
 

The workshop for Prof. Chaiho Rim

Applications of AdS/CFT  
or Holographic duality 

Keun-Young Kim  
at GIST

https://hanja.dict.naver.com/hanja?id=8155


1998년부터 저와 함께 세계 이곳 저곳을 돌아서

지금은 제 책꽃이에 자리 잡은 책이 하나 있습니다.

바로 임채호 교수님의 “등각장론” 입니다.  



이것이 

제 공부의 


한 축이 되었습니다.

후학을 위하여 


좋은 책을 써 주셔서 

감사합니다.

1998년부터 저와 함께 세계 이곳 저곳을 돌아서

지금은 제 책꽃이에 자리 잡은 책이 하나 있습니다.

바로 임채호 교수님의 “등각장론” 입니다.  

Applications of AdS/CFT  
or Holographic duality 

Keun-Young Kim  
at GIST



 

The workshop for Prof. Chaiho Rim

Applications of AdS/CFT  
or Holographic duality 

Keun-Young Kim  
at GIST

https://hanja.dict.naver.com/hanja?id=8155


5

The beginning



N D3 Branes

Type IIB string theory N = 4 U(N)

on AdS5 × S5 Super Yang–Mills theory

gs , R/ls ←→ gYM , N

g2
YM = 4πgs

(R/ls)4 = 4πgsN

Classical strings ←→ ’t Hooft limit

gs → 0 , R/ls fixed. N → ∞ , λ = g2
YMN fixed.

Classical supergravity ←→ Large ’t Hooft coupling limit

gs → 0 , R/ls → ∞ . N → ∞ , λ → ∞ .

Table 2.3: Three forms of the AdS/CFT conjecture, in order of decreasing strength.

taking ls → 0, and we are left with low-energy supergravity on AdS5 × S5, namely a

very tractable classical limit! We summarize the three levels of the correspondence in

table 2.3.

The AdS/CFT duality we just introduced is probably the most powerful and best

understood example of gauge/gravity correspondence. Let us stress again that it in-

tends to be an exact duality between a gauge theory in four dimensions and a theory

without gauge degrees of freedom in a higher dimension. In some sense, then, all the

information on the bulk higher-dimensional theory can be thought to be encoded in

the four-dimensional one, as a sort of hologram. This gives rise to the concept of

holography [27, 28].
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AdS space



Anti de Sitter (AdS)S =
1

16�G

⇤
dd+2x

⇥
�g

�
R +

d(d + 1)
L2

⇥

ds2 =
1
r2

�
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⇥
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Figure 1: The extra (‘radial’) dimension of the bulk is the resolution scale of the field theory.
The left figure indicates a series of block spin transformations labelled by a parameter z.

The right figure is a cartoon of AdS space, which organizes the field theory information
in the same way. In this sense, the bulk picture is a hologram: excitations with different

wavelengths get put in different places in the bulk image. The connection between these two
pictures is pursued further in [15]. This paper contains a useful discussion of many features of

the correspondence for those familiar with the real-space RG techniques developed recently
from quantum information theory.

of length. Although this is a dimensionful parameter, a scale transformation xµ → λxµ can

be absorbed by rescaling the radial coordinate u → u/λ (by design); we will see below more

explicitly how this is consistent with scale invariance of the dual theory. It is convenient to

do one more change of coordinates, to z ≡ L2

u , in which the metric takes the form

ds2 =

(
L

z

)2
(

ηµνdx
µdxν + dz2

)

. (2.1)

These coordinates are better because fewer symbols are required to write the metric. z will

map to the length scale in the dual theory.

So it seems that a d-dimensional conformal field theory (CFT) should be related to a

theory of gravity on AdSd+1. This metric (2.1) solves the equations of motion of the following

action (and many others)4

Sbulk[g, . . . ] =
1

16πGN

∫

dd+1x
√
g (−2Λ+R+ . . . ) . (2.2)

Here,
√
g ≡

√

| det g| makes the integral coordinate-invariant, and R is the Ricci scalar

but there is no proof for d > 1 + 1. Without Poincaré invariance, scale invariance definitely does not imply
conformal invariance; indeed there are scale-invariant metrics without Poincaré symmetry, which do not have
have special conformal symmetry [16].

4For verifying statements like this, it can be helpful to use Mathematica or some such thing.
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framework, cf. [28]. Indeed they may be indicative of interesting physics. However, it does

mean that one should be careful in using these spaces for z ⇤= 1 and that a global geodesic

completion of the space does not exist.

The case z = 1 is nothing other than Anti-de Sitter space. In this case the symmetry

of the spacetime, and hence of the dual scale-invariant theory is substantially enhanced.

Besides rotations, spacetime translations and dilatations, the theory enjoys Lorentz boost

symmetry and special conformal symmetries. As well as being regular, Anti-de Sitter space-

time has the virtue of being a solution to a simple d+1 dimensional theory of gravity, namely

general relativity with a negative cosmological constant

S =
1

2⇥2

⇤
dd+1x

⌅
�g

�
R+

d(d� 1)

L2

⇥
. (19)

Partly for this reason, much of these lectures will use examples with z = 1. Lifshitz

invariant spacetimes with z ⇤= 1 can also be obtained from more complicated actions (see

e.g. [26, 27, 29]).

For z > 1 these spaces are candidate duals to nonrelativistic field theories. Besides the

absence of Lorentz boost symmetry, this fact is reflected in their causal structure. As we

move towards the ‘boundary’ r = 0 (the boundary is in the direction in which gxixi diverges

and should more properly be thought of as a conformal boundary, as the spacetime itself is

infinite in extent), the metric component gtt diverges faster than gxixi . This means that the

lightcones are flattening out and so the e�ective speed of light is diverging, as one would

expect for a nonrelativistic theory. The technical expression of this fact is that arbitrarily

near to the boundary, the spacetime is not causally distinguishing. That is to say, at r ⇥ 0

distinct spatial points x ⇤= y at some time t = t0 have identical causal futures and pasts.

We have seen how the Poincaré group can emerge geometrically at the special value of

z = 1 (together with its additional conformal symmetries). A di�erent important structure

that can be added to the basic algebra of rotations and space and time translations are

Galilean boosts. The Galilean boosts are vectors Ki that in classical mechanics generate

the transformation {xi ⇥ xi + vit, t ⇥ t} and satisfy the algebra

[Mij ,Kk] = i(�ikKj � �jkKi) , [Pj ,Ki] = 0 , [H,Ki] = �iPi . (20)

In quantum mechanics, however, it has been argued that physically relevant systems require

a central extension of this algebra [30]6

[Pj ,Ki] = 0 � [Pj ,Ki] = �i�ijN . (21)

6More precisely, [30] show that irreducible representations of the Galilean algebra in which translations

and boosts commute do not admit states with definite position or velocity. We will see shortly that a dual
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along the boundary corresponds to probing the bulk only near the boundary at r = 0,

while probing long distances (or low energies) along the boundary corresponds to data

deep in the interior of AdS. Roughly, then, we can think of the region near the boundary

of AdS as associated with the UV physics of the boundary, and of the deep interior of

AdS as associated to the IR physics of the boundary.

Figure 24. Hanging rope in AdS. When the ends are close together in the spatial
direction, x, so that the rope probes short distances and high energies in the QFT, the
stretches only slightly into the bulk of the AdS spacetime. When the ends are far apart,
probing long distances and low energies in the QFT, the rope stretches deep into the
AdS bulk. Thus is the boundary of AdS associated to the UV of the QFT, while the
deep bulk is associated with the IR.

To visualize this association, consider a fixed tension rope whose ends are glued to

the boundary at r = 0. Due to the constant negative curvature of AdS, the bulk of the

rope is drawn into the bulk of the AdS spacetime, forming an arc drooping away from
the boundary. If the ends of rope are held close together – probing short distances or

high energy in the 4d boundary – the rope barely hangs into bulk. If we instead pull the

ends of the rope far apart – probing long distances or low energy in the 4d boundary –

the rope dips much further into the bulk. In this way, probing the IR of the boundary

corresponds to probing the deep interior of the AdS, r → ∞, while probing the UV

of the boundary corresponds to focusing on the near-boundary region of the geometry,
r → 0. Note that the near-boundary cutoff at r = a # 1 thus acts as a UV regulator,

while the horizon at r = rH provides a natural IR regulator.

Importantly, AdS is a solution to the equations of motion of a generic Wilsonian

action for the metric

IGravity =
1

16πGN

∫

dd+1x
√
−g
(

−2Λ +R + c2R
2 + c3R

3 + . . .
)

. (67)

Here, GN is the Newton constant, g is the determinant of the spacetime metric,

g = det(gµν), R is the Ricci curvature scalar built out of two derivatives of the metric,

R ∼ ∂∂g, Λ is a cosmological constant (a.k.a. the tension of the vacuum), and the

A slowly moving massive particle  
feels a gravitational potential  

⇠
p
�g00 =

1

r

Trap for gravity

Hanging rope in AdS
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Thermal AdS (AAdS)

scale invariance is recovered at energies well above the characteristic scale of the deforma-

tion, we expect that the spacetime should also recover scaling invariance as we go towards

the ‘boundary’. In the case of z = 1 (which we shall restrict to without comment from now

on) this is the technical requirement that the spacetime be ‘asymptotically Anti-de Sitter’.

We shall shortly see how this works in practice.

For concreteness, let us write out Anti-de Sitter (AdS) spacetime explicitly in some

convenient coordinates

ds2 = L2

�
�dt2

r2
+

dr2

r2
+

dxidxi

r2

⇥
. (39)

If we wish to break the scale invariance of this metric, while preserving rotations and

spacetime translations, we should consider spacetimes of the form

ds2 = L2

�
�f(r)dt2

r2
+

g(r)dr2

r2
+

h(r)dxidxi

r2

⇥
. (40)

We have introduced three nontrivial functions of the radial coordinate: f(r), g(r) and h(r).

There is clearly a certain gauge freedom in parameterising this metric; g(r) can be chosen

freely by changing variables r ⇥ r̂(r). If f ⇤= h then this metric also breaks Lorentz

invariance, as would be expected for finite temperature or finite chemical potential physics.

If we were describing a renormalisation group flow triggered by a Lorentz scalar operator,

then we should set f = h. To recover scale invariance at high energies we should impose,

for instance, that f, g, h ⇥ const. (su�ciently quickly) as r ⇥ 0.

To find specific solutions for f, g and h, we need some equations of motion. Let’s see

what follows from the simplest theory that has the AdS metric (39) as a solution, namely

the Einstein gravity action (19). The equations of motion are

Rµ� = � d

L2
gµ� . (41)

Plugging the metric ansatz (40) into these equations, one finds the Schwarzschild-AdS

solution

ds2 =
L2

r2

�
�f(r)dt2 +

dr2

f(r)
+ dxidxi

⇥
, (42)

where

f(r) = 1�
�

r

r+

⇥d

. (43)

We see that this solution introduces one dimensionless parameter r+/L, which we now need

to interpret in field theory. We can see that f ⇥ 1 as r ⇥ 0 and hence this spacetime is

asymptotically AdS as required. However, as we go into the spacetime, to the infrared (IR)

as our starting point: this is the phenomenon of universality.
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the transformation {xi ⇥ xi + vit, t ⇥ t} and satisfy the algebra

[Mij ,Kk] = i(�ikKj � �jkKi) , [Pj ,Ki] = 0 , [H,Ki] = �iPi . (20)
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6More precisely, [30] show that irreducible representations of the Galilean algebra in which translations

and boosts commute do not admit states with definite position or velocity. We will see shortly that a dual
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Figure 1: The extra (‘radial’) dimension of the bulk is the resolution scale of the field theory.
The left figure indicates a series of block spin transformations labelled by a parameter z.

The right figure is a cartoon of AdS space, which organizes the field theory information
in the same way. In this sense, the bulk picture is a hologram: excitations with different

wavelengths get put in different places in the bulk image. The connection between these two
pictures is pursued further in [15]. This paper contains a useful discussion of many features of

the correspondence for those familiar with the real-space RG techniques developed recently
from quantum information theory.

of length. Although this is a dimensionful parameter, a scale transformation xµ → λxµ can

be absorbed by rescaling the radial coordinate u → u/λ (by design); we will see below more

explicitly how this is consistent with scale invariance of the dual theory. It is convenient to

do one more change of coordinates, to z ≡ L2

u , in which the metric takes the form

ds2 =

(
L

z
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ηµνdx
µdxν + dz2

)

. (2.1)

These coordinates are better because fewer symbols are required to write the metric. z will

map to the length scale in the dual theory.

So it seems that a d-dimensional conformal field theory (CFT) should be related to a

theory of gravity on AdSd+1. This metric (2.1) solves the equations of motion of the following

action (and many others)4

Sbulk[g, . . . ] =
1

16πGN

∫

dd+1x
√
g (−2Λ+R+ . . . ) . (2.2)

Here,
√
g ≡

√

| det g| makes the integral coordinate-invariant, and R is the Ricci scalar

but there is no proof for d > 1 + 1. Without Poincaré invariance, scale invariance definitely does not imply
conformal invariance; indeed there are scale-invariant metrics without Poincaré symmetry, which do not have
have special conformal symmetry [16].

4For verifying statements like this, it can be helpful to use Mathematica or some such thing.
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gravity regime to be tied to a large N limit in field theory, we can anticipate that Ld�1/2 ⇠

N#, where # is some positive power. The AdS radius L is not a lengthscale in the dual

field theory, which is scale invariant. For this reason L is often set to 1, although we shall

not do so. In expressions that have a field theory meaning, L will always appear divided by

Planck lengths, giving a dimensionless constant that is proportional to N to some power.

From the value of the action (50) we obtain the free energy

F = �T logZ = TSE [g?] = �
(4⇡)dLd�1

22dd
Vd�1T

d , (51)

and the entropy

S = �
@F

@T
=

(4⇡)dLd�1

22dd�1
Vd�1T

d�1 . (52)

As a check of our computation we can note that this expression for the entropy is equal

to the area of event horizon divided by 4GN , where in our conventions Newton’s constant

is GN = 2/8⇡. This area-entropy relation is universally expected to be true for event

horizons.

To summarise the story so far: we have argued that AdS space provides a geometric dual

for scale invariant theories with z = 1. The most universal deformation away from pure AdS

is the Schwarzschild-AdS black hole. The black hole is dual to a finite temperature. The

free energy and other thermodynamic quantities are computed in terms of the temperature

and radius of curvature of AdS in Planck units (equivalently N#). In terms of static and

isotropic backgrounds there is not much more to be done with pure Einstein gravity. In

order to describe more features of the dual field theory, we need to add structure to the

bulk theory.

2.3 Finite chemical potential and magnetic field at equilibrium

A common additional structure that arises in condensed matter systems (and elsewhere)

is a U(1) symmetry. This could be, for instance but not necessarily, the electromagnetic

U(1) symmetry. In this section we will consider the gravitational dual of theories with a

global U(1) symmetry. The electromagnetic U(1) symmetry in nature is of course gauged.

However, there are at least two reasons why photons can be correctly neglected in many

condensed matter processes. Firstly the electromagnetic coupling is observed to be small.11

Secondly, the electromagnetic interaction is screened in a charged medium. Of course,

11This statement is not always true. For instance, 3+1 dimensional photons can mediate an e↵ectively

strong interaction in a 2+1 theory. See e.g. [53]. However, the higher dimensional Coulomb interaction is

marginally irrelevant in the 2+1 dimensional theory and so becomes weak at low temperatures [54].
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almost all of condensed matter physics is ultimately due to electromagnetism (and the

Pauli exclusion principle). When talking about neglecting photons we mean that there is an

e�ective field theory description of the dynamics involving e�ective degrees of freedom and

that in this description there are charged fields but no gauge bosons for the U(1) symmetry

(i.e. no photons). In such processes in which ‘virtual photons’ are not important, the

electromagnetic symmetry can be treated as a global symmetry. If we wish to consider the

response of the theory to an electromagnetic source it is su⇥cient to consider a background

electromagnetic field. Indeed, this is a standard procedure throughout condensed matter

theory; for example one computes the conductivity by considering electrons, or particular

collective modes thereof, in background fields.

So what is the dual to a global U(1) symmetry in field theory? We can take our cue from

the symmetries we have already discussed in previous sections. Another global symmetry

the field theory possesses (in a fixed Minkowski background metric, say) is SO(d � 1)

rotational invariance. In the bulk this symmetry symmetry also appears, but it is gauged.

Namely, it is part of the di�eomorphism invariance of general relativity: we can act on

our AdS spacetime with a local SO(d � 1) rotation and we simply obtain AdS again in a

di�erent coordinate system. This observation suggests the general correspondence

Global symmetry (field theory)

d spacetime dimensions
�

Gauged symmetry (gravity)

d+ 1 spacetime dimensions.
(53)

Another fact that makes the above correspondence natural is that gauge symmetries include

the subgroup of ‘large’ gauge symmetries, that is, symmetries which act nontrivially as

global symmetries on the boundary of spacetime. In an AdS/CFT framework we can

precisely identify this global subgroup of the bulk gauged symmetry as the global symmetry

group of the dual field theory.

To describe the physics of the global U(1) symmetry we should therefore add a Maxwell

field to our bulk spacetime. The minimal bulk action is thus Einstein-Maxwell theory12

S =

⇧
dd+1x

⇥
�g

⇤
1

2�2

�
R+

d(d� 1)

L2

⇥
� 1

4g2
F 2

⌅
. (54)

Here F = dA is the electromagnetic field strength. At this point, without any charged

matter in the bulk, the Maxwell coupling g2 could be absorbed in the Maxwell field. We

introduce the coupling now for future convenience.

12There is an interesting very simple extension of Einstein-Maxwell theory, which is to include a coupling

between the field strength and the Weyl tensor, e.g. [55].
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In thermal equilibrium there are two new background scales we can now introduce in

the field theory in a way that preserves rotational symmetry. One is a chemical potential

µ = A(0)t and the other, which only preserves rotational symmetry in 2+1 dimensions, is

a background magnetic field B = F(0)xy. As we saw previously with the temperature, T ,

these new scales must cause deformations away from a pure AdS spacetime as we move

away from the boundary and into the IR region. Also as with the metric in (48), the

background Maxwell potential of the field theory is read o� from the boundary value of the

bulk Maxwell potential

Aµ(r) = A(0)µ + · · · as r ⇥ 0 . (55)

As with the metric, we are pulling back to the boundary so that there is no Ar component

We now need to search for solutions to Einstein-Maxwell theory of the form (40) together

with a nonvanishing Maxwell field

A = At(r)dt+B(r)x dy . (56)

The second term in this expression will break the isotropy of the field theory unless there

are only two spatial dimensions (i.e. d = 3). We will firstly consider the case of no magnetic

field in arbitrary dimensions and then will consider the d = 3 case separately. The Einstein

equations of motion are

Rµ� �
R

2
gµ� �

d(d� 1)

2L2
gµ� =

⇥2

2g2

�
2Fµ⇤F�

⇤ � 1

2
gµ�F⇤⇥F

⇤⇥

⇥
, (57)

while the Maxwell equation is

⇤µF
µ� = 0 . (58)

Looking for solutions to these equations of the form (40) and (56) one finds the Reissner-

Nordstrom-AdS black hole

ds2 =
L2

r2

�
�f(r)dt2 +

dr2

f(r)
+ dxidxi

⇥
, (59)

where

f(r) = 1�
�
1 +

r2+µ
2

�2

⇥�
r

r+

⇥d

+
r2+µ

2

�2

�
r

r+

⇥2(d�1)

. (60)

In this expression we defined

�2 =
(d� 1)g2L2

(d� 2)⇥2
, (61)

which is a dimensionless measure of the relative strengths of the gravitational and Maxwell

forces. The scalar potential is

At = µ

⇤
1�

�
r

r+

⇥d�2
⌅
. (62)
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5 The planar Reissner-Nordström-AdS black hole 13

The Maxwell potential of the solution is

A = µ

✓
1� r

r+

◆
dt . (5.5)

We have required the Maxwell potential to vanish on the horizon, At(r+) =
0. The simplest argument for this condition is that otherwise the holonomy
of the potential around the Euclidean time circle would remain nonzero when
the circle collapsed at the horizon, indicating a singular gauge connection.
The planar Reissner-Nordström-AdS solution is characterized by two scales,
the chemical potential µ = limr!0At and the horizon radius r+. From the
dual field theory perspective, it is more physical to think in terms of the
temperature than the horizon radius

T =
1

4⇡r+

✓
3�

r
2
+µ

2

2�2

◆
. (5.6)

The black hole is illustrated in figure 4 below. This black hole, which can
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Figure 4 The planar Reissner-Nordström-AdS black hole. The charge den-
sity is sourced entirely by flux emanating from the black hole horizon.

additionally carry a magnetic charge, was the starting point for holographic
approaches to finite density condensed matter [27, 28].

Because the underlying UV theory is scale invariant, the only dimension-
less quantity that we can discuss is the ratio T/µ. In order to answer our
basic question about the IR physics at low temperature, we must take the
limit T/µ ⌧ 1 of the solution. We thereby obtain the extremal Reissner-
Nordström-AdS black hole with

f(r) = 1� 4

✓
r

r+

◆
3

+ 3

✓
r

r+

◆
4

. (5.7)

The near-horizon extremal geometry, capturing the field theory IR, follows

Action

Solution The constant term in At cannot be chosen arbitrarily. This is because there is a bifurcate

Killing horizon of the Killing vector ⌅/⌅t at r = r+, and so the one form A will not be well

defined there unless At vanishes [56].

By comparing with (55) we see that the chemical potential is µ. The temperature can

be found as previously by analytic continuation to a Euclidean signature solution (note that

At becomes pure imaginary under this process). The periodicity of imaginary time is again

given by the first relation in (47) and hence we obtain the temperature

T =
1

4⇤r+

�
d�

(d� 2)r2+µ
2

�2

⇥
. (63)

Periodically identifying the time coordinate gives another reason to enforce that At vanish

at r = r+. If At(r+) were finite one could obtain a finite Wilson loop
⇤
A around the

vanishing Euclidean time circle, indicating that the gauge connection is singular.

An important feature of (63) relative to the zero chemical potential case (49) is that the

temperature can become zero continuously. Recall that with no chemical potential we could

scale out r+ and hence all nonzero temperatures were equivalent. Here we can again scale

out r+, but we are left with the scale set by µ and therefore with the dimensionless ratio

T/µ, which can be continuously taken to zero. In a scale invariant theory all dimensionless

equilibrium quantities can only depend on temperature and chemical potential through this

ratio – there are no other scales.

The thermodynamic potential is obtained from evaluating the Euclidean action on the

analytically continued solution, just as in the previous section. The action is again (45)

together with the Maxwell F 2 term (which appears with a + sign in the Euclidean action

SE). No additional counterterms are necessary because the Maxwell field falls o⇥ su⇤ciently

quickly near the boundary in the dimensions of interest (d ⇥ 3). We are working in the

grand canonical ensemble13, with µ fixed, and thus use the notation � = �T logZ where Z

is the partition function defined by the gravitational path integral (44). One finds

� = � Ld�1

2⇥2rd+

�
1 +

r2+µ
2

�2

⇥
Vd�1 = F

�
T

µ

⇥
Vd�1T

d , (64)

where the function F is easily obtained by solving (63) for r+. This function is a nontrivial

output from AdS/CFT. At low temperatures we have � ⇤ aµd+bµd�1T+cµd�2T 2+ · · · . In
13To work instead in the canonical ensemble, fixed charge density ⇥, we should add a boundary term to

the Euclidean action: �SE = 1
g2

�
r�0

ddx
�
�naFabA

b. This term changes the variational problem so that

one must keep the field strength naFab fixed at the boundary rather than the potential Aa. It can be seen

to imply the standard thermodynamic relation F = ⇥+ µQ. Here Q = ⇥V2 is the total charge.
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output from AdS/CFT. At low temperatures we have ⌦ ⇠ aµd+bµd�1T+cµd�2T 2+ · · · . In
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Holographic “duality”

“Strongly” coupled field theory: 4D

“Classical” gravity system: 5D

Quantum operators

Classical fields

gµ⌫ ⇠ Tµ⌫

Aµ ⇠ Jµ
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Black hole hydrodynamics

perturbation dissipation

Non-equilibrium process:  
transport coefficients (viscosity, conductivity)

Field theory

Black hole
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dt
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�qdt

On-shell action as a function of the coordinates

�S
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= p (�q(t1) = 0)

(Classical Mechanics: Hamilton-Jacobi theory)

Linear response

GKP-Witten Relation

One-point function

Source Expectation value

Corollary

�Ax(r,!) =
E
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+ Jx(!)r + · · ·

r = 0 horizon r = 1
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Einstein-Maxwell system

Reissner-Nordstrom-AdS black hole  
   ~ Boundary field theory at finite temperature and density

5 The planar Reissner-Nordström-AdS black hole 13
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additionally carry a magnetic charge, was the starting point for holographic
approaches to finite density condensed matter [27, 28].

Because the underlying UV theory is scale invariant, the only dimension-
less quantity that we can discuss is the ratio T/µ. In order to answer our
basic question about the IR physics at low temperature, we must take the
limit T/µ ⌧ 1 of the solution. We thereby obtain the extremal Reissner-
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The near-horizon extremal geometry, capturing the field theory IR, follows

Electric conductivity

Holographic conductivity

Jx = �Ex

perturbation (103). Taking ⇠t̄ = ixrxT/!̄T 3 and ⇠x = 0, one obtains that after the gauge

transformation �gt̄t̄(0) = 0, �gxt̄(0) = irxT/!̄T 3 and �Ax(0) = �iµrxT/!̄T 3. Scaling back

to the original dimensionful time t, we obtain (102).

Combining (101) and (102) we can see that the the source term in the action becomes

�S =

Z
dd�1xdt

p
�g(0)

�
T tx�gtx(0) + JxAx(0)

�

=

Z
dd�1xdt

p
�g(0)

✓
(T tx

� µJx)
�rxT

i!T
+ Jx

Ex

i!

◆
. (105)

Thus we see that the current sourced by a thermal gradient is Qx = Ttx�µJx, as we claimed

above. Substituting (101) and (102) into (100) gives
0

@ hJxi

hQxi

1

A =

0

@ � ↵T

↵T ̄T

1

A

0

@ i!(�Ax(0) + µ�gtx(0))

i!�gtx(0)

1

A , (106)

This linear relation between a source and an expectation value makes it clear that the

conductivities are nothing other than the retarded Green’s functions

�(!) =
�iGR

JxJx
(!)

!
, ↵(!)T =

�iGR

QxJx
(!)

!
, ̄(!)T =

�iGR

QxQx
(!)

!
. (107)

From our previous discussion we know that in order to compute the response of the

theory to these small background fields via AdS/CFT we need to solve the equations of

motion of perturbations �Ax and �gtx in the bulk. These perturbations do not source any

other fields (this simplification occurs because we have set the momentum k = 0). The bulk

action we will use is the Einstein-Maxwell action (54). The background solution is given

by the 4 dimensional Reissner-Nordstrom-AdS black hole, discussed around (59). Linearis-

ing the Einstein-Maxwell equations of motion (57) about this background one obtains the

following two independent equations

�g0tx +
2

r
�gtx +

4L2

�2
A0

t�Ax = 0 , (108)

(f�A0

x)
0 +

!2

f
�Ax +

r2A0
t

L2

✓
�g0tx +

2

r
�gtx

◆
= 0 , (109)

with f,At and �2 given below (59) above. Note in particular that A0
t = �µ/r+ is a constant.

We can easily obtain a decoupled equation for �Ax

(f�A0

x)
0 +

!2

f
�Ax �

4µ2r2

�2r2+
�Ax = 0 . (110)

It is straightforward to check that solutions to this equation behave near the boundary as

�Ax = �Ax(0) +
r

L
�Ax(1) + · · · as r ! 0 . (111)
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�Ax(�A
0
x) ⇠ (E/i!)Jx ⇠ (E/i!)

Jx
(E/i!)

(E/i!) ⇠ J1G11J1�A(0)
x G11�A

(0)
xon-shell action ~ 

Tail of the field~ �Ax(r,!) =
E

i!
+ Jx(!)r + · · ·

Ej = �@tAj

Aj ⇠ e�i!t

G11

i!
⇠ Jx

E
= �

In this paper we study AdS RN and dyonic BH with the simplest possible momentum

dissipation e↵ect model.

RN black hole - DC conductivity

1/omega pole. - Intermediate momentum

- Bad metal behaviour.

Dyonic - DC

- Wiederman Franz law.

- Hall angle.

[17] [18] [4]

2 Dyonic black branes with scalar sources

Let us start with the Einstein-Maxwell action on a four dimensional manifold M with

boundary @M is

SEM =

Z

M
d
4
x
p
�g


R� 2⇤� 1

4
F

2

�
� 2

Z

@M
d
3
x
p
��K , (2.1)

where ⇤ = � 3
l2 is a negative cosmological constant and we have chosen units such that

16⇡G = 1. Hereafter we set l = 1. The second term is the Gibbons-Hawking term

required for a well defined variational problem with Dirichlet boundary conditions. � is

the determinant of the induced metric �µ⌫ at the boundary and K is the trace of the

extrinsic curvature. In order to have a momentum relaxation e↵ect, we add a free massless

scalar

S =

Z

M
d
4
x
p
�g

"
�1

2

2X

I=1

(@ I)
2

#
. (2.2)

The total action

S = SEM + S (2.3)

implies equations of motion
1

RMN =
1

2
gMN

✓
R� 2⇤� 1

4
F

2

◆
+

1

2

X

I

@M I@N I +
1

2
FM

P
FNP (2.4)

rMF
MN

= 0 , (2.5)

r2
 I = 0 . (2.6)

1Index convention: M,N, · · · = 0, 1, 2, r, and µ, ⌫, · · · = 0, 1, 2, and i, j, · · · = 1, 2.
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Strong coupling problems 
- QCD/nuclear physics
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Quark gluon plasma
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large elliptic flow

small viscosity/entropy

strong coupling

Elliptic flow: shear viscosity
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Experiment vs hydrodynamics simulation

Comparison between RHIC results and hydrodynamic simulations

Initial conditions

Holographic 
(gravity) result ⌘

s
=

1

4⇡
⇠ 0.08 (KSS bound)

A friend of mine in nuclear physics joked….  
The first useful paper to come out of string theory
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Strong coupling problems 
- More than QCD/nuclear physics
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Ultracold Fermi gas experiment

Elliptic flow of a strongly interacting Fermi gas as a function of time  
after release from a cigar-shaped optical trap



Strongly Correlated Quantum Fluids 4

10!8 10!4 1 104 108 1012
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water

helium

ultracold Fermi gas

quark gluon plasma

neutron stars

sun

Figure 1. Temperature and pressure scales of extreme quantum matter. Ultracold
quantum gases are the coldest matter produced to date, while the quark-gluon plasma
is the hottest, together spanning about 18 orders of magnitude in temperature and
more than 40 orders of magnitude in pressure. Yet these systems exhibit very similar
hydrodynamic behavior, as characterized by the shear viscosity to entropy density ratio
shown in Fig. 2). We also include two other well known quantum fluids, liquid helium
and hot proto-neutron star matter, as well as a classical fluid, water, and a classical
plasma, the Coulomb plasma in the sun.

quark and gluons in the case of the QGP, neutrons and protons in the case of nuclear

matter, and atoms in the case of ultracold atomic gases. In strongly interacting systems

the mean free path for these excitations is comparable to the interparticle spacing,

and quasiparticles lose their identity. Even though kinetic theory fails, nearly ideal,
low viscosity hydrodynamics is a very good description of these systems. This is a

central prediction of holographic duality, and it has been verified experimentally for

both ultracold quantum gases and the QGP, as we will explore in this Review.

As shown in Fig. 1, strongly correlated quantum fluids cover an enormous range

of scales in temperature and pressure.Σ We remind the reader that temperature T and

transitions that terminates at a critical endpoint. A plasma is a gas of charged particles. Gases,
liquids, and plasmas behave as fluids if probed on very long length scales. Weakly coupled systems
exhibit single particle behavior if probed on microscopic scales, but strongly coupled systems behave
as fluids also on short scales. Liquids are typically more strongly correlated than gases, and more likely
to behave as a fluid.
Σ The points in Fig. 1 correspond to the range of temperatures for which the transport measurements
shown in Fig. 2 have been performed. For the ultracold atomic Fermi gas experiments described in
Sec. 2.1 the critical temperature is roughly 500 nK (the exact value depends on the trap geometry
and the number of particles; Bose gases have been cooled to temperatures below 1 nK). The data
points for helium and water are centered around the critical endpoint of the liquid gas transition.
The point for the solar plasma corresponds to the geometric mean of the temperatures in the core

Universal bound

• Gas-liquid transition of water, helium  
• Superfluid transition of Fermi gas 
• Deconfinement transition of QCD

Lattice: open squares and circles
Experiment: colored circles
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Theory: dashed curves
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Strong coupling problems 
AdS/CMT
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It is often said 
the conductivity  

is  
the first quantity to be measured  

and  
the last to be understood

AdS/CMT

Strong interaction  
~ No quasi particle picture & Fast thermalization  
~ No Fermi-liquid theory 
~ “Strange metal” or “Non-Fermi-liquid”
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 observed. Such changes clearly set up numerous possibilities
for interesting quantum phase transitions. More recent exam-
ples are the iron-based pnictide compounds such as
BaFe2(As1−xPx)2, which display a similar set of phases, includ-
ing superconductivity.

At the heart of the quantum phase transitions of those
materials is a new ingredient not found in insulators: the
Fermi surface. In the simplest theory of a metal, electrons
 occupy plane-wave states that are eigenstates of momentum,
and the set of  lowest- energy occupied states is bounded in
momentum space by the Fermi surface. That surface is of
great physical significance because it is the locus of crucial
low-energy excitations of the metal. Electrons move from
 occupied states just below the Fermi surface to unoccupied
states just above it. When a metal undergoes a quantum
phase transition, such as the onset of Néel order, the shape
of the Fermi surface changes significantly. So a theory of the
Néel-ordering quantum critical point in a metal must account
not only for the collective spin fluctuations—spin waves and
triplons—associated with the onset of Néel order, just as in
an insulator, but also for the concomitant change in shape of
the Fermi surface and the associated changes in the occupied
electron states.

Much theoretical effort has been expended in the past
two decades in trying to understand the simplest paradigms
of quantum phase transitions in metals.9 Some theories ap-
pear to be reasonably well understood in three spatial dimen-
sions. But the 2D case is of central importance, because most
of the interesting experimental examples of metallic quantum

phase transitions are in compounds, such as the copper- and
iron-based materials just noted, in which the electron motion
is primarily along single crystalline planes. All current theo-
ries have very strongly coupled spin and charge transitions
in two spatial dimensions, and only limited results are avail-
able so far.10

In experimental studies of quantum phase transitions
with Fermi-surface changes in 2D metals, a ubiquitous fea-
ture is so-called strange-metal behavior. One hallmark of the
strange-metal regime is that the electrical resistivity ρ is lin-
early proportional to the temperature T. That behavior is in
stark contrast to the predictions of the standard Fermi- liquid
theory of metals, which has ρ ~ T 2 at low temperatures.

 Figure 4 shows several examples of strange-metal behav-
ior. It is found in regions shaped very much like the quantum-
critical regions of the insulators discussed above. That similar-
ity supports the interpretation of strange metals as the
quantum-critical regions of the quantum phase transitions in-
volving changes in the Fermi surfaces of metals. In the phase
diagrams11,12 of iron-based BaFe2(As1−xPx)2 in  figure 4a and the
electron-doped cuprate Pr2–xCexCuO4 in  figure 4b, it is also
clear that the Fermi-surface change is linked to the onset of
 antiferromagnetism. Curiously, the phase diagram13 for the
hole-doped cuprate La2−xSrxCuO4 could be interpreted in terms
of a novel  quantum- critical phase, in which the long-range en-
tangled ground state at absolute zero exists over a small but
finite range of g rather than at a single critical point gc.

Another notable feature of  figure 4 is that at low temper-
atures, “bare” quantum criticality is invariably preempted by
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Figure 4. Resistivity plots for
various correlated-electron ma-
terials. The colors represent the
exponent α that describes the
temperature dependence of the
resistivity ρ: ρ ~ ρ0 + ATα. The fan
shapes of so-called strange-
 metal behavior, where α ≈ 1, 
can be interpreted as regions 
of quantum criticality. (a) The
iron-based pnictide compound
BaFe2(As1−xPx)2 can be doped
with charge carriers. For low
doping and low temperatures,
the material exhibits a spin-
 density wave (SDW)—that is,
anti ferromagnetic order in a
metal. For higher doping, the
material turns superconducting
at low temperatures. The shape
symbols show the experimen-
tally measured phase bound-
aries.11 (b) The electron-doped
copper oxide superconductor
Pr2−xCexCuO4 behaves similarly.
Here its superconductivity has
been suppressed by an applied
magnetic field.12 (c) In the
ruthenate Sr3Ru2O7 at low tem-
perature near the critical mag-
netic field (brown region), the
electronic motion breaks the 
underlying crystal symmetry and
instead has an ordering resem-
bling nematic liquid crystals.17
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copper oxides ruthenium oxides 

Iron pnictides 

Anomalous Properties
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Resistivity: 
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Hall Conductivity
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AC Conductivity

Mackenzie, 1997

Van der Marel et al., 2003

Mackenzie, 1997
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Anomalous and universal
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AdS/Quantum Information 
-Entanglement entropy
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Entanglement:  EPR Paradox
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Entanglement Entropy
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Entanglement Entropy

Shines Ryu Tadashi Takayanagi

Successful agreements   
with field theory computation
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Entanglement Entropy and Quantum information

Emerging AdS?
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AdS/Quantum Information 
-Entanglement is not enough?
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Figure 1: Eternal black hole with extremal surface anchored at the boundary
time t where t runs upwards in both CFT’s (Left Figure). As time evolves
upwards, the wormhole inside black holes keeps growing linearly with respect
to time t (Right Figure).

typically scales as the exponential of the entropy [9],

tmax ⇠ eS � ttherm ⇠ (S)p , (1.1)

where p is generically some O(1) number. One of the goals in this paper is
to have a better understanding of the time evolution of the complexity in
gauge theories both qualitatively and quantitatively.

It should be clear why we want to conduct analysis in gauge theories.
Needless to say, gauge theories are a core of our modern understanding of
physics describing not only all of the non-gravitational forces in our world
but also they describe gravity too via holography. In order to apply the
notion of the complexity, rather than spin systems, we have to deal with
gauge theories. In this paper, as a first step toward understanding the time
evolution of complexity in generic gauge theories, we study the complexity in
generic discrete Abelian gauge theories in 2+1 dimensions: namely generic
ZN gauge theories on a spatial two-dimensional lattice.

The reason why we consider ZN gauge theory is to discretize the continuous
gauge group so that we can handle it as if it is a qubit system. The gauge
group is recovered to U(1) in the limit N ! 1. For the same reason, we
adopt a lattice regularization for the two-dimensional space.2 Taking into
account a gauge invariance, we may consider only physical operators for the
universal gate sets, which we will explain later, and evaluate the complexity
of the theory. Note that Z2 gauge theory is essentially the same as Kitaev’s
toric code [11].

typically scales as the entropy of the system.
2Generalization to higher dimensions, or to multiple U(1) gauge group is straightfor-

ward.

3

Fig. from [Koji, Norihiro, Sotaro: 1707.03840] 

[Susskind: 1402.5674 
 Stanford and Susskind: 1406.2678] 

1. Einstein-Rosen bridge increases even after thermalization 
2. The field theory meaning of this? 
3. Physics inside black hole?
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B

tL

tR
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WDW

Figure 1. Penrose diagram for Schwarzschild AdS black hole and complexity in two conjectures.
At the two boundaries of the black hole, tL and tR stand for two states dual to the states in TFD.
rh is the horizon radius. At the left panel, B is the maximum codimension-one surface connecting
tL and tR. At the right panel, the yellow region with its boundary is the WDW patch, which is the
closure (inner region with the boundary) of all space-like codimension-one surfaces connecting tL

and tR.

the dual boundary conformal field theory (CFT). In this study, they consider the eternal

AdS black holes, which are dual to thermofield double (TFD) state [11]

|TFDi := Z
�1/2

X

↵

exp[�E↵/(2T )]|E↵iL|E↵iR . (1.1)

The states |E↵iL and |E↵iR are defined in the two copy CFTs at the two boundaries of

the eternal AdS black hole (see Fig. 1) and T is the temperature. With the Hamiltonians

HL and HR at the left and right dual CFTs, the time evolution of a TFD state

| (tL, tR)i := e
�i(tLHL+tRHR)

|TFDi (1.2)

can be characterized by the codimension-two surface at fixed times t = tL and t = tR at

the two boundaries of the AdS black hole [10, 11]. There are two proposals to compute the

complexity of | (tL, tR)i state holographically: CV(complexity=volume) conjecture and

CA(complexity= action) conjecture.

The CV conjecture [7, 12] states that the complexity of | (tL, tR)i at the boundary

CFT is proportional to the maximal volume of the space-like codimension-one surface which

connects the codimension-two surfaces denoted by tL and tR, i.e.

CV = max
@⌃=tL[tR


V (⌃)

GN`

�
, (1.3)

where GN is the Newton’s constant. ⌃ is all the possible space-like codimension-one sur-

faces which connect tL and tR and ` is a length scale associated with the bulk geometry

such as horizon radius or AdS radius and so on. This conjecture satisfies some properties

of the quantum complexity. However, there is an ambiguity coming from the choice of a

length scale `.

– 2 –

|Ri |T iComplexity
Minimum number of operation

K-coins

Smax = K log 2 maximum entropy

ttherm ⇠ tcomp < K
p time to thermalize or get maximally complex

trec = e
K recurrence time (1.1)

Question: Do you consider the state (01010101010101...) to be very complex?

It only takes a few words to define it, so in some sense it’s simple.

Answer: There are two distinct concepts of complexity. One of them has

to do with how much information does it take to specify a task. In your case

the task is to bring the system to a state in which the c-bits alternate, from a

state in which they are all the same. That took twenty-one English words so

it can’t be very complex. It also doesn’t depend on the number of c-bits.

The other concept is how many operations does the machine have to do to

carry out the task. That clearly does depend on K. It’s the di↵erence between

how long the program must be, and how long it has to run. It’s in the latter

sense that (01010101010101...) is complex.

Now let’s turn to the quantum case. The system is K qubits which at first sight seems

not much di↵erent from K coins. The states have the form,

| i =
2KX

1

↵i|ii (1.2)

Instead of K binary digits it takes 2K complex numbers to specify a state. That’s the

origin of the huge di↵erence between classical and quantum complexity [5].

The quantum version of complexity also involves a concept of a simple state, simple

processes, and a task. Simple states have no entanglement among the qubits. The simplest

would be a product state with all qubits in the same state. If we identify states under a

global SU(2) rotation then there is a unique simplest state,

|0i = |00000....i (1.3)

4

K-qubits

arguments.

To answer this I will need to explain a few things about computational complexity.

Computational complexity is a concept from computer science that has to do with quanti-

fying the di�culty of carrying out a task. The ingredients are a system, a space of states, a

concept of a simple state, a concept of simple operations, and a task. The task is generally

to start with a simple state and transform the system to some other state. Computational

complexity answers the question: What is the minimum number of simple operations re-

quired to carry out the task? I’ll illustrate it with a classical example first. The system

is a set of K classical bits—call them coins. Each coin can be in one of two states, heads

0 or tails 1. The space of states is described by K binary digits, (00110110001....). For

definiteness let’s make an identification under the Z2 operation that flips all the coins so

that (0110001...) = (1001110...).

The obvious candidate for a simple state is all heads (00000..) ( or equivalently, all

tails). By simple operations we mean operations that involve a small number of coins at

a time. The simplest operation is to flip a single coin, (0 $ 1). Finally the task is to take

the system from the simple state to some specific final state.

The complexity of a state is by definition the minimum number of simple operations

that are required to carry out the task. It is obvious that no state requires more than K/2

flips, so the maximum possible complexity is K/2.

Less obvious but true is that almost all states have close to maximal complexity.

The maximal entropy is also proportional to K, namely K log 2. Complexity and en-

tropy are not the same thing but they are similar classically.

Complexity is not necessarily the number of steps it takes to do the task by any

particular dynamical rule of evolution. It is the least number of steps with any rule that

only uses simple operations. For a generic dynamical rule it will take longer, but not that

much longer. Typically the time that it takes is the same as the time it takes to get to

the maximum entropy, i.e., the thermalization time. The thermalization time is generally

short, polynomial bounded in K.

A much longer time scale is the Poincare recurrence time. We can think of it as the

typical time that it takes to go from a complex state back to the simplest state. It’s not

the shortest time but the typical time for a generic dynamical rule. Since there are 2K

states, the time is of order 2K . To review,

Cmax = K/2 maximum complexity

3

As for the first equation in 1.6, one additional point is that almost all states are exponen-

tially complex. The statements about time scales for thermalization, maximum complexity,

and recurrences are assuming the actual evolution of the system is generated by what I’ll

call an easy Hamiltonian. An easy Hamiltonian is one that is a sum of simple Hermitian

operators: a simple Hermitian being one involving a small number of qubits—to be specific

one and two-qubit terms. The evolution by easy Hamiltonian is analogous to evolution be

a quantum circuit composed of simple gates.

The thing to notice is the spectacular di↵erence between the classical and quantum

maximal entropy and maximal complexity. The time ttherm is the time to achieve maxi-

mal entropy, while the time tcomp is the time to achieve maximal complexity. Quantum

mechanically those times are vastly di↵erent. What this proves is that there are subtle

changes that take place in a chaotic quantum system long after it has come to thermal

equilibrium. Complexity is a real property of a quantum state, but normally we are not

interested in it because the information that it encodes does not show up in ordinary local

properties. However, it seems that the incredibly subtle correlations encoding complexity

correspond to global unsubtle properties of the inside geometry of black holes [6][7][8][9].

Another point is that the state of a system does not become generic at the thermaliza-

tion time. It takes an exponential time to reach the complexity of a generic state. A graph

of the increase of complexity for a typical chaotic system looks like figure 1. It increases

Figure 1

linearly for a long time, but since the complexity is bounded by an exponential in K the

growth must saturate at logC ⇠ K. On the same graph the history leading up to thermal

equilibrium would occupy a tiny region shown schematically in the red circle.
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Figure 1. Penrose diagram for Schwarzschild AdS black hole and complexity in two conjectures.
At the two boundaries of the black hole, tL and tR stand for two states dual to the states in TFD.
rh is the horizon radius. At the left panel, B is the maximum codimension-one surface connecting
tL and tR. At the right panel, the yellow region with its boundary is the WDW patch, which is the
closure (inner region with the boundary) of all space-like codimension-one surfaces connecting tL

and tR.

the dual boundary conformal field theory (CFT). In this study, they consider the eternal

AdS black holes, which are dual to thermofield double (TFD) state [11]

|TFDi := Z
�1/2

X

↵

exp[�E↵/(2T )]|E↵iL|E↵iR . (1.1)

The states |E↵iL and |E↵iR are defined in the two copy CFTs at the two boundaries of

the eternal AdS black hole (see Fig. 1) and T is the temperature. With the Hamiltonians

HL and HR at the left and right dual CFTs, the time evolution of a TFD state

| (tL, tR)i := e
�i(tLHL+tRHR)

|TFDi (1.2)

can be characterized by the codimension-two surface at fixed times t = tL and t = tR at

the two boundaries of the AdS black hole [10, 11]. There are two proposals to compute the

complexity of | (tL, tR)i state holographically: CV(complexity=volume) conjecture and

CA(complexity= action) conjecture.

The CV conjecture [7, 12] states that the complexity of | (tL, tR)i at the boundary

CFT is proportional to the maximal volume of the space-like codimension-one surface which

connects the codimension-two surfaces denoted by tL and tR, i.e.

CV = max
@⌃=tL[tR


V (⌃)

GN`

�
, (1.3)

where GN is the Newton’s constant. ⌃ is all the possible space-like codimension-one sur-

faces which connect tL and tR and ` is a length scale associated with the bulk geometry

such as horizon radius or AdS radius and so on. This conjecture satisfies some properties

of the quantum complexity. However, there is an ambiguity coming from the choice of a

length scale `.
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Figure 1. Penrose diagram for Schwarzschild AdS black hole and complexity in two conjectures.
At the two boundaries of the black hole, tL and tR stand for two states dual to the states in TFD.
rh is the horizon radius. At the left panel, B is the maximum codimension-one surface connecting
tL and tR. At the right panel, the yellow region with its boundary is the WDW patch, which is the
closure (inner region with the boundary) of all space-like codimension-one surfaces connecting tL

and tR.

the dual boundary conformal field theory (CFT). In this study, they consider the eternal

AdS black holes, which are dual to thermofield double (TFD) state [11]

|TFDi := Z
�1/2

X

↵

exp[�E↵/(2T )]|E↵iL|E↵iR . (1.1)

The states |E↵iL and |E↵iR are defined in the two copy CFTs at the two boundaries of

the eternal AdS black hole (see Fig. 1) and T is the temperature. With the Hamiltonians

HL and HR at the left and right dual CFTs, the time evolution of a TFD state

| (tL, tR)i := e
�i(tLHL+tRHR)

|TFDi (1.2)

can be characterized by the codimension-two surface at fixed times t = tL and t = tR at

the two boundaries of the AdS black hole [10, 11]. There are two proposals to compute the

complexity of | (tL, tR)i state holographically: CV(complexity=volume) conjecture and

CA(complexity= action) conjecture.

The CV conjecture [7, 12] states that the complexity of | (tL, tR)i at the boundary

CFT is proportional to the maximal volume of the space-like codimension-one surface which

connects the codimension-two surfaces denoted by tL and tR, i.e.

CV = max
@⌃=tL[tR


V (⌃)

GN`

�
, (1.3)

where GN is the Newton’s constant. ⌃ is all the possible space-like codimension-one sur-

faces which connect tL and tR and ` is a length scale associated with the bulk geometry

such as horizon radius or AdS radius and so on. This conjecture satisfies some properties

of the quantum complexity. However, there is an ambiguity coming from the choice of a

length scale `.
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Figure 1. Penrose diagram for Schwarzschild AdS black hole and complexity in two conjectures.
At the two boundaries of the black hole, tL and tR stand for two states dual to the states in TFD.
rh is the horizon radius. At the left panel, B is the maximum codimension-one surface connecting
tL and tR. At the right panel, the yellow region with its boundary is the WDW patch, which is the
closure (inner region with the boundary) of all space-like codimension-one surfaces connecting tL

and tR.
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This unsatisfactory feature motivated the second conjecture: CA conjecture [9, 10]. In

this conjecture, the complexity of a | (tL, tR)i is dual to the action in the Wheeler-DeWitt

(WDW) patch associated with tL and tR, i.e.

CA =
IWDW

⇡~ . (1.4)

The WDW patch associated with tL and tR is the collection of all space-like surface con-

necting tL and tR with the null sheets coming from tL and tR. More precisely it is the

domain of dependence of any space-like surface connecting tL and tR (see the right panel of

Fig. 1 as an example). This conjecture has some advantages compared with the CV con-

jecture. For example, it has no free parameter and can satisfy Lloyd’s complexity growth

bound in very general cases [13–15]. However, the CA conjecture has its own obstacle in

computing the action: it involves null boundaries and joint terms. Recently, this problem

has been overcome by carefully analyzing the boundary term in null boundary [16, 17].

As both the CV and CA conjectures involve the integration over infinite region, the

complexity computed by the Eqs. (1.3) and (1.4) are divergent. The divergences appearing

in the CV and CA conjectures are similar to the one in the holographic entanglement

entropy. It was shown that the coe�cients of all the divergent terms can be written as the

local integration of boundary geometry [18, 19], which is independent of the bulk stress

tensor. This result gives a clear physical meaning of the divergences in the holographic

complexity: they come from the UV vacuum structure at a given time slice and stand for

the vacuum CFT’s contribution to the complexity. One interesting thing is to consider the

contribution of excited state or thermal state to the complexity. As the divergent parts of

the holographic complexity is fixed by the boundary geometry, the contribution of matter

fields and temperature can only appear in the finite term of the complexity. This gives us

a strong motivation to study how to obtain the finite term in the complexity.

The first work regarding this finite quantity is the “complexity of formation” [20],

which is defined by the di↵erence of the complexity in a particular black hole space time

and a reference vacuum AdS space-time. By choosing a suitable vacuum space-time, we

can obtain a finite complexity of formation. However, there are two somewhat ambiguous

aspects in using “complexity of formation” to study the finite term of complexity. First,

we need to appoint additional space-time as the reference vacuum background. In general

cases, it will not be obvious how to choose the reference vacuum space-time. For example,

in Ref. [20], the reference vacuum space-time for the BTZ black hole is not the naive

limit of setting mass M = 0. Second, to make the computation about the di↵erence of

complexity at the finite cut-o↵ between two space-times meaningful, we need to appoint

a special coordinate and apply this coordinate to both space-times. For example, in the

Ref. [20], the holographic complexity of two space-time at the finite cut-o↵ is computed in

Fe↵erman-Graham coordinate [21, 22]. It will be better if we can compute the complexity

without referring to a specific coordinate system.

As the Refs. [18, 19] have shown that the divergent terms have some universal struc-

tures, a naive consideration is that, we can separate the divergent term and just discard

them. However, this may give a coordinate dependent result as we shows in the section
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- Equation of motion 
- Free scale: ambiguity

- Boundary terms 
- Singularity
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Holographic conjecture for complexity
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Figure 1. Complexity=volume (CV, left) and complexity=action (CA, right) for the eternal AdS
black hole dual to the thermofield double state (1.1). In the left panel, the blue curve represents the
maximal spacelike surfaces that connects the specified time slices on the left and right boundaries.
In the right image, the shaded region is the corresponding WDW patch.

This question is the focus of the present paper. Specifically, our objective is to provide

the first steps towards defining circuit complexity in quantum field theory (QFT).1 A precise

understanding of this quantity will not only shed light on the CV and CA proposals, but

is also an interesting question deserving of study in its own right. For example, it may

also provide new insights into quantum algorithms for the simulation of quantum field

theories [28–31], or more generally into Hamiltonian complexity [32, 33], or the efficient

description of many-body wave functions [34, 35].

In computer science, the notion of computational complexity refers to the minimum

number of operations necessary to implement a given task [36, 37]. In the present context,

the task of interest will be the preparation of a state in the QFT, and we will define the

complexity in terms of a quantum circuit model. That is, we will begin with a simple

reference state |ψR〉, and construct a unitary transformation U that produces the desired

target state |ψT〉 via
|ψT〉 = U |ψR〉 . (1.4)

The unitary U will be constructed from a particular set of simple elementary or universal

gates, which can be applied sequentially to the state. When working with such discrete

operations, we should also introduce a tolerance ε so that even if we cannot achieve the

precise equality above, we may still judge the transformation to be successful when the two

states are sufficiently close to one another according to some distance measure, i.e.,

∣∣∣∣ |ψT〉 − U |ψR〉
∣∣∣∣2 ≤ ε . (1.5)

Of course, there will not be a unique circuit which implements the desired transforma-

tion (1.4): generally there will exist infinitely many sequences of gates which produce the

1We also refer the reader to ref. [27] for a recent complementary investigation in this direction.
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Field theory conjecture for complexity 

• Complexity geometry is a Finsler geometry. 

• Puzzle: for a given operator, the right(-invariant) complexity and Left(-invariant) 
complexity  are different. 

• By considering physical conditions, the puzzle is resolved: Left/right equivalence and 
bi-invariace. 

• SU(n) operator complexity is uniquely determined.

(Finsler)

with ↵ = r or l and �s = 1/N . The continuous version of (2.4) is3

c(s) =
 �P exp

Z
s

0
�iHr(s̃)ds̃ =

�!P exp

Z
s

0
�iHl(s̃)ds̃ , (2.6)

In a diffential form, we have

ċ(s) = �iHr(s)c(s) , ċ(s) = �ic(s)Hl(s) , (2.7)

or
Hr(s) = iċ(s)c(s)�1 , Hl(s) = ic(s)�1ċ(s) , (2.8)

from which we obtain the relation between Hr and Hl:

Hl(s) = c(s)†Hr(s)c(s) . (2.9)

F̃ (Hr = iċc�1) 6= F̃ (Hl = ic�1ċ) (2.10)

F̃ (Hr = iċc�1) = F̃ (Hl = ic�1ċ) (2.11)

Note that, in general, the two generators Hr(s) and Hl(s) at the same point of the same
curve can be different. Perhaps, one may think that the Schrödinger’s equation implies only
Hr(s) has physical meaning and we have to use order

 �
P . However, in the Sec. 4 we will

show that Hl(s) is the Hamiltonian in Heisenberg picture and so Hl(s) and order
�!
P are

also physically meaningful.
We now want to compute the length of the curve (L[c]) from c(0) to c(1), of which

meaning is the "cost" of the operator Ô: how much difficult it is to construct the operator
Ô. Once we know the complexities of the infinitesimal operators along the curve, we
may sum them up. However, for a given curve, we may have two different costs(lengths)
depending on the way to construct the target operator Ô, “left” way or “right” wary, as
shown in Eq. (2.4) or Eq. (2.6).

L↵[c] :=
NX

n=1

C(�Ô(↵)
n ) =

NX

n=1

F̃ (H↵(sn))�s , ↵ = r, l . (2.12)

In the continuous limit of N !1, we have

L↵[c] =

Z 1

0
F̃ (H↵(s))ds . (2.13)

Finally, the complexity is defined as the minimum length (cost) of the operator, i.e.

C↵(Ô) := min{L↵[c] | c(0) = Î, c(1) = Ô} . (2.14)
3It is important to note that left order and right order have nothing to do with changing time-ordering.

The increasing direction of the parameter s, the time flow if you want, is the same, but the direction to
multiply a new operator is different as shown in (2.4).
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Invariance properties Let us turn to some invariance properties. F̃ (Hr(s)) is right-
invariant, which means that F̃ (Hr(s)) is invariant under the right-translation, c(s) ! c(s)x̂

for all x̂ 2SU(n). It is because Hr is right invariant as shown in Eq. (2.8). Similarly,
F̃ (Hl(s)) is left-invariant. However, if we require the unitary invariance (2.14) we obtain

F̃ (Hr(s)) = F̃ (Hl(s)) , (2.17)

where we used Eq. (2.9). It means that we do not need to worry about two definitions, left
or right complexity (2.12), because they are the same. It also means that F̃ (Hr) is both
left-invariant and right-invariant. This property is called bi-invariant.

Complexity of SU(n) operator Thanks to the bi-invariance, the minimization in
Eq. (2.12) can be simplified dramatically. It has been shown that, if the metric is bi-
invariance, the curve c(s) is a geodesic if and only if there is a constant generator H(s) = H̄

such that [54, 55]
ċ(s) = �iH̄c(s) or c(s) = exp(�isH̄) . (2.18)

With the condition Ô = c(1) = exp(�iH̄), we can solve H̄ and so the complexity of Ô is
given by

C(Ô) = min{F̃ (H̄) | 8 H̄, s.t., exp(�iH̄) = Ô} , (2.19)

C(Ô) = min
n

Tr
p

H̄H̄† | 8 H̄, s.t., exp(�iH̄) = Ô
o

, (2.20)

C(Ô) = min

(
Tr

⇣
H̄H̄†

⌘ p
2

� 1
p

| 8 H̄, s.t., exp(�iH̄) = Ô

)
, (2.21)

C(Ô) = min

⇢q
Tr

�
H̄H̄†

�
| 8 H̄, s.t., exp(�iH̄) = Ô

�
, (2.22)

where F̃ is defined in Eq. (2.16). The minimization ‘min’ in (2.25) in the sense of
‘geodesic’ is already taken care of in (2.18). Here, ‘min’ means the minimal value due to
non-uniqueness of the solution for the equation exp(�iH̄) = Ô. As a concrete example for
the minimization due to non-uniqueness, see Eq. (2.26).

For example, let us consider the SU(2) group in the fundamental representation. An
operator Ô 2SU(2) can be written as

Ô = exp(�i✓~n · ~�) = Î cos ✓ � i(~n · ~�) sin ✓ , (2.23)

where ~n is a unit vector, ✓ is a real number, and ~� := (�x,�y,�z) are Pauli matrixes. The
values of H̄ satisfying the condition in Eq. (2.25) are multiple and we label them by the
subscript m, H̄m:

H̄m =
⇣
arccos[Tr(Ô)/2] + 2m⇡

⌘
~n · ~� =: (✓m)~n · ~� , , (2.24)

for 8m 2 N.

C(Ô) = min

⇢
Tr

q
H̄mH̄†

m

�
= min

n
Tr

p
✓2mI

o
= 2✓0 = 2arccos[Tr(Ô)/2] , (2.25)
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Applications?
• SYK model: complexity growth in a chaotic model
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Invariance properties Let us turn to some invariance properties. F̃ (Hr(s)) is right-
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for all x̂ 2SU(n). It is because Hr is right invariant as shown in Eq. (2.8). Similarly,
F̃ (Hl(s)) is left-invariant. However, if we require the unitary invariance (2.14) we obtain

F̃ (Hr(s)) = F̃ (Hl(s)) , (2.17)

where we used Eq. (2.9). It means that we do not need to worry about two definitions, left
or right complexity (2.12), because they are the same. It also means that F̃ (Hr) is both
left-invariant and right-invariant. This property is called bi-invariant.

Complexity of SU(n) operator Thanks to the bi-invariance, the minimization in
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‘geodesic’ is already taken care of in (2.18). Here, ‘min’ means the minimal value due to
non-uniqueness of the solution for the equation exp(�iH̄) = Ô. As a concrete example for
the minimization due to non-uniqueness, see Eq. (2.26).

For example, let us consider the SU(2) group in the fundamental representation. An
operator Ô 2SU(2) can be written as
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where ~n is a unit vector, ✓ is a real number, and ~� := (�x,�y,�z) are Pauli matrixes. The
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Figure 5. Equivalences between i) the unitary-invariance of QFT, ii) the Independence on left/right
generators of the Finsler metric, and iii) the adjoint invariance of the complexity

Figure 6. Schematic diagram for reasons why Eq. (4.6) should hold.

which implies

[adjoint invariance] F̃ (H↵) = F̃ (ÛH↵Û
†) , 8U 2 SU(n) , (4.9)

By taking Û = c for Hl and Û = c�1 for Hr, we obtain

F̃ (ċc�1) = F̃ (c�1ċ) or F̃ (Hr) = F̃ (Hl) or Fr(c, ċ) = Fl(c, ċ) , (4.10)

where Eq. (3.7) is used. It means that the left generator and the right generator give the
same complexity. Although we have the freedom to choose the left or right generator, the
complexity will be independent of our choice. In other words, we have a unique definition of
the complexity in spite of the inherent ambiguity due to the existence of the left and right
generators. In Fig. 5, we summarize the relation between the constraints on the Finlser
structure, cost, and complexity.

One may argue that the complexity may not be directly observable and it is possible
that c(s) and c̃(s) give different complexity. If that happens in some framework of computing
the complexity, in our opinion, there must be some gauge freedom in the definition of the
complexity in the framework, for the complexity still to be a physical object. Thus, we will
be able to make a suitable gauge fixing or redefinition of the complexity so that this “new
complexity” is physical and satisfies Eq. (4.6). This logic is presented in Fig. 6

– 12 –
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It is sometimes claimed [32, 54] that the bi-invariant complexity can not show the linear
growth of the complexity in an exponential time order. In the following subsection, we will
show this may not be the case in a concrete counter example. It seems that the bi-invariant
complexity is still a viable and competitive one in this respect.

2.2 Time dependent complexity in the SYK model

The analysis on the SYK model in this subsection is inspired by a recent very interesting
paper [54]. The SYK model is a quantum-mechanical system comprised of N (an even
integer) Majorana fermions �i with the Hamiltonian

H(J , N) =
NX

i<j<k<l

Jijkl�i�j�k�l , (2.13)

where the coefficients Jijkl are drawn at random from a Gaussian distribution with mean
zero and variance �2

�2 =
6J 2

N3
. (2.14)

Here J is a model parameter and describes the coupling strength. This model is expected
to be chaotic and holographically dual to 2D quantum gravity [64–67]. This model was
used as a toy model to verify the complexity theory.

In the following discussions, we will focus on the case p = 1 in axiom G3. We will
make a comment on other choices of p later. As discussed in the subsection, for a unitary
operator Û(t) = exp(�iH(J , N)t), its complexity is given by

C(t) = min
n
� Tr

p
V V †

��� 8V, s. t. exp(�iV ) = Û(t) = exp(�iH(J , N)t)
o
. (2.15)

Here we first take � = 1. Note that the complexity in Eq. (2.15) is no longer the minimal
geodesic of a Riemannian geometry but the minimal geodesic of a Finsler geometry. To
compute the complexity, the first step is to solve all possible generators V . This can be
done as follows. Suppose that the eigenvalues and eigenstates of H defined in Eq. (2.13) to
be En and |ni with n = 1, 2, · · · 2N/2. Then we have

Û(t) =
2N/2X

n=1

e�iEnt|nihn| ,

which is a diagonal form so

exp(�iV ) = Û(t) ) V =
2N/2X

n=1

(Ent+ 2⇡kn)|nihn| , (2.16)

with kn 2 N. However, to keep V 2 su(2N/2), we need V to be traceless and so there is a
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Û(t) =
2N/2X

n=1

e�iEnt|nihn| ,

which is a diagonal form so

exp(�iV ) = Û(t) ) V =
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operator Û(t) = exp(�iH(J , N)t), its complexity is given by

C(t) = min
n
� Tr

p
V V †

��� 8V, s.t. exp(�iV ) = Û(t) = exp(�iH(J , N)t)
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As the operator V in Eq. (2.16) has a diagonal form, Eq. (2.15) becomes

C(t) = min

8
<

:

2N/2X

n=1

|Ent+ 2⇡kn|

������
8kn 2 N, s. t.

2N/2X

n=1

kn = 0

9
=

; . (2.18)

The eigenvalues En can be obtained numerically by the exact diagonalization of the Hamil-
tonian (2.13) up to N ⇠ 32. In the case 2N/2 � 1, the above minimization can be
approximated by

C(t) ⇡
2N/2X

n=1

|Ent� 2⇡[[Ent/2⇡]]| , (2.19)

where the notation [[X]] stands for the most neighboring integer of X. For example, [[1.2]] =
1, [[1.7]] = 2 and [[�2.7]] = �3.

In most theoretical studies about the SYK model, one usually fix the parameter J and
study how the system depends on the fermion number N . However, this may not be the
case in studying the complexity. In the study of the complexity, the physical question we
may ask is “For an isolated system driven by a given energy E, how fast can the complexity
of the system change?”

Although we do not need to introduce a concept of “total energy” to define the com-
plexity geometry, we need to inject the energy to the system to drive it to evolve. For
isolated systems, we only need to inject energy only at the initial time as the total energy
will be conserved; in disscipated systems, we need to keep injecting energy.

For example in quantum circuits, the Hadamard gate gH is one of the fundamental
gates, which transforms one qubit states |0i ! (|1i+ |0i)/

p
2 and |1i ! (|1i � |0i)/

p
2. In

one-qubit Hilbert space, its representation reads,

gH =
1p
2

"
1, 1

1, �1

#
. (2.20)

From mathematics perspective, it is simply a well-defined matrix. However, in physical
situations, we have to use a quantum mechanical system to realize it. This means we have
to create an interaction system with some Hamiltonian V and stop the interaction after a
time t so that eiV t = gH . We find that

V t = E1t|e1ihe1|+ E2t|e2ihe2| , (2.21)

where |e1i = (�
p
2/(2 +

p
2), 1)T and |e2i = (

p
2/(2�

p
2), 1)T are two eigenvectors of gH

and
E1t = 2k1⇡, E2t = ⇡ + 2k2⇡ , (2.22)

with integers k1 and k2. As a result, E := |E1 � E2| satisfies

Et � ⇡ . (2.23)

We see that, the time to finish one gate operation (i.e. the complexity of the system then
will increase by 1) is not unique and depends on the the value of E. From the physical
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Figure 2. Left panel: the complexity growth when N = 16, 18, 20, 22 and N ! 1 with hEi = 1.
Right panel: the critical time tc vs the fermion number N with a fixed J = 1. The red line is the
fitting curve, which shows that 1/tc|J=1 ⇡ 0.01N + 0.0265.

(2) Numerically diagonalize H(J , N) and find its eigenvalues;

(3) Use Eq. (2.19) to find the complexity C(t) at a given time t;

(4) Use the scaling transformation (2.32) to convert the result into the case of fixing total
energy E;

(5) Repeat steps (1)-(4) many times so that the average of C(t) converges.

In the left panel of Fig. 2, we show the complexity growth for hEi = 1 and N =

16, 18, 20, 22. we find that the complexity grows linearly at early time! There is a crit-
ical time tc when the complexity stop growing linearly and go into a plateau with small
fluctuation.

There is a simple way to understand our result. From Eq. (2.19) we can see that, if

t <
⇡

Emax
, where Emax := max |En| , (2.33)

then [[Ent/(2⇡)]] = 0. Thus, the complexity will grow linearly

C(t) ⇡
2N/2X

n=1

|En|t . (2.34)

This linear growth will be first interrupted when [[Ent/(2⇡)]] = 1, which corresponds to
the time scale

tc =
⇡

Emax
. (2.35)

For t > tc, the smaller energy levels than Emax start contributing to [[Ent/(2⇡)]] more
and more, which cancel the increase by the term

P2N/2

n=1 |En|t. It makes the plateau and
fluctuations for C(t). All the above argument is for one event. After taking the average and
N ! 1, we have h1/Emaxi ! 1/hEmaxi, i.e.

tc =
⇡

hEmaxi
. (2.36)
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As for the first equation in 1.6, one additional point is that almost all states are exponen-

tially complex. The statements about time scales for thermalization, maximum complexity,

and recurrences are assuming the actual evolution of the system is generated by what I’ll

call an easy Hamiltonian. An easy Hamiltonian is one that is a sum of simple Hermitian

operators: a simple Hermitian being one involving a small number of qubits—to be specific

one and two-qubit terms. The evolution by easy Hamiltonian is analogous to evolution be

a quantum circuit composed of simple gates.

The thing to notice is the spectacular di↵erence between the classical and quantum

maximal entropy and maximal complexity. The time ttherm is the time to achieve maxi-

mal entropy, while the time tcomp is the time to achieve maximal complexity. Quantum

mechanically those times are vastly di↵erent. What this proves is that there are subtle

changes that take place in a chaotic quantum system long after it has come to thermal

equilibrium. Complexity is a real property of a quantum state, but normally we are not

interested in it because the information that it encodes does not show up in ordinary local

properties. However, it seems that the incredibly subtle correlations encoding complexity

correspond to global unsubtle properties of the inside geometry of black holes [6][7][8][9].

Another point is that the state of a system does not become generic at the thermaliza-

tion time. It takes an exponential time to reach the complexity of a generic state. A graph

of the increase of complexity for a typical chaotic system looks like figure 1. It increases

Figure 1

linearly for a long time, but since the complexity is bounded by an exponential in K the

growth must saturate at logC ⇠ K. On the same graph the history leading up to thermal

equilibrium would occupy a tiny region shown schematically in the red circle.

6

tc ⇠ 2N/2
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Figure 2. Left panel: the complexity growth when N = 16, 18, 20, 22 and N ! 1 with hEi = 1.
Right panel: the critical time tc vs the fermion number N with a fixed J = 1. The red line is the
fitting curve, which shows that 1/tc|J=1 ⇡ 0.01N + 0.0265.

(2) Numerically diagonalize H(J , N) and find its eigenvalues;

(3) Use Eq. (2.19) to find the complexity C(t) at a given time t;

(4) Use the scaling transformation (2.32) to convert the result into the case of fixing total
energy E;

(5) Repeat steps (1)-(4) many times so that the average of C(t) converges.

In the left panel of Fig. 2, we show the complexity growth for hEi = 1 and N =

16, 18, 20, 22. we find that the complexity grows linearly at early time! There is a crit-
ical time tc when the complexity stop growing linearly and go into a plateau with small
fluctuation.

There is a simple way to understand our result. From Eq. (2.19) we can see that, if

t <
⇡

Emax
, where Emax := max |En| , (2.33)

then [[Ent/(2⇡)]] = 0. Thus, the complexity will grow linearly

C(t) ⇡
2N/2X

n=1

|En|t . (2.34)

This linear growth will be first interrupted when [[Ent/(2⇡)]] = 1, which corresponds to
the time scale

tc =
⇡

Emax
. (2.35)

For t > tc, the smaller energy levels than Emax start contributing to [[Ent/(2⇡)]] more
and more, which cancel the increase by the term

P2N/2

n=1 |En|t. It makes the plateau and
fluctuations for C(t). All the above argument is for one event. After taking the average and
N ! 1, we have h1/Emaxi ! 1/hEmaxi, i.e.

tc =
⇡

hEmaxi
. (2.36)
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As the operator V in Eq. (2.16) has a diagonal form, Eq. (2.15) becomes

C(t) = min

8
<

:

2N/2X

n=1

|Ent+ 2⇡kn|

������
8kn 2 N, s. t.

2N/2X

n=1

kn = 0

9
=

; . (2.18)

The eigenvalues En can be obtained numerically by the exact diagonalization of the Hamil-
tonian (2.13) up to N ⇠ 32. In the case 2N/2 � 1, the above minimization can be
approximated by

C(t) ⇡
2N/2X

n=1

|Ent� 2⇡[[Ent/2⇡]]| , (2.19)

where the notation [[X]] stands for the most neighboring integer of X. For example, [[1.2]] =
1, [[1.7]] = 2 and [[�2.7]] = �3.

In most theoretical studies about the SYK model, one usually fix the parameter J and
study how the system depends on the fermion number N . However, this may not be the
case in studying the complexity. In the study of the complexity, the physical question we
may ask is “For an isolated system driven by a given energy E, how fast can the complexity
of the system change?”

Although we do not need to introduce a concept of “total energy” to define the com-
plexity geometry, we need to inject the energy to the system to drive it to evolve. For
isolated systems, we only need to inject energy only at the initial time as the total energy
will be conserved; in disscipated systems, we need to keep injecting energy.

For example in quantum circuits, the Hadamard gate gH is one of the fundamental
gates, which transforms one qubit states |0i ! (|1i+ |0i)/

p
2 and |1i ! (|1i � |0i)/

p
2. In

one-qubit Hilbert space, its representation reads,

gH =
1p
2

"
1, 1

1, �1

#
. (2.20)

From mathematics perspective, it is simply a well-defined matrix. However, in physical
situations, we have to use a quantum mechanical system to realize it. This means we have
to create an interaction system with some Hamiltonian V and stop the interaction after a
time t so that eiV t = gH . We find that

V t = E1t|e1ihe1|+ E2t|e2ihe2| , (2.21)

where |e1i = (�
p
2/(2 +

p
2), 1)T and |e2i = (

p
2/(2�

p
2), 1)T are two eigenvectors of gH

and
E1t = 2k1⇡, E2t = ⇡ + 2k2⇡ , (2.22)

with integers k1 and k2. As a result, E := |E1 � E2| satisfies

Et � ⇡ . (2.23)

We see that, the time to finish one gate operation (i.e. the complexity of the system then
will increase by 1) is not unique and depends on the the value of E. From the physical
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Figure 2. Left panel: the complexity growth when N = 16, 18, 20, 22 and N ! 1 with hEi = 1.
Right panel: the critical time tc vs the fermion number N with a fixed J = 1. The red line is the
fitting curve, which shows that 1/tc|J=1 ⇡ 0.01N + 0.0265.

(2) Numerically diagonalize H(J , N) and find its eigenvalues;

(3) Use Eq. (2.19) to find the complexity C(t) at a given time t;

(4) Use the scaling transformation (2.32) to convert the result into the case of fixing total
energy E;

(5) Repeat steps (1)-(4) many times so that the average of C(t) converges.

In the left panel of Fig. 2, we show the complexity growth for hEi = 1 and N =

16, 18, 20, 22. we find that the complexity grows linearly at early time! There is a crit-
ical time tc when the complexity stop growing linearly and go into a plateau with small
fluctuation.

There is a simple way to understand our result. From Eq. (2.19) we can see that, if

t <
⇡

Emax
, where Emax := max |En| , (2.33)

then [[Ent/(2⇡)]] = 0. Thus, the complexity will grow linearly

C(t) ⇡
2N/2X

n=1

|En|t . (2.34)

This linear growth will be first interrupted when [[Ent/(2⇡)]] = 1, which corresponds to
the time scale

tc =
⇡

Emax
. (2.35)

For t > tc, the smaller energy levels than Emax start contributing to [[Ent/(2⇡)]] more
and more, which cancel the increase by the term

P2N/2

n=1 |En|t. It makes the plateau and
fluctuations for C(t). All the above argument is for one event. After taking the average and
N ! 1, we have h1/Emaxi ! 1/hEmaxi, i.e.

tc =
⇡

hEmaxi
. (2.36)
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Figure 2. Left panel: the complexity growth when N = 16, 18, 20, 22 and N ! 1 with hEi = 1.
Right panel: the critical time tc vs the fermion number N with a fixed J = 1. The red line is the
fitting curve, which shows that 1/tc|J=1 ⇡ 0.01N + 0.0265.
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The eigenvalues En can be obtained numerically by the exact diagonalization of the Hamil-
tonian (2.13) up to N ⇠ 32. In the case 2N/2 � 1, the above minimization can be
approximated by

C(t) ⇡
2N/2X

n=1

|Ent� 2⇡[[Ent/2⇡]]| , (2.19)

where the notation [[X]] stands for the most neighboring integer of X. For example, [[1.2]] =
1, [[1.7]] = 2 and [[�2.7]] = �3.

In most theoretical studies about the SYK model, one usually fix the parameter J and
study how the system depends on the fermion number N . However, this may not be the
case in studying the complexity. In the study of the complexity, the physical question we
may ask is “For an isolated system driven by a given energy E, how fast can the complexity
of the system change?”

Although we do not need to introduce a concept of “total energy” to define the com-
plexity geometry, we need to inject the energy to the system to drive it to evolve. For
isolated systems, we only need to inject energy only at the initial time as the total energy
will be conserved; in disscipated systems, we need to keep injecting energy.

For example in quantum circuits, the Hadamard gate gH is one of the fundamental
gates, which transforms one qubit states |0i ! (|1i+ |0i)/

p
2 and |1i ! (|1i � |0i)/

p
2. In

one-qubit Hilbert space, its representation reads,

gH =
1p
2

"
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1, �1
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From mathematics perspective, it is simply a well-defined matrix. However, in physical
situations, we have to use a quantum mechanical system to realize it. This means we have
to create an interaction system with some Hamiltonian V and stop the interaction after a
time t so that eiV t = gH . We find that

V t = E1t|e1ihe1|+ E2t|e2ihe2| , (2.21)

where |e1i = (�
p
2/(2 +

p
2), 1)T and |e2i = (

p
2/(2�

p
2), 1)T are two eigenvectors of gH

and
E1t = 2k1⇡, E2t = ⇡ + 2k2⇡ , (2.22)

with integers k1 and k2. As a result, E := |E1 � E2| satisfies

Et � ⇡ . (2.23)

We see that, the time to finish one gate operation (i.e. the complexity of the system then
will increase by 1) is not unique and depends on the the value of E. From the physical
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Figure 1. The relationship between �Emin and N . The red line is the fitting curve �Emin/J =
0.18N�1 + 0.87N�2.

where h·i stands for the average value, since the SYK model contains the random coupling
Jijkl. In short, we have the equation between he total available energy hEi, the coupling
J , and the fermion number N

hEi = 2N/2hEmax(J , N)i . (2.32)

In particular, it has been shown that, when N � 8, the ground state energy of the Hamil-
tonian H(J , N) can be fitted well by the following linear relationship [? ]

hEmin(J , N)i ⇡ �(0.055 + 0.029N)J , (2.33)

so we obtain
hEi ⇡ 2N/2(0.055 + 0.029N)J . (2.34)

To make the theory self-consistent, we need to insure that the fluctuation of the energy
�E to satisfy �E/E ! 0 so that the system has a well defined energy. From Eq. (2.32)
we see that

�E = 2N/2�Emin , (2.35)

where �Emin :=
q

hE2
mini � hEmini2. For large N , the relationship between �E and N,J

can be obtained numerically, which is shown in Fig. 1. The fitting results show �Emin ⇡
(0.18N�1 + 0.87N�2)J and so

�E ⇡ 2N/2(0.18N�1 + 0.87N�2)J . (2.36)

Taking Eq. (2.34) into account, we find that, for large N , �E/hEi ! O(N�2) ! 0.
The Eqs. (2.34) and (2.36) show there may be a subtle issue in the parameter fixing in

Refs. [? ? ? ], where the coupling constant J is fixed and the large-N limit is taken. This
means that the total available energy in the system and energy fluctuation both explode
exponentially as O(2N/2).

Note that the system has the following scaling symmetry

(J , hEi, t, C) ! (�J ,�hEi,��1t, C) . (2.37)
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As the operator V in Eq. (2.16) has a diagonal form, Eq. (2.15) becomes

C(t) = min

8
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2N/2X
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|Ent+ 2⇡kn|
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8kn 2 N, s. t.

2N/2X

n=1
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9
=

; . (2.18)

The eigenvalues En can be obtained numerically by the exact diagonalization of the Hamil-
tonian (2.13) up to N ⇠ 32. In the case 2N/2 � 1, the above minimization can be
approximated by

C(t) ⇡
2N/2X

n=1

|Ent� 2⇡[[Ent/2⇡]]| , (2.19)

where the notation [[X]] stands for the most neighboring integer of X.
For example, [[1.2]] = 1, [[1.7]] = 2 and [[�2.7]] = �3.

Cc ⇡ hEitc (2.20)

In most theoretical studies about the SYK model, one usually fix the parameter J and
study how the system depends on the fermion number N . However, this may not be the
case in studying the complexity. In the study of the complexity, the physical question we
may ask is “For an isolated system driven by a given energy E, how fast can the complexity
of the system change?”

Although we do not need to introduce a concept of “total energy” to define the com-
plexity geometry, we need to inject the energy to the system to drive it to evolve. For
isolated systems, we only need to inject energy only at the initial time as the total energy
will be conserved; in disscipated systems, we need to keep injecting energy.

|0i =
 
1

0

!
, |1i =

 
0

1

!
. (2.21)

|1i =
 
0

1

!
. (2.22)

For example in quantum circuits, the Hadamard gate gH is one of the fundamental
gates, which transforms one qubit states |0i ! (|1i+ |0i)/

p
2 and |1i ! (|1i � |0i)/

p
2. In

one-qubit Hilbert space, its representation reads,

gH =
1p
2

"
1, 1

1, �1

#
. (2.23)

From mathematics perspective, it is simply a well-defined matrix. However, in physical
situations, we have to use a quantum mechanical system to realize it. This means we have
to create an interaction system with some Hamiltonian V and stop the interaction after a
time t so that e�iH

0
t = gH . We find that

H 0 = E1|e1ihe1|+ E2|e2ihe2| , (2.24)

– 7 –

tc ⇠
⇡
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dC

dt
⇠ Cc

tc
⇠ hEi

<latexit sha1_base64="13Vwr/W98Gc3FEsUdAKz2LuZKtk=">AAACInicbZDLSsNAFIYn9VbrrerSzWARXJVEBHVXLILLCvYCTSmTyaQdOpmEmROhhDyLG1/FjQtFXQk+jNM0C209MMPH/5/DzPm9WHANtv1llVZW19Y3ypuVre2d3b3q/kFHR4mirE0jEameRzQTXLI2cBCsFytGQk+wrjdpzvzuA1OaR/IepjEbhGQkecApASMNq1duoAhN/WaW+pBhV/MQz6XmkGYpmKsQBZEjwfANdlVOw2rNrtt54WVwCqiholrD6ofrRzQJmQQqiNZ9x45hkBIFnAqWVdxEs5jQCRmxvkFJQqYHab5ihk+M4uMgUuZIwLn6eyIlodbT0DOdIYGxXvRm4n9eP4HgcpByGSfAJJ0/FCQCQ4RneWGfK0ZBTA0Qqrj5K6ZjYgICk2rFhOAsrrwMnbO6Y9edu/Na47qIo4yO0DE6RQ66QA10i1qojSh6RM/oFb1ZT9aL9W59zltLVjFziP6U9f0DxWikYg==</latexit><latexit sha1_base64="13Vwr/W98Gc3FEsUdAKz2LuZKtk=">AAACInicbZDLSsNAFIYn9VbrrerSzWARXJVEBHVXLILLCvYCTSmTyaQdOpmEmROhhDyLG1/FjQtFXQk+jNM0C209MMPH/5/DzPm9WHANtv1llVZW19Y3ypuVre2d3b3q/kFHR4mirE0jEameRzQTXLI2cBCsFytGQk+wrjdpzvzuA1OaR/IepjEbhGQkecApASMNq1duoAhN/WaW+pBhV/MQz6XmkGYpmKsQBZEjwfANdlVOw2rNrtt54WVwCqiholrD6ofrRzQJmQQqiNZ9x45hkBIFnAqWVdxEs5jQCRmxvkFJQqYHab5ihk+M4uMgUuZIwLn6eyIlodbT0DOdIYGxXvRm4n9eP4HgcpByGSfAJJ0/FCQCQ4RneWGfK0ZBTA0Qqrj5K6ZjYgICk2rFhOAsrrwMnbO6Y9edu/Na47qIo4yO0DE6RQ66QA10i1qojSh6RM/oFb1ZT9aL9W59zltLVjFziP6U9f0DxWikYg==</latexit><latexit sha1_base64="13Vwr/W98Gc3FEsUdAKz2LuZKtk=">AAACInicbZDLSsNAFIYn9VbrrerSzWARXJVEBHVXLILLCvYCTSmTyaQdOpmEmROhhDyLG1/FjQtFXQk+jNM0C209MMPH/5/DzPm9WHANtv1llVZW19Y3ypuVre2d3b3q/kFHR4mirE0jEameRzQTXLI2cBCsFytGQk+wrjdpzvzuA1OaR/IepjEbhGQkecApASMNq1duoAhN/WaW+pBhV/MQz6XmkGYpmKsQBZEjwfANdlVOw2rNrtt54WVwCqiholrD6ofrRzQJmQQqiNZ9x45hkBIFnAqWVdxEs5jQCRmxvkFJQqYHab5ihk+M4uMgUuZIwLn6eyIlodbT0DOdIYGxXvRm4n9eP4HgcpByGSfAJJ0/FCQCQ4RneWGfK0ZBTA0Qqrj5K6ZjYgICk2rFhOAsrrwMnbO6Y9edu/Na47qIo4yO0DE6RQ66QA10i1qojSh6RM/oFb1ZT9aL9W59zltLVjFziP6U9f0DxWikYg==</latexit><latexit sha1_base64="13Vwr/W98Gc3FEsUdAKz2LuZKtk=">AAACInicbZDLSsNAFIYn9VbrrerSzWARXJVEBHVXLILLCvYCTSmTyaQdOpmEmROhhDyLG1/FjQtFXQk+jNM0C209MMPH/5/DzPm9WHANtv1llVZW19Y3ypuVre2d3b3q/kFHR4mirE0jEameRzQTXLI2cBCsFytGQk+wrjdpzvzuA1OaR/IepjEbhGQkecApASMNq1duoAhN/WaW+pBhV/MQz6XmkGYpmKsQBZEjwfANdlVOw2rNrtt54WVwCqiholrD6ofrRzQJmQQqiNZ9x45hkBIFnAqWVdxEs5jQCRmxvkFJQqYHab5ihk+M4uMgUuZIwLn6eyIlodbT0DOdIYGxXvRm4n9eP4HgcpByGSfAJJ0/FCQCQ4RneWGfK0ZBTA0Qqrj5K6ZjYgICk2rFhOAsrrwMnbO6Y9edu/Na47qIo4yO0DE6RQ66QA10i1qojSh6RM/oFb1ZT9aL9W59zltLVjFziP6U9f0DxWikYg==</latexit>
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Figure 1. The relationship between �Emin and N . The red line is the fitting curve �Emin/J =
0.18N�1 + 0.87N�2.

hEi ⇡
2N/2X

n=1

|E
n
| = h

2N/2X

n=1

(En � Emin(J , N))i

=hTr(H(J , N))i � 2N/2hEmin(J , N)i = �2N/2hEmin(J , N)i ,

(2.32)

where h·i stands for the average value, since the SYK model contains the random coupling
Jijkl. In short, we have the equation between he total available energy hEi, the coupling
J , and the fermion number N

hEi = 2N/2hEmax(J , N)i . (2.33)

hEmax(J , N)i = 2�N/2hEi . (2.34)

In particular, it has been shown that, when N � 8, the ground state energy of the Hamil-
tonian H(J , N) can be fitted well by the following linear relationship [? ]

hEmax(J , N)i ⇡ (0.055 + 0.029N)J , (2.35)

so we obtain
hEi ⇡ 2N/2(0.055 + 0.029N)J . (2.36)

To make the theory self-consistent, we need to insure that the fluctuation of the energy
�E to satisfy �E/E ! 0 so that the system has a well defined energy. From Eq. (2.34)
we see that

�E = 2N/2�Emin , (2.37)

where �Emin :=
q

hE2
mini � hEmini2. For large N , the relationship between �E and N,J

can be obtained numerically, which is shown in Fig. 1. The fitting results show �Emin ⇡
(0.18N�1 + 0.87N�2)J and so

�E ⇡ 2N/2(0.18N�1 + 0.87N�2)J . (2.38)

Taking Eq. (2.36) into account, we find that, for large N , �E/hEi ! O(N�2) ! 0.
The Eqs. (2.36) and (2.38) show there may be a subtle issue in the parameter fixing in

Refs. [? ? ? ], where the coupling constant J is fixed and the large-N limit is taken. This
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“total energy”

⇠ 2N/2
<latexit sha1_base64="3U8HQWHTLTlp2rM7WYBwaf9HX9o=">AAAB83icbVBNSwMxEJ2tX7V+VT16CRbBU90tBT0WvXiSCvYDumvJptk2NMkuSVYoS/+GFw+KePXPePPfmLZ70NYHA4/3ZpiZFyacaeO6305hbX1jc6u4XdrZ3ds/KB8etXWcKkJbJOax6oZYU84kbRlmOO0mimIRctoJxzczv/NElWaxfDCThAYCDyWLGMHGSr6vmUC1x+zuojbtlytu1Z0DrRIvJxXI0eyXv/xBTFJBpSEca93z3MQEGVaGEU6nJT/VNMFkjIe0Z6nEguogm988RWdWGaAoVrakQXP190SGhdYTEdpOgc1IL3sz8T+vl5roKsiYTFJDJVksilKOTIxmAaABU5QYPrEEE8XsrYiMsMLE2JhKNgRv+eVV0q5VPbfq3dcrjes8jiKcwCmcgweX0IBbaEILCCTwDK/w5qTOi/PufCxaC04+cwx/4Hz+AOe/kO4=</latexit><latexit sha1_base64="3U8HQWHTLTlp2rM7WYBwaf9HX9o=">AAAB83icbVBNSwMxEJ2tX7V+VT16CRbBU90tBT0WvXiSCvYDumvJptk2NMkuSVYoS/+GFw+KePXPePPfmLZ70NYHA4/3ZpiZFyacaeO6305hbX1jc6u4XdrZ3ds/KB8etXWcKkJbJOax6oZYU84kbRlmOO0mimIRctoJxzczv/NElWaxfDCThAYCDyWLGMHGSr6vmUC1x+zuojbtlytu1Z0DrRIvJxXI0eyXv/xBTFJBpSEca93z3MQEGVaGEU6nJT/VNMFkjIe0Z6nEguogm988RWdWGaAoVrakQXP190SGhdYTEdpOgc1IL3sz8T+vl5roKsiYTFJDJVksilKOTIxmAaABU5QYPrEEE8XsrYiMsMLE2JhKNgRv+eVV0q5VPbfq3dcrjes8jiKcwCmcgweX0IBbaEILCCTwDK/w5qTOi/PufCxaC04+cwx/4Hz+AOe/kO4=</latexit><latexit sha1_base64="3U8HQWHTLTlp2rM7WYBwaf9HX9o=">AAAB83icbVBNSwMxEJ2tX7V+VT16CRbBU90tBT0WvXiSCvYDumvJptk2NMkuSVYoS/+GFw+KePXPePPfmLZ70NYHA4/3ZpiZFyacaeO6305hbX1jc6u4XdrZ3ds/KB8etXWcKkJbJOax6oZYU84kbRlmOO0mimIRctoJxzczv/NElWaxfDCThAYCDyWLGMHGSr6vmUC1x+zuojbtlytu1Z0DrRIvJxXI0eyXv/xBTFJBpSEca93z3MQEGVaGEU6nJT/VNMFkjIe0Z6nEguogm988RWdWGaAoVrakQXP190SGhdYTEdpOgc1IL3sz8T+vl5roKsiYTFJDJVksilKOTIxmAaABU5QYPrEEE8XsrYiMsMLE2JhKNgRv+eVV0q5VPbfq3dcrjes8jiKcwCmcgweX0IBbaEILCCTwDK/w5qTOi/PufCxaC04+cwx/4Hz+AOe/kO4=</latexit><latexit sha1_base64="3U8HQWHTLTlp2rM7WYBwaf9HX9o=">AAAB83icbVBNSwMxEJ2tX7V+VT16CRbBU90tBT0WvXiSCvYDumvJptk2NMkuSVYoS/+GFw+KePXPePPfmLZ70NYHA4/3ZpiZFyacaeO6305hbX1jc6u4XdrZ3ds/KB8etXWcKkJbJOax6oZYU84kbRlmOO0mimIRctoJxzczv/NElWaxfDCThAYCDyWLGMHGSr6vmUC1x+zuojbtlytu1Z0DrRIvJxXI0eyXv/xBTFJBpSEca93z3MQEGVaGEU6nJT/VNMFkjIe0Z6nEguogm988RWdWGaAoVrakQXP190SGhdYTEdpOgc1IL3sz8T+vl5roKsiYTFJDJVksilKOTIxmAaABU5QYPrEEE8XsrYiMsMLE2JhKNgRv+eVV0q5VPbfq3dcrjes8jiKcwCmcgweX0IBbaEILCCTwDK/w5qTOi/PufCxaC04+cwx/4Hz+AOe/kO4=</latexit>

SYK information

“Quantum complexity of time evolution with chaotic Hamiltonian” [1905.05765] 
,Balasubramanian, DeCross, Kar, Parrikar

For fixing J (consequently fixing E_max), see

More general analysis: 
Statistical properties of eigenvalues  

work in progress
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Summary and outlook



Nuclear Physics:  
Sakai-Sugimoto model

AdS/QCD 
Quark-Gluon Plasma: 

 Small     bound
⌘

s

AdS/CMT

97  98  99  00  01  02  03  04   05  06  07  08  09  10  11   12  13  14  15  16 17 18 19 

AdS/QCD  
bottom-up model

History of gauge/gravity duality

Quantum information: 
Entanglement entropy

1. Finding more supporting 
evidences. 

2. Towards less symmetric cases. 
3. Adding flavours. 

AdS/CFT

Many many QCD,  
CMT, gravity 
applications, 

Quantum information

Holographic  
superconductor
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AdS/tensor-network

AdS/CMT: Strange metal

The principle is 
not proven yet,  

But many supporting evidences
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Holographic  
duality

Fields  
Strings

Gravity  
Black hole

Quantum  
information

Condensed Matter 
QCD, nuclear physics

In a  bigger context: overview on holographic duality

Guide: 
Self-consistency 
Compare with the  

    first principle simulation 
Intuition from CMT/QI 
Proposal for CMT/QI 
Experimental results 
Proposal for Exp.• AdS/QCD 

• AdS/CMT
• AdS/QI

• AdS/CFT 
• Gauge/Gravity
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Holographic Duality
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Holographic Duality

It led a new paradigm:  
Holographic principle
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