beta'}} e^{-s\mathcal{P}(k)^{2}}$$
$$= \lim_{s \to 0} \frac{s^{2}}{\sqrt{\pi}^{4}} \int d^{4}k \operatorname{det} \left(\frac{\partial \mathcal{P}_{\mu}}{\partial k_{\alpha}} \right) e^{-s\mathcal{P}(k)^{2}} \times \left(-\frac{1}{8\pi^{2}} \int F \wedge F \right)$$

if we further assume that the map $\ k
ightarrow \mathcal{P}$ is unbounded

$$\operatorname{Tr}(\Gamma) = \lim_{s \to 0} \operatorname{Tr} \left(\Gamma e^{-s(\gamma^{\mu} \mathcal{P}_{\mu}(-iD))^{2}} \right)$$
$$= \lim_{s \to 0} \frac{s^{2}}{\sqrt{\pi^{4}}} \int d^{4}k \operatorname{det} \left(\frac{\partial \mathcal{P}_{\mu}}{\partial k_{\alpha}} \right) e^{-s\mathcal{P}(k)^{2}} \times \left(-\frac{1}{8\pi^{2}} \int F \wedge F \right)$$
$$= \lim_{s \to 0} \frac{1}{\sqrt{\pi^{4}}} \int_{N_{\mathcal{P}} \cdot \tilde{\mathbf{R}}^{4}} d^{4}(s^{1/2}\mathcal{P}) e^{-(s^{1/2}\mathcal{P})^{2}} \to N_{\mathcal{P}}$$
$$= N_{\mathcal{P}} \times \left(-\frac{1}{8\pi^{2}} \int F \wedge F \right)$$

chiral anomaly is enhanced by the "winding number" of the map $k \to \mathcal{P}$, computed at the large momentum limit

$$\operatorname{Tr}(\Gamma) = \lim_{s \to 0} \operatorname{Tr}\left(\Gamma e^{-s(\gamma^{\mu} \mathcal{P}_{\mu}(-iD))^{2}}\right)$$

$$= N_{\mathcal{P}} \times \left(-\frac{1}{8\pi^2} \int F \wedge F \right)$$
$$= \lim_{s \to 0} \frac{1}{\sqrt{\pi^4}} \int d^4k \, \det\left(\frac{s^{1/2} \partial \mathcal{P}_{\mu}}{\partial k_{\alpha}}\right) e^{-(s^{1/2} \mathcal{P}(k))^2}$$

after a careful dance about the Wick rotation

→ 2 x the same axial anomaly, with the same enhancement by the same winding number of $k \rightarrow \mathcal{P}(k)$!

the results can be also interpreted as a new Atiyah-Singer index if the boundary contribution is absent

$$\operatorname{Tr}(\Gamma) = \dim \left(\operatorname{Kernel} \operatorname{of} \mathcal{D}^{\dagger} \right) - \dim \left(\operatorname{Kernel} \operatorname{of} \mathcal{D} \right)$$

$$= N_{\mathcal{P}} \times \left(-\frac{1}{8\pi^2} \int F \wedge F \right)$$
$$= \lim_{s \to 0} \frac{1}{\sqrt{\pi^4}} \int d^4k \, \det\left(\frac{s^{1/2} \partial \mathcal{P}_{\mu}}{\partial k_{\alpha}}\right) e^{-(s^{1/2} \mathcal{P}(k))^2}$$

which generalizes, straightforwardly, to all even dimensions as

$$\operatorname{Tr}(\Gamma) = \dim \left(\operatorname{Kernel of } \mathcal{D}^{\dagger}\right) - \dim \left(\operatorname{Kernel of } \mathcal{D}\right)$$

$$= N_{\mathcal{P}} \times \left(\frac{1}{(d/2)!(2\pi i)^{(d/2)}} \int F \wedge \dots \wedge F\right)$$
$$= \lim_{s \to 0} \frac{1}{\sqrt{\pi^d}} \int d^d k \det\left(\frac{s^{1/2}\partial \mathcal{P}_{\mu}}{\partial k_{\alpha}}\right) e^{-(s^{1/2}\mathcal{P}(k))^2}$$

the simplest examples

$$\mathcal{H} \simeq \sigma^{\pm} C_1 \cdot (\delta k_{\pm})^N + \sigma^3 C_3 \cdot (\delta k_3)^L + \Delta(\vec{k}_*) + \cdots$$

$$N_{\mathcal{P}} = \begin{cases} \operatorname{sgn}(C_3) \cdot N & \text{for odd } L \\ 0 & \text{for even } L \end{cases}$$

cf) N=2,L=0: Z. M. Huang, J. Zhou and S. Q. Shen, Phys. Rev. B 96, no. 8, 085201 (2017) N=3, L=0: L. Lepori, M. Burrello and E. Guadagnini, JHEP 1806, 110 (2018)

whose two branches are

going back to the general dispersion is straightforward

X. L. Qi, T. Hughes and S. C. Zhang, "Topological Field Theory of Time-Reversal Invariant Insulators," Phys. Rev. B 78, 195424 (2008)

Eta Invariant with Nonlinear Dispersion

if the sample has a boundary, as is always the case with real material, the relevant index is that of Atiyah-Patodi-Singer

the bulk part is enhanced by the winding number, so what happens to the boundary contribution?

dim (Kernel of
$$\mathcal{D}^{\dagger}$$
) – dim (Kernel of \mathcal{D})

$$= N_{\mathcal{P}} \times \left(-\frac{1}{8\pi^2} \int_M F \wedge F \right) - ? \times \frac{\eta(\partial M)}{2}$$

 \rightarrow the entire index formula is enhanced by the common winding number, with the operator restricted somewhat

 $\mathcal{D} = -D_4 + \vec{\sigma} \cdot \vec{P}_k(-i\vec{D})$

 $\dim\left(\mathrm{Kernel} \ \mathrm{of} \ \mathcal{D}^{\dagger}\right) - \dim\left(\mathrm{Kernel} \ \mathrm{of} \ \mathcal{D}\right)$

$$= N_{\vec{P}} \times \left(-\frac{1}{8\pi^2} \int_M F \wedge F \right) - N_{\vec{P}} \times \frac{\eta(\partial M)}{2}$$

 \rightarrow the entire index formula is enhanced by the common winding number, with the operator restricted somewhat

 $\mathcal{D} = -D_4 + \vec{\sigma} \cdot \vec{P}_k(-i\vec{D})$

 $\dim\left(\mathrm{Kernel}\;\mathrm{of}\;\mathcal{D}^{\dagger}\right)-\dim\left(\mathrm{Kernel}\;\mathrm{of}\;\mathcal{D}\right)$

$$= N_{\vec{P}} \times \left(-\frac{1}{8\pi^2} \int_M F \wedge F - \frac{\eta(\partial M)}{2} \right)$$

where are we headed?

a new batch of topological quantities?

another UV/IR nature of anomaly

topology of the Brillouin zone/momentum space: does it lead us somewhere new?