# Research Directions in Quantum Field Theory and String Theory 2020

# The workshop for Prof. Chaiho Rím

임채호

Applications of AdS/CFT or Holographic duality

> Keun-Young Kim at GIST

> > successive in the local division in

1998년부터 저와 함께 세계 이곳 저곳을 돌아서 지금은 제 책꽃이에 자리 잡은 책이 하나 있습니다. 바로 임채호 교수님의 "등각장론"입니다.



1998년부터 저와 함께 세계 이곳 저곳을 돌아서 지금은 제 책꽃이에 자리 잡은 책이 하나 있습니다. 바로 임채호 교수님의 "등각장론"입니다.



# Research Directions in Quantum Field Theory and String Theory 2020

# The workshop for Prof. Chaiho Rím

임채호

Applications of AdS/CFT or Holographic duality

> Keun-Young Kim at GIST

> > successive in the local division in

# The beginning

# N D3 Branes





| Type IIB string theory          |                           | $\mathcal{N} = 4 \ U(N)$                           |
|---------------------------------|---------------------------|----------------------------------------------------|
| on $AdS_5 \times S^5$           |                           | Super Yang–M.lls theory                            |
| $g_s, R/l_s$                    | $\longleftrightarrow$     | $g_{ m YM},~~N$                                    |
|                                 | $g_{\rm YM}^2 = 4\pi g_s$ |                                                    |
|                                 | $(R/l_s)^4 = 4\pi g_s N$  |                                                    |
| Classical strings               | $\longleftrightarrow$     | 't Hoot, 11mit                                     |
| $g_s \to 0$ , $R/l_s$ fixed.    |                           | $N \to \infty$ , $\lambda = g_{\rm YM}^2 N$ fixed. |
| Classical supergravity          | $\longleftrightarrow$     | Large 't Hooft coupling limit                      |
| $g_s \to 0,  R/l_s \to \infty.$ |                           | $N \to \infty,  \lambda \to \infty.$               |

$$Z_{\text{Gravity}}^{\text{On-Shell}} = Z_{\text{Field Theory}} \equiv e^{-W_{FT}}$$

 $Z_{\text{String}} = Z_{\text{Field Theory}}$ 

$$W_{FT} = S_{\text{gravity}}^{\text{on-shell}} + \mathcal{O}\left(1/N^2\right) + \mathcal{O}\left(1/\sqrt{\lambda}\right)$$

# AdS space

# Anti de Sitter (AdS)



# Thermal AdS (AAdS)



# Charged AdS (AAdS)

Solution

Field  $\sim$  Operator



field theory: 4D

Quantum operators

Holographic "duality"



"Strongly" coupled field theory: 4D

Quantum operators

# Non-equilibrium physics



Non-equilibrium process: transport coefficients (viscosity, conductivity)



### Linear response



### Holographic conductivity

Einstein-Maxwell system

$$S_{\rm EM} = \int_M \mathrm{d}^4 x \sqrt{-g} \left[ R - 2\Lambda - \frac{1}{4} F^2 \right]$$

- Reissner-Nordstrom-AdS black hole
  - $\sim$  Boundary field theory at finite temperature and density





Strong coupling problems - QCD/nuclear physics



### Elliptic flow: shear viscosity





large elliptic flow small viscosity/entropy strong coupling

### Experiment vs hydrodynamics simulation





Comparison between RHIC results and hydrodynamic simulations

Holographic  
(gravity) result 
$$\eta = \frac{1}{16\pi G_5} \left(\frac{r_0}{L}\right)^3 = \frac{\pi}{8} N_c^2 T^3 \qquad \frac{\eta}{s} = \frac{1}{4\pi} \sim 0.08 \quad \text{(KSS bound})$$
$$s = \frac{1}{4G_5} \left(\frac{r_0}{L}\right)^3 = \frac{1}{2} \pi^2 N_c^2 T^3$$

A friend of mine in nuclear physics joked.... The first useful paper to come out of string theory Strong coupling problems
- More than QCD/nuclear physics

# Observation of a Strongly Interacting Degenerate Fermi Gas of Atoms

K. M. O'Hara, S. L. Hemmer, M. E. Gehm, S. R. Granade, J. E. Thomas<sup>\*</sup>

+ Author Affiliations

*Science* 13 Dec 2002: Vol. 298, Issue 5601, pp. 2179-2182 DOI: 10.1126/science.1079107





Elliptic flow of a strongly interacting Fermi gas as a function of time after release from a cigar-shaped optical trap

### Universal bound



Strong coupling problems AdS/CMT

# AdS/CMT

It is often said the conductivity is the first quantity to be measured and the last to be understood



### Strong interaction

- $\sim$  No quasi particle picture & Fast thermalization
- $\sim$  No Fermi-liquid theory
- ~ "Strange metal" or "Non-Fermi-liquid"









### Linear-T-resistivity



# Effective classical gravity for strong correlation



AdS/Quantum Information -Entanglement entropy





### Entanglement Entropy





$$S_A = -\operatorname{tr}_A \rho_A \log \rho_A$$
$$\rho_A = \operatorname{tr}_B \rho_{tot}$$

The Simplest Example: two spins (2 qubits) (i)  $|\Psi\rangle = \frac{1}{2} \left[ \left[ \uparrow \right\rangle_{A} + \left| \downarrow \right\rangle_{A} \right] \otimes \left[ \left[ \uparrow \right\rangle_{B} + \left| \downarrow \right\rangle_{B} \right]$  $\Rightarrow \rho_{A} = \operatorname{Tr}_{B} \left[ \left| \Psi \right\rangle \langle \Psi \right| \right] = \frac{1}{2} \left[ \left[ \uparrow \right\rangle_{A} + \left| \downarrow \right\rangle_{A} \right] \cdot \left[ \left\langle \uparrow \right|_{A} + \left\langle \downarrow \right|_{A} \right].$ 

Not Entangled

 $S_A = 0$ 

(ii) 
$$|\Psi\rangle = \left| |\uparrow\rangle_{A} \otimes |\downarrow\rangle_{B} + |\downarrow\rangle_{A} \otimes |\uparrow\rangle_{B} \right| /\sqrt{2}$$
  

$$\Rightarrow \rho_{A} = \operatorname{Tr}_{B} \left[ |\Psi\rangle\langle\Psi| \right] = \frac{1}{2} \left[ |\uparrow\rangle_{A} \langle\uparrow|_{A} + |\downarrow\rangle_{A} \langle\downarrow|_{A} \right]$$

Entangled

 $S_A = \log 2$ 

# Entanglement Entropy



$$S_A = -\operatorname{tr}_A \rho_A \log \rho_A$$
$$\rho_A = \operatorname{tr}_B \rho_{tot}$$



$$S_A = \frac{\operatorname{Area}(\gamma_A)}{4G_N^{(d+2)}}$$

Successful agreements with field theory computation

Tadashi Takayanagi



Shines Ryu



### Entanglement Entropy and Quantum information



Space

AdS/Quantum Information -Entanglement is not enough?

# Complexity



# Holographic conjecture for complexity

CV (complexity-volume)

### CA (complexity-action)

[Susskind: 1402.5674 Stanford and Susskind: 1406.2678]



$$\mathcal{C}_V = \max_{\partial \Sigma = t_L \cup t_R} \left[ \frac{V(\Sigma)}{G_N \ell} \right]$$

- Equation of motion
- Free scale: ambiguity

[Brown, Roberts, Susskind Swingle and Zhao: 1509.07876, 1512.04993]



$$\mathcal{C}_A = \frac{I_{\rm WDW}}{\pi\hbar}$$

- Boundary terms
- Singularity

- Complexity geometry is a Finsler geometry.
- Puzzle: for a given operator, the right(-invariant) complexity and Left(-invariant) complexity are different.

$$\tilde{F}(H_r = i\dot{c}c^{-1}) \neq \tilde{F}(H_l = ic^{-1}\dot{c})$$

• By considering physical conditions, the puzzle is resolved: Left/right equivalence and bi-invariace.  $\tilde{F}(H_{\alpha}) = \tilde{F}(\hat{U}H_{\alpha}\hat{U}^{\dagger})$ 

$$\tilde{F}(H_r = i\dot{c}c^{-1}) = \tilde{F}(H_l = ic^{-1}\dot{c})$$

• SU(n) operator complexity is **uniquely** determined.

$$\mathcal{C}(\hat{O}) = \min\left\{ \operatorname{Tr}\sqrt{\bar{H}\bar{H}^{\dagger}} \mid \forall \bar{H}, s.t., \exp(-i\bar{H}) = \hat{O} \right\} \quad \text{(Finsler)}$$
$$\mathcal{C}(\hat{O}) = \min\left\{ \left[ \operatorname{Tr}\left(\bar{H}\bar{H}^{\dagger}\right)^{\frac{p}{2}} \right]^{\frac{1}{p}} \mid \forall \bar{H}, s.t., \exp(-i\bar{H}) = \hat{O} \right\}$$

# Applications?

• SYK model: complexity growth in a chaotic model

# Complexity growth



# Complexity growth

$$\mathcal{C}(t) = \min\left\{ \left| \sum_{n=1}^{2^{N/2}} |E_n t + 2\pi k_n| \right| \; \forall k_n \right\}$$

"Quantum complexity of time evolution with chaotic Hamiltonian" [1905.05765] "Balasubramanian, DeCross, Kar, Parrikar

# Summary and outlook

# History of gauge/gravity duality

### 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19



### In a bigger context: overview on holographic duality







# Research Directions in Quantum Field Theory and String Theory 2020

# The workshop for Prof. Chaiho Rim



# Thank you