Lepton-nucleus Scattering in Quasi-elastic Region'

Kyungsik Kim

Korea Aerospace University

2021 nuclear summer school

Outlines:

1. Introduction

2. The Electron Scattering Theory

3. The Quasi-elastic Electron Scattering
4. The Neutrino-nucleus scattering

5. Appendix



[. Introduction

1.1 Historical Remarks

e In 1928, Dirac published his famous paper in which the Driac equation

of the relativistic electron was given.

e One year later, Mott gave the theoretical derivation of the cross section
for the relativistic scattering of Dirac particles by point nuclei, known

as the ”Mott formula”.

e The pioneering experimental studies were begun in 1953 by Hofstadter et
al. at the Stanford University Linear Accelerator (SLAC) with electrons
of 116 MeV energy.

e The second phase at the Stanford studied the charge and magnetic mo-

ment distributions of single nucleons by elastic electron scattering.

e The third phase with higher-current is the study of the complex nuclei
up to 600 MeV at Saclay in later 1960’s.

o After that, several accelerators were built such as MIT Bates with 1

GeV energy, JLab, and so on.

e The neutron skin depth was measured by using electron parity violation

off 28Ph and 40*8Ca at JLab.

e Measured the neutrino-proton and antineutrino-proton elastic scattering

at BNL on the middle of 80’s.



Measured the neutrino (antineutrino) neutral (charged)-current quasi-
elastic differential cross sections at MiniBooNE from 2010 to 2015 and
then obtained axial mass M4 = 1.30 GeV and strange quark form factor

As = 0.08 at Q2 = 0.

The axial mass M4 = 0.99 GeV was obtained from antineutrino charge-

current reaction on hydrocarbon at MINERVA.

The axial mass M4 = 1.23 GeV was obtained from neutrino charge-

current reaction on iron at MINOS.

The axial mass My = 1.26 GeV was obtained from neutrino charge-

current reaction on iron at T2K.

Recently neutrino charged-current quasi-elastic scattering with monoen-
ergetic muon neutrino at 236 MeV by using kaon-decays-at rest(KDAR:
K* — p* +v,) at MiniBooNE.
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FIG. 1: Region in terms of energy transfer at fixed three momentum transfer.

1.2 General Features of lepton Scattering

Different electron scattering processes depending on energy transfer w as

shown in Fig. 1:

e A large peak at w = 0 produced by elastic scattering from the charge

distribution in the nuclear ground state.

e Peaks due to the excitation of discrete levels below the particle emission

threshold occur as the energy transfer w increases.

e Overlapping peaks with several MeV width caused by excitation of col-

lective models, so called “giant resonances”.

e The quasi-elastic peak, where a nucleon is directly knocked out of the

nucleus by the electromagnetic field of the passing electrons. The width



of the peak, which is dependent on kinematics condition, is a conse-
quence of the internal motion of the nucleon inside the nucleus, referred

to 7 Fermi motion”.

e Broad peak which corresponds to pion production processes where the

energy transfer is large enough to excite the individual nucleon.
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FIG. 2: Kinematics for the electron-nucleus scattering

[I. The Electron Scattering Theory

2.1 The Dirac Equation

The Dirac equation for a single-particle in a spherically symmetric poten-

tial V(r) is given by
{ap+Bm+V(r)}¥(r) = E¥(r) (1)

where m is the mass of the particle, a and 3 are the standard 4x4 Dirac
matrices and W(r) is the four element wave function. The wave function can
be separated into an angle-dependent part and a radial part via a partial
wave expansion.

When there is no potential, the solution has the well known plane wave



form given by

E+m I ,
_ ip-r
R A e 2)

E+m
where [ represents a 2x2 unit matrix and o contains the 2x2 Pauli matrices.

The notation y with s = :l:% is the Pauli two component spinors. For spin—%,
the eigenfunction of total angular momentum J = L + %0’ is represented by

the spin angle function:
oa L omya
XE(F) =) (Im, ST Y ()X (3)

where k = £(j + 1) is an eigenvalue of the operator K = (oL + 1), and is
given by

[ for j:l—%

—l—1 for j:l—l—%.
Here, k takes on all positive and negative integer values except zero. The

k value specifies both the total angular momentum quantum number j and

the orbital angular momentum quantum number [

K for k>0
l= (4)
—k—1 for k<O

and j = |x| — 3.
By using the Rayleigh expansion, the exponential in the plane wave be-

comes
ePT =Y (i)'(20 + 1)5i(pr) Pi(cos ©),
l

where © is the angle between p and 7. Using the addition theorem of the



spherical harmonics, this becomes
= S 4wl G0, )

Multiply Eq. (5) by spinor x, and substitute the spin angle function of Eq. (3)

to obtain
P = D Am (i) i)Y ()Y (s

= 3 4l i)Y ) m, 5l )

Koftsm

By using Eq. (6), we finally obtain the the partial wave form for the plane

r) =/ " > a0 = S slim)vt ), 7)

ww = D ®)

T i) X" (F)

wave

where

and we have introduced | = [(—x) and defined s,, = sign(x) = [—I. Therefore,

(oL + 1)x5(7) = —rxi(7)

o X () = = x4 (7), (9)

where 0, = o7 is a scalar operator so that o,x% belongs to the same j and
1 values.

For any spherically symmetric potential V' (r), the radial part of the wave
function can be separated with the angular function and then, the wave

function can be defined by

Ui(r) = Ru(r)xi(F) (10)



where the radial function R is written by

R,.(r) = fslr) . (11)

19, ()

The radial equation can be written as

%:Dfilﬂﬂ+m+E—VmMW
Z_i _ “;19@) +[m— E+ V)£, (12)

For a spherically symmetric potential, the wave function has the same
form as the plane wave but one needs the phase shift due to the potential.
The distorted wave functions for the electrons are obtained by solving the
Dirac equation in the presence of the static Coulomb potential of the nuclear
charge distribution. The Coulomb distorted incoming electron wave function
can be written as a summation of the partial waves, for incoming spin s;, as

UP(r) = ) e gfi(x). (13)
Kifli
The outgoing electron wave function for outgoing spin sy is given by
V() = 3 e ™0t (r). (14
Kflf
In Eq. (13) and Eq. (14), ¥#(r) is the electron eigenstate with angular mo-

mentum quantum number &, p given by

) = fn(r)x’é(f)A (15)
1 (r)X2(7)
where x!(7) is the same as the Eq. (3) and the radial functions f(r) (or g(r))

are obtained by solving numerically the two coupled Dirac radial equations.
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To satisfy the incoming (or outgoing) boundary condition, we need

E+m

Con =\ 2

. 1 . —s*, A
An (i)' p— s, Sslim Y (b). (16)
0, is the phase shift for the partial wave, m is the electron mass, and s is the

electron spin projection.

2.2 Phase Shift Analysis for Relativistic Coulomb Wave Functions

In order to evaluate the phase shift of the continuum state wave func-
tions, we solve the radial wave function for a point charge Coulomb potential

(V(r)=-22). The two coulped radial equations for the point Coulomb poten-

tial are

d k+1 ol

— == [+ (m+E+—)g"

dr r r

d k—1 aZ

—qg° = ¢ —FE+—)f¢ 17

79 gt (m-E+—)f (17)
where a = €? = - is the fine-structure constant and Z is the atomic(charge)

number. The superscript ¢ denotes the point Coulomb potential.
As usual, there are two independent solutions. Omne is a regular solution
which is finite at the origin, the other is the irregular solution. The solutions

can be written in terms of the Whittaker functions M) ,(z):

. [E+m m T +1—in)| _s
;= \ “4pE () ey )

X Refexp (~ 2 (v + 5) + i0) M.y, (2ipr)] (18)
. [E—m ), [P +1—in)|, _s
I =\ pE ) Ty Y

X Tmfexp (=5 (v + ) +i6)M_ 1, (2ipr)], (19)
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where Re means the real part of [...] and Im means the imaginary part of

[...]. The constants v and 7 are given by

v==2vkK?— (aZ)? (20)
aZE
n=—— (21)
p
and the phase ¢ becomes
o2l — _% (22)
V—+an

The Whittaker function for r—0 becomes

M)\7M(,'<7)%e_%;z’”r

N[

(23)

The asymptotic form at r—oc is given by

e [E+M 1 B ™ N .
e E (r) cos [pr — (I + 1) 5 + nln (2pr) + 6¢] (24)
g~ — | E4;EM(%) sin [pr — (I + 1)% + nln (2pr) + 07 (25)

The regular solution needs the positive value v > 0 and the irregular solutions

needs the negative value v < 0.

In the asymptotic region, the radial wave functions in the presence of a
short range additional potential can be written in terms of a linear combi-
nation of the regular and the irregular solutions for point charge Coulomb

functions

f=Af;+Bff
g = Agyp + Byi, (26)
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where the subscript R (or I) denotes the regular (or irregular) solution. The

solutions have the following asymptotic forms as r—o0

|E+ M 1 ™ .
f~ B (;) cos [pr — (I + 1)§ + nln (2pr) + 95 + 6] (27)

E—M 1
g — B (;) sin [pr — (I + l)g + nln (2pr) + 05 + d4)- (28)
The coefficients A and B and the additional phase ¢, are given by
o 29
f]gR - ng[
p— I =I5 (30)
f[gR - ng[
and
sin 0
tand, = ———— (31)
Z +cosf
where

__ sc ¢
0 = 5/{,[ — Yk,R-

The phase difference 6 between the regular and irregular point Coulomb
function must be nonzero and gives imprecise values of ¢, if 6 is too small.

For m.—0, the radial functions become

f*/@:gn ) gfn:fm

and the phase shift is

We found the regular and the irregular Coulomb wave functions for the nega-

tively charged particle in the Coulomb field. For a positively charged particle

12



such as a proton, the Coulomb wave functions can be obtained by changing

the sign of the charge value Z.

2.3 Relativistic Nucleon Wave Functions

The most general time-independent local Dirac equation containing the

five Lorentz-covariant interaction of Dirac theory can be written as

{a-p + 5[771 + Us(I‘) + ”yuU{}(r) + ")/5Up5(1')

+7,7:Upv (r) + 0, U (0)[}¥(r) = E¥(r) (32)

where o, 8, v4, 75 and o, are the 4x4 Dirac matrices. The potential
subscripts S, V, PS, PV and T represent scalar, vector, pseudoscalar, pseu-
dovector and tensor, respectively. The requirement that the parity and the
angular momentum operators commute with each term of the Hamiltonian
in Eq. (32) introduces simplifying restrictions upon the interactions, e.g.,
Upg(r) and Upy(r) become zero. By applying these restrictions to the scalar
term in the Hamiltonian, the function Ug(r) is independent of angle. The

contraction of vector potential and tensor potential can be expressed as
UL (r) = Ui (r) — v Uy (r) = %Up(r) — 7 U (r)
0wU;" (r) = ="y Ur(r) = ="y Up(r).
The Eq. (32) becomes
{ap+Bm+Us(r) +70Up (r) =7 Uy (r) ="y Up(r)]} ¥ (r) = EV(r). (33)

The scalar and zeroth term of the vector potential must be rotationally in-

variant and thus every term become only a function of the magnitude of

13



the variable r. For local and time-independent interactions, hermiticity and
time reversal invariance require Uj(r) to be pure imaginary. However, since
hermiticity requires Uy, (r) to be real while time reversal invariance requires
it to be imaginary it vanishes. One must choose appropriate scalar and vec-
tor potentials that provide the dominant central and spin orbit interactions
to obtain elastic scattering observables. These are referred to as the scalar
potential Ug(r) = S(r), the vector potential Uy (r) = V(r), and is called the
S-V model. Experiment requires that the potentials be large, several hun-
dred MeV in strength, with the scalar attractive and the vector repulsive. By
an extensive fitting to the experimental data the S-V model is recommended
over the others. The single particle wavefunction of good angular momentum

J2, J., parity P and time reversal symmetry T in Eq. (33) has the following

form
o () XE(T
N CICCRY "
19 (r)X" ()

The coupled radial differential equations can be written by

df 1

d—]; = S f) + Im+ B+ S0) = V(g

dg, k—1

= () + [ — B+ S(r) + V)] fulr). (35)

We can obtain the radial functions f,(r) and g.(r) by solving the two differ-
ential equations numerically. Fig. 3 shows that the radial wave function for
3517 state of 208Ph as an example.

Using the global optical potential, obtained from fitting elastic proton
scattering data, the knocked-out proton can be described by scalar and vector
potentials similar to the bound state potentials except that they contain an

imaginary part to describe loss of flux from the elastic channel. The wave

14
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FIG. 3: Relativistic 3s; /5 wave function in 208ph, The solid line is f. and the dash line is g,..

function for the outgoing nucleon has the same structure as the outgoing

electron wave function (14):

Up(r) =Y Crpe wibfir(r) (36)

Kplp

where ¢ (r) and C}, ,, are given by

i () (7)

g (mx, (7)

E + M i 1 . —s* A
Cropy = 1 | —mm—47 (1) (Lppty — 5 58|jp1ip) Y (D)

and the x denotes the complex conjugate.

fo(r) =

and
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[II. The Quasi-elastic Electron Scattering

In our calculation, we make the following assumptions:

e The incoming and outgoing electrons are described by distorted wave

function due to the nuclear static Coulomb potential of the target.

e The virtual photon emitted by the electron is absorbed by a single nu-

cleon.

e The ejected nucleon interacts with the residual nucleus through a rela-

tivistic optical potential.

e The target nucleus is described by a relativistic independent particle
model with the scalar and vector average potentials being determined

in the Hartree approximation of the o — w model.

There are two processes: One is called the exclusive (e,¢'p) reaction by
detecting simultaneously the final electron and the knocked-out nucleon. The
other one is called the inclusive (e, ¢’) reaction by detecting only the final

electron.

3.1 Plane Wave Born Approximation (PWBA)

In PWBA, both the incoming and outgoing electrons are described by
the plane wave solutions of the Dirac equation. The well-known transition

matrix element from electrodynamics is given by
H; = / J APy (37)

16



FIG. 4: Coordinate system.

where J, is the nuclear transition current and A* is the four potential gen-
erated by the electron current.
In the Lorentz gauge, the electron potential can be expressed in terms of

the retarded Green function G(r’,r) as

At(r) = /j“(re)G(re,r)dre, (38)

where

eiw|refr|

G(re, 1) =

re — 1|
with the electron position vector re, the nuclear position vector r, and the

energy loss w. The electron current is given by

g = Pp(re)y Pilre). (39)

The electron four potential becomes the Moller potential:

dre o
Al(r) = Z — ¢ ()" u(pi)

= 9Tk, (40)
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4me
22

where a* = u(ps)y u(p;) and the three momentum transfer q = p;—py.
In terms of the Moller-type potential, the transition matrix element can be
written as

H; =a"N, (41)
where the nuclear form factors can be defined in terms of the nuclear current
density by

N, = / Ju(r)e v dPr. (42)

The nucleon transition current is given by

Tu(r) = ey, (43)

where JA# is the nucleon current operator and v, and 1, are the bound and
continuum single particle wave function.
In PWBA, the nuclear form factor is just the Fourier transform of the

current. The cross section for (e, €’'p) process can be written as

3o 12w 1 5
L |, 44
dEdQdQ, 21,0 AZ 2, 1/ (44)

where [;;, is the incoming electron flux given by p;,,/Ein. The s; and sy denote
the initial and the final electron spin, and s, and p; are the outgoing and
the bound nucleon spin projections. The density of states p. and p, have the
same form for outgoing electrons and nucleons and are given by the Fermi

phase space as
dp = pdEdS)

_ pE
P~ 2n)?

(45)

where p and E are outgoing electron (nucleon) momentum and energy.

18



3.2 The Matrix element

In order to calculate the matrix element, we need to know the nucleon

transition current which is given by

Ju(r) = eﬁ‘ﬁpju@bb (46)

where ju is the nucleon current operator. For a free nucleon, the operator
consists of two parts, namely, the Dirac contribution and the contribution of
the anomalous magnetic moment pr:

LT
QmN

jH :Fl’)/u—l-FQ J”qu. (47)

The charge density (zero component) and the three vector current are given
by

A

KT

J' = Py + Fa-q (48)
2mN

J=Fy+ " pat+ P pyxq (49)
2mN 2mN

where pr is the nucleon anomalous magnetic moment (for proton puy = 1.793
and for neutron pur = —1.91). Note ¢ = w and q is an operator in con-
figuration space. The nuclear form factors F; and F, are evaluated at four
momentum transfer ¢,. They are related to the electric and magnetic form

factors Gg and G by

G — P4 Mg 50
E = I1+ VR (50)
GM = F1 +/LTF2. (51)

We choose the standard result:
Gp=Gu/(pr+1)=(1—¢./0.71)7 (52)

19



where in this formula ¢, is in units of GeV. By using this current operator,
the Fourier transform of the nucleon current density Eq. (42) can be written

as

N, = /Ju(r)eiq'rd?’r. (53)
If we choose a well-defined q, the longitudinal and transverse parts of the

three vector current are defined by the following relations:

J, = J-q (54)

Jr = x(Jxq) (55)
with

J=J,+Jr. (56)

The current conservation for the nucleon and electron becomes ¢*J, = q,a" =
0. Using these relations, the transition matrix element becomes

H;, = /(aOJO —a-J)e 4t dr

B /[(1 — ?)aoJo —a-Jle" " dr (57)

and we can define the modified Fourier transform of the nucleon current

density as a four vector in Eq. (53);

N* = (No, Ny, Ny, 0) = (No, N1, N2, 0) (58)
where
@
No = /—q—gJoezq'rd?)r (59)
N, = / Je' Uy (60)
N, = / J,e' v dr. (61)

20



The cross section can be separated into the electron and nuclear com-
ponents by defining an electron tensor (lepton tensor) in the conventional

manner;

=) [alpp)y u(p)] [@lpr)y u(p:) (62)

SiSf

and a nuclear tensor (hadronic tensor);

W,ul/ — ZN:;NZ/ (63)

SpHb

By using the relations, the cross section for (e, e’p) reaction becomes

&o 127 1 )
= gy H,
dE;dQdQ, 21, 72, 1 1 2 |Hi

5i5FS Pty

127 1 ¥ deY
3 (47cv)

_ =7 7 EN )2
zlinpepp2jb _|_ 1 q4 ‘U’(pf),y Mu(pl)l

5iS¢Sp b K
127 1 (4ma)? .
= ——p, . "W 64

$iSFSphy

¢ Non-relativistic transition operator

Transition current operator is given by

The charge and the vector parts are the Fourier transform of transition

current:

olq) = / dre ™ (£ (i),
3(qg) = / dre (£ 7 ()i
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where the operators are given by

p(r) = Z eid(r —ri),

J(r) = Jn(r) + V x fin(r)

with
0= 50+ 7).
jN(T) = Z e;0(r — TZ)Z.VM’

a;
= ;Mim5(r —7i),

i
T3

Wi = 2 5

Expand the partial wave

_47TZYJM f|MJM| ),

I(r) = —v WZJ (FITF + AT 753

J>1

The ¢, E, and M denot the Coulomb, electric, and magnetic transitions
given by
M5y = [ 1 dslar)i? Vi (lr)
T =+ [ & x laan)i? Vi) J0),
TV = /d?’?“ Gr(qr)i? Y, - J(r).
The operator J is substituted into the above equation.
T, = [ @ {9 % i)Y - T+ [ ar )i -

T% = /d37’ {W X jJ(qT)iJYfJ1] iy + [jJ(qT)in§J1] : jN}~
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3.3 Inclusion of Electron Coulomb Distortion

Under the electron Coulomb distortion, the Rosenbluth in Eq. (64) is not
valid any more and we need the multipole expansion. For the scalar terms,
the Green function can be expanded as follows:

N
6zw|r r'|

G(r,r') =

v — 1|

= 43 julwr hplor VP ECE). (65)

For the vector current terms, one can expand the Green function with the

Dyadic I in vector spherical harmonics:
<~ —
G(r,v') = IG(r,r)

= 4mw Z jL(wT<)hL(WT>)Y%(72)Y%*(W)7 (66)
JLM

where j; and hy denote the spherical Bessel and Hankel functions, respec-

tively. The vector spherical harmonic function is defined as

YL (7) = > (LM — p, 1p| JM)Y; (7)€, (67)
W
In terms of these definitions, the transition matrix element is written as:

= e Z{/ e 7)hr(wr) /07" P jr(wr )Y (7 d*r
+ dufer) / P halior V)
. Z/ FYLy @)hsfor) /0 Iy

+ jJ(wr)/ I YY" hy(wr')dPr')dr} (68)

The scalar part of the nucleon current is given by
[ Bt Y2 0 = (g, LMV Ty ) KS ), (69

23



where the radial integration Kg(r) can be written as

. Foprw 1
Ké’v(r) - Fl(f/ipf/ib +g“pg”b)]l’(wr) + ;M 2L + 1

X [(fﬁpgnb + gﬁpfﬁb)((L + 1)jL+1(WT) - LJL—l(WT))

+ (kp = #0) (i, 9 = Gy Jr) (L (wr) + 1 (wr))].

The vector terms become

[ Gndvnin wn) XYL ) = (D LTIy )
x K (r, L)
[ s Y ()2 = G, LML) )
x KY¥(r, L—1)
[ G unin wn) X () = s, LML) oy )
x KY(r, L+1),

where the Ky ’s are defined in the following way:

—1

KXJ/V(Ta L) = m{jL(WT)(H&p + k) [F1(fr, Gry + Gry fry)
Foprw prw  Fo
+ 2M (f/ipglib glipffib)] + 2M 2L + 1 [(K’p + ’%b)

X (fnpgnb + gnpfﬂb)(LjL+1(Wr) — (L +1)jp-1(wr))

+ LL A 1)(fr,9n, = 9np f) G (wr) + jra(wr))];

KN(r, L—1) = L@;+4JUD*“””““@“"“)‘LFZEM

F,LLTCU
X (flipg/fb + gK/pr/b) + ((’ip o Kib) -

2M
Fourw ,
;]\; (Kp — /fb)]L(wr)(fnpfnb + gnpgnb)}

)

24
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(71)

(72)

(73)

(74)

— LE)(fe, 9, — Grp f0)]

(75)



7

Ky L) = NERICESY

{rna(wr)|[(Fu(kp — )

(A D) Gyt gy )+ (5 — )
(L DE)Fy e, — 0,5~ 2252 1, — i) or)
X (fﬁpfﬁb + gnpgﬁb)} (76)

In the same way, the corresponding integrals for the electron part are given

by

/@fjowijL(WT)Yy*(?ﬁ)dQ = (—=U)M(Jipi, L — M| Jppp) (g, i)

x KE&(r), (77)
and

/ Do (wr) Y M (#)dQ = (T L — M| Tpup) I~y )
X (“L)FHRREE G ), (78)

where J represents L, L + 1, and L — 1.

In our analysis we are looking at one particular shell, and trying to find
the reduced cross section p,, , which for plane waves in the final state is
related to the probability that a bound proton from a given shell with the
missing momentum p,, can be knocked out of the nucleus with asymptotic

momentum p. The reduced cross section as a function of p,, is commonly

defined by
1 d3o
pEpO'ep dEfdede 7

where o, denotes the off-shell electron-proton cross section.

Pm(pm) = (79)
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FIG. 5: Reduced cross sections for 2®Pb(e, ¢'p) from the 3s, /2 shell with parallel kinematics. The
kinematics are E=412 MeV, and proton kinetic energy T=100 MeV. The dotted line is the PWBA

result and the dash-dotted line, the solid line is the approximate DWBA result, and the diamonds
are data from NIKHEF.

3.4 Rosenbluth Separation

In the extreme relativistic limit (m,. = 0), the sum over labels of the
electron tensor can be explicitly carried out using the spin projection operator
for the initial electron and the Trace Theorem:

" = [u(pr)y" ulp)] [w(pr)y ulp)] = éT rlp" (1 + 1) piy']

SiSf

1
2pipy

P} + Pip — 9" (EiEf — pi-py) + ihePprspiy] - (80)

where h is +1 for positive electron helicity and —1 for negative electron
helicity:.

The first three terms of the electron tensor in Eq. (80) are symmetric with
respect to interchanging p and v, and independent of the electron helicity.
However, the last term is antisymmetric for ;4 and v, and depends on the

electron helicity h. Therefore, the electron tensor can be written as the
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summation of a symmetric and an antisymmetric tensor:

" =ng +ny (81)

The general form of a nuclear tensor W, can be constructed with the energy
momentum four vectors ¢”, p, and pj using four momentum conservation,
and electromagnetic current conservation requires ¢*W,,, = ¢"W,,, = 0. Thus,

the nuclear tensor can be written as

W = Wiguw + Waps,p, + Wipupy

+ Walpoupv + poupp) + Ws (Do — DouDp)- (82)

The constraints were satisfied by constructing W, from a complete set of four
vectors and second rank tensors. Each coefficient W;-W5 depends only on
Lorentz scalars involving the momentum transfer and the hadron momenta.
This nuclear tensor, just as the electron tensor, consists of a symmetric and
an antisymmetric part in the labels p v. The first four terms of the nuclear
tensor are symmetric and the last term is antisymmetric under interchanging
i and v:

W =W, + W, (83)

Since the contraction of a symmetric and an antisymmetric tensor yields zero,

the contraction of the electron and nuclear tensor can be written as
MWW =1 W+l WA (84)
Ui 224 UK 2% un pve

By using the contraction of electron and nuclear tensors, the cross section

for electron scattering from a unpolarized target is given by

ikle _12x 1 (4ra)?
dErdQdQ, — 21,25, +1 ¢

(Wi, +nly W)

27



4 2 2
(27T)3UM[Q4 B+ (tan 2 Z)RT - 2_q2008 2optirr
2 2 2
q 0. ¢ q _96 i
— —q’; (tan2 5 —qg)l/Qcos OpRrr — hqgtan 5 S ¢pRLT’]a(85)

where

4
RL(Qaw) - (q]_4W007 RT(Qaw) - Wll + W22

1
2

cos 20pRrr(q,w) = Wiy — Wag, cosopRrr(q,w) = —Z—Q(Wm + Who)

1

2
sinppRrr(q,w) = —i%(Wm + Wa).
m

20
« )Qcos 5

2E/ sin* %5 :

oy denotes the Mott cross section given by oy = (

The reduced cross section p,, is introduced, which is related to the proba-
bility that a bound nucleon from a given orbit with the missing momentum
pm can be knocked out of the nucleus with asymptotic momentum p. The

reduced cross section as a function of p,, is commonly defined by

1 d*c
pEpO'ep dEfdede 7

Pm(pm) = (86)

where the missing momentum is determined by the kinematics, p,, = p — q.

The off-shell electron-proton cross section, o, is not uniquely defined but

ccl

we use the form og.

There are two kinds of experimental kinematics, parallel and perpendicular
kinematics. In the perpendicular kinematics, the polar angle of the knocked-
out proton is measured with respect of the momentum transfer where the
magnitude of p is fixed at |p| = |q|, and in the parallel kinematics, the
magnitude of the missing momentum p,,, changes at which p is parallel to q.

In the parallel kinematics, the three interference terms in Eq. (85) disappear
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FIG. 7: The cross sections in parallel kinematics from the 3s; /5 orbit of 208Ph target as a function
of the missing momentum. The incident electron energy is 412 MeV, the proton kinetic energy is
100 MeV, and the data are from NIKHEF.

due to integrating over the azimuthal angle ¢,, while all terms remain in

the perpendicular kinematics except the fifth term which sums to zero for

unpolarized incident electron beam.

3.5 Response Function and Asymmetry

The cross section is given by
3o _ pE,
dE¢d$;dS,, - (27)3

— ULTCOS gprLT — hULT/SiIl QSpRLT’]-

OM [ULRL + vp R — vppcos 2¢pRTT

The fourth response function could be obtained by subtracting the cross
sections at azimuthal angles of the outgoing proton ¢, = 0 and ¢, = 7™ and
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FIG. 8: The cross sections in perpendicular kinematics from the py /o and p3/y orbits of 160 targets
as a function of the missing momentum. The incident electron energy is 2441.6 MeV, the proton

kinetic energy is 427 MeV, and the data are from Jlab.

keeping the other electron and outgoing proton kinematics variables fixed.

The fourth response function is a function of the missing momentum given

by
R _ oL

2KULT ’
where L (left) and R (right) indicate the left side at ¢, = 0 and the right

Rir = (87)

side at ¢, = 7 of the cross section, respectively. The kinematics factor K is
K = (pE,on)/(273). Of course, this fourth response function can be directly
calculated in the PWBA.

If the incident electron beam is polarized, helicity h=1, one can obtain the
fifth response function by subtracting the down part (—m < ¢, < 0) from the
up part (0 < ¢, < m) of the cross section with respect to the scattering plane,

while all other kinematics variables are kept the same. The fifth structure
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dotted lines are the PWBA results, and the diamonds are data from Jlab.

function can be written as

O'U—O'D

2KvLTlsinqbp ’

Rip = (88)

where U and D indicate the “up” and “down” part of the cross section,
respectively. This clearly describes the “up-down” asymmetry of the cross
section with respect to the scattering plane.

We also calculate another left-right asymmetry, A;p, defined as
(89)

In this case, the kinematics is the same as for the fourth structure function
in eq. (87).
On the other hand, by adding the left side and the right side of the cross
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section, one can obtain the second response function as

ol + oft U
o Ry + x(0)(Rr + ULZRTT)v (90)

where z(f) = £ is a function of the electron scattering angle 0.
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3.6 Inclusive (e, €') reaction

The cross section for the (e, €'p) reaction is written as
3o _ pE
dEdQdQ, — (2m)3

— wrrcos ¢ppRrr — hvppsin ¢, Rpp.

oM [ULRL + vp Ry — vppcos 2¢pRTT
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In inclusive processes, the ejected nucleons are not observed, whereas they
are observed in the exclusive processes. The cross section in the (e, e’) reac-
tion can be calculated by integrating over the ejected nucleon angle df, and
summing over all the possible channels for the excited nuclear system. We
consider the PWBA calculation with the partial wave expansion. The ex-
plicit form for the nuclear form factors Ny and Ny in the PWBA are defined

as the Fourier transforms of the nuclear transition current;
Ny = / Jo(r)e" 9 d*r (91)
Np = /JT(r)eiq'rd?’r

- Y4 / I(x)-Ere @ dr (92)

A==+1

where q is an asymptotic momentum transfer along the 2-direction and Jp =
J+éj; + J_éi in the spherical coordinate, which is given by éo =z, é:tl =
:F%(i + iy). By using the partial wave expansion, we can easily get the
longitudinal term in the form;

1 . mp* N —3 *
No = Vdm Z Z V2L + 1{lymy, §5p|]p/$p>yzp (p)e "

KpppMy LM

<jbﬂb> LM|jpﬂp>Rnpnb(q; L)- (93)
The transverse term can be written in spherical coordinates
Ny = N.& + N_&* (94)
where

1 . mp* - —10*
Ny = V2w Z Z V2L + 1<lpmp>§3p‘]pﬂp>ylp (P)e "

Kppmyp LM
(Jottey LM |gppip) [Rec,r, (0; M) + Ry 1, (¢; E)] (95)
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—V2n Z Z V2L + 1(l,m,, 3p|]pﬂp> Y, (p)e %%

Kpltpmy LM
(bt LM |Jppip) (B, (@ M) — Ry, (g5 E)]. (96)
The label L, M and F denote the longitudinal, magnetic and electric terms.

By using the Dirac multipole operator matrix element given in the Appendix,

we have each term explicitly;

E,+M |E
R“pp/ib Q7 47T 22 ’ + l +L[L /{p7 "ib)

' prEaqg
d 2 F: ; K . K
/ 2P fu 4 90 b)JL(CJ?“)+2M(2L+1)

[(=Ljr-1(gr) + (L + 1)jr1(qr)(f 9n, + 95 fir)

+(kp = w) (Jr-1(qr) + Jra(qr)) (5, 9m — 95, fe)]} (97)

R q 47T E + M Eb‘l— Z+L+1 )
ol 28, m

/ drr*{Fy (15, + 50) (£, G, + 97, F ) (1)

MTFQw * * .
oy e TR0 (f 9 — 93, fi)gn(ar)

MTF?W * *
L 1 Ky K
+2M(2L+ 1)[ ( + )(f/ipf b gﬁpg b)

_|_

(jz-1(qr) + jr1(qr)) + (Kp + Kp)

(Ljr+i(gr) = (L + 1)jr—1(qr))(fe, fon + 91,9:,)] (98)

E,+M |E l +L]
Rnpnb ¢ b (4) - ’ + = l{p’ i)
2E, 2L +1 L + 1)

/ drr*{Rlly = m) 7,90+ gﬁpfm,)(LjLH(qr) -+

Jr-1(qr)) + L(L + 1)(f5 9, = Gnpfi) (G-1(ar) + jrs1(gr))]
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+”§M2‘ [L(L A+ 1)(f gry + 05 fr) (Gr—1(ar) + jraa(ar))

+H(kp = ) (f, gm0 + 9o, Fr) (L —1(qr) — (L +1)711(qr))]

_M;\Z?q(QL + 1)(kp — k) Jrlar)(fr, fa, + 9, 90) - (99)

In the (e, €’) process, the longitudinal and the transverse structure functions
remain after integrating the cross section in Eq. (85) over the solid angle
dQ2p of the ejected nucleon. We sum over all quantum numbers and use the

following orthogonalities;

[ G G) = 8

1 1
Z(l My, 23p|]pﬂp> (lymy, 3p|]pﬂp> 5JpJ;5Mpup

: : . . 2Jp +1
> vty LM g CGivpa, LM Gpp) = o & L oM
Hp b

Finally, the longitudinal and the transverse structure functions become

RL = /ppRLde:%Tp—}—l)Z/UVOFde

dmpy

N 2Jp +1)e 2Im(0 RHK& 7L 100

in Pp 2 2
— RrdQ), = — 12 E N. N_|7)dS2
RT /pp Td p 2(2jb+1) < \/(‘ “1“ +| | )
bSp

Amp,, : 2Im(6,.,) 2
= — g 27, + 1)e=" ) (| R, . (q;

+ | Ry (0 E)|) (101)

where I'm(d,,) is the imaginary part of the phase shift for the ejected nucle-

ons. In terms of the structure functions, the cross section in (e, e’) reaction
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FIG. 14: The comparison with Slac data for 12C, %Fe.

is given by
d*o qﬁ , 0 @ .
= E R tan? = — L) Rin 102

where g, is the four momentum transfer and o is the Mott cross section.
The structure functions depend only on the momentum transfer and the

energy transfer.
3.7 Coulomb sum rule

From the measured cross section in Eq. (102), the total structure function

is defined as

€(0) ¢\ d*o
Spplqw.0) = () (L) 27 103
tor(4,,6) (0M> <Q4 Q) rdw (103)
where the €(6) is the virtual photon polarization given by (1 + QQ%Q tan? %)~
and the four momentum transfer squared is Q* = w* — ¢* = —¢.

Therefore, the total structure function in Eq. (103) becomes
2

Su(.0,0) = c(O)RY (g,0) + (%) (g, w). (104)

37



Siot 1s described as a straight line in terms of the independent variable €(6)
with slope Rp(¢q,w) and intercept proportional to Rp(q,w) by keeping the
momentum transfer ¢ and the energy transfer w fixed.

The Coulomb sum rule (CSR) is defined as the integration of the total

longitudinal structure function in Eq. (104) for inclusive (e, €’) reaction

1 [ RP(q,
cw=5 [ %d@ (105)

with the electric form factor given by

(1+7)

m, (106)

CH@) = | Gh (@) + 5612

where Z and N are number of protons and neutrons of the target, respec-
tively. The last factor corresponds to the relativistic correction factor, in

which 7 is given by 7 = Q?/4M3, with the nucleon mass My.
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FIG. 15: The Coulomb sum rule for our model in terms of ¢ values. The solid circles are for 4°Ca

and the solid rectangles are for 2°®Pb, respectively.

3.8 y-scaling

The cross section for the inclusive (e, €’) is written as

d2 4 0. ¢
S {q—ﬁjSL(q, w) + (tan® = — =) S7(q,w) ¢, (107)

dwdS), 2 2q¢?
where oy = (a/2E)?[cos?(6/2) /sin*(6/2)] is the Mott cross section.
The y-scaling function is defined as the ratio of measured cross section to

off-shell electron-nucleon cross section as following:
d’o q
Z e N en Y
dwdQ ( Up+ (o} ) [M2+(y+Q)2]1/2

where o, (0en) denotes the off-shell electron-proton(neutron) cross section.

F(y) = (108)

Z and N are the number of protons and neutrons, and M is the mass of
nucleon. The scaling variable y is given by
wH My = (M*+ ¢ +y* + 2yq)* + (Ma_* + yH)'?, (109)
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FIG. 16: The y-scaling functions are from 2C, 4°Ca, 5Fe, 17"Au, and 2°®Pb with 750 MeV and
45°. The calculations of the left panel do not include the final state interaction of the outgoing
nucleons and electron Coulomb distortion. In the right panel, the final state interaction is not

included but electron Coulomb distortion is included.

where M, is the mass of the target nucleus and M4 1 is the mass of the
ground state of the A — 1 nucleus. The point y = 0 corresponds to the peak

of the quasielastic scattering and y < 0 (y > 0) corresponds to the small

(large) w region.
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FIG. 18: The new y'-scaling functions are for the high electron energy F = 1.5 GeV and the

scattering angle # = 30° from several nuclei.

3.9 Parity violation

Our formalism is based on the Born approximation with single photon and
ZY boson exchange by the standard electro-weak theory. In the laboratory
frame, the inclusive cross section, which does not detect the outgoing nucle-

ons, is given by the contraction between lepton and hadron tensor. Since the
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kinematic factor of polarized scattering cross sections are canceled each other,

the asymmetry of the parity violation(PV) electron scattering is written as

follows:
do™ do” W
2o BT W a1
dQpdE;, | dQdE; EM
where the constant Aj is given by
G 2
4, = ¢ (111)

0 27ra\/§’

with the Fermi constant Gy and the fine structure constant «.
The electromagnetic total response function is decomposed into the longi-

tudinal and transverse response functions as follows:
Wern = ULR]%M + UTRgM, (112)

where RL,, = |J%,,|* is the longitudinal response function and RL,, =
| JEs? + |5, % is the transverse response function. The weak current is
the summation of neutral vector current and neutral axial vector current

through Z° boson exchange:

Wpy = Why + Why. (113)
The weak vector current is given by

Wpy = vrRpy + vrRpy, (114)

where the longitudinal and transverse response functions are given by R%,, =

0x 70 T _ Jzx g y* Y ; ;
Jeudne and Rpy = JiyJIvo+ ey dve, respectively. The weak axial vector
current is written as

Wiy = vrRpy. (115)
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. . . . 4
where the transverse response function is contributed in the way REL, =

uJAE . The factors of the electron kinematics are given by

Q' % O O @
UL:?, 7 = tan® 5—!—2—(]2, and UT:tan§ tan? 54—? (116)

where 6. denotes the scattering angle.
The nuclear current is calculated by the Fourier transform of nucleon cur-
rent operator:
JH = / Dy ye T dr, (117)
where J# is a free weak nucleon current operator. For a free nucleon, the
current operator for the electromagnetic interaction is composed of the Dirac

and the Pauli form factors given by
1K
2My

T = F(@Q + Ba(QY) 0™y, (118)

where x represents nucleon magnetic moment.
The current operator of the neutral current reaction consists of the weak

vector and the axial vector form factors given by
1K

Jho = FI (@) + FQV(QQ)MJWQ,,. (119)

By the conservation of the vector current (CVC) hypothesis, the vector form

factors for the proton (neutron), F n)(Qz), are expressed as

1

FZ.V’ p(”)(QQ) = (% — 2sin? 9w> Fp( )(Q ) — %Fin(p)(QQ) - %Fz’s(Qz)’ (120)

where 6y is the Weinberg angle given by sin® fy = 0.2224.
The strange vector form factors are usually given by a dipole form, inde-

pendently of the nucleon isospin,

F7(0)Q?
(1+7)(1+Q*/Mp)*

Fy(Q°) =
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FIG. 19: (Color online) The asymmetry of the parity violation from 2%Pb.

F5(0)
(1 +7)(1+Q*/Mg)*’

where 7 = Q%/(4M%) and My = 0.843 GeV is the cut off mass parameter

F3(Q%) = (121)

usually adopted for nucleon electromagnetic form factors. Fy(0) is defined
as the squared strange radius of the nucleus, FF(0) = — < r? > /6 =
dG5,(Q?)/dQ? g2=o = 0.53 GeV 2, and F5(0) = ps = —0.04 is an anomalous
strange magnetic moment.

The axial vector current operator is given by
Tay = Ga@)'"". (122)
The axial form factors for the neutral current reaction are given by
GA(QY) =+ 1)/ (1+Q*/M3) 123
A(Q)—2(:F9A+9A)/( + Q7 /M3)7, (123)

where g4 = 1.262, My = 1.032 GeV, and ¢ = —0.19, which represent
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the strange quark contents on the nucleon. —(4) coming from the isospin

dependence denotes the knocked-out proton (neutron), respectively.
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IV. The neutrino-nucleus scattering

We start from a weak current on the nucleon level. The weak current, J*,
which takes a /" — A" current form by the standard electro-weak theory,

represents the Fourier transform of the nucleon current density written as
JH = /@ij“wbeiq'rd?’r, (124)

where J# is a free weak nucleon current operator, and 1, and v are wave
functions of the knocked-out and the bound state nucleon, respectively. For
a free nucleon, the current operator comprises the weak vector and the axial
vector form factors

. ) 1

I = (@ + F (QY)57—0"q, + Ga(@ )" + 5—Gp(Q) ¢,

2M N 2M N
(125)

where My denotes the mass of the nucleon. By the conservation of the vec-

tor current (CVC) hypothesis, vector form factors for the proton (neutron),
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FP™(Q2), is expressed as

n 1 : n L _n 1
F @) = (5 - 2o ) 7@ - V@) -

FQ%) = F(Q) - F Q) for the CC (126)

F(Q%), for the NC

where 6y is the Weinberg angle given by sin® @y = 0.2224.
The neutral current (NC) reaction is v(v) + N — V/(¢') + N.
The charged current (CC) reaction is v,(7,) + p(n) = p~ (u*) + n(n).
The strange vector form factors are usually given as a dipole form, inde-

pendently of the nucleon isospin,

s 2\ _ FlsQQ
BV =T eame
F(Q?) = £ (127)

(1+7)(1+Q*/Mg)*
where 7 = Q*/(4M%) and My = 0.843 GeV is the cut off mass param-
eter usually adopted for nucleon electromagnetic form factors. Fj is de-
fined as the squared strange radius of the nucleus, Ff = — < r? > /6 =
dG5,(Q?)/dQ?* g:=0 = 0.53 GeV 2, and F5(0) = us is an anomalous strange
magnetic moment.

The axial form factors are given by

Ca(Q) = 5(Foa+a)/(1+ QM3 for the NC

Ga(Q*) = —ga/(1 +Q*/M3)?%, for the CC  (128)
where g4 = 1.262, My = 1.032 GeV, and ¢% = —0.19, which represents
the strange quark contents on the nucleon. —(4) coming from the isospin
dependence denotes the knocked-out proton (neutron), respectively. The g%

represents the strange quark contents in the nucleon.
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The induced pseudoscalar form factor is parameterized by the Goldberger-

Treimann relation
B 2M N
Q2 +m:

where m, is the pion mass. But the contribution of the pseudoscalar form

Gp(Q?) Ga(Q%), (129)

factor vanishes for the NC reaction because of the negligible final lepton mass
participating in this reaction.
In the laboratory frame, the inclusive cross section, which does not detect

the outgoing v (), is given by the contraction between lepton and hadron

tensor
do MMy ) . -1 _ZW=*
d_Tp — 47T2(27T)—3]\4A / sin 0;d6), / sin 0,d0,pf e
x[vp Ry + vr Ry + hU%R/T], (130)

where 6, denotes the scattering angle of the lepton and h = —1 (h = +1)

corresponds to the helicity of the incident v (). The squared four-momentum

transfer is given by Q? = ¢% — w?

by

= —¢;,. For the NC reaction, o7} is defined

7 Gpcos(0,/2)Ef M2 (131)
M V2r(Q2+ M2) )’
and for the CC reaction

2
WE_ M? (Gpcos(0c)Er M3,
. Ep \ 2m(Q+My) )

(132)

where M, and My are the rest mass of Z-boson and W-boson, respectively.
Oc denotes the Cabibbo angle given by cos? - ~ 0.9749. The recoil factor

free 1S given as
Ea

frec - MA

E q-p
1+ —2 [1— ” 133
Ea p2 ( )
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For the NC reaction, the kinematical coefficients v are given by

o Q 0 o Q"
v =1, vp = tan’ EZ + %, vp = tanal [tan2 El + %} , (134)

and corresponding response functions are expressed as

2

“J . Rp=|JP+| YR Ry =2Im(JJY). (135)

JO— ZJ?
q

Ry =

For the CC reaction, the coefficients v are given by

2

v) =1+ 1—E—é00805,

f
v; = 1+ 1—]\;—;0089;— 2E;2Ef (1%—;) sin’ 6;,
V) = % <1+ 1]E\4—§COSQZ> +E%fl2q’
v = 1—’/1—]\;—50089;—%%;?]0( —]\E4—§> sin? 6},
v = EHq—Ef (1_ 1—%}500501) _E%flff (136)

The corresponding response functions are given by

RY = |J°?,  R;=|JP,  RY =—2Re(J"J™),
Ry = |J*P + Y7, Ry = 2Im(J* V"), (137)

and

v Ry = v} R) + viR; +v)"RY". (138)
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FIG. 20: (Color online) The differential cross sections of the NC v — A scattering from 2C, 4Ca,

56Fe, and 208Pb.
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FIG. 21: (Color online) The differential cross sections of the CC v — A scattering from 2C, 4Ca,

56Fe, and 208Pb.
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FIG. 22: (Color online) The double differential cross sections of the CC v — A scattering in terms
of the kinetic energy and the scattering angle of the outgoing muon. The experimental data were

measured from MiniBooNE.
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FIG. 23: (Color online) The flux integrated double differential cross sections in terms of incident

muon momentum at fixed angle. The experimental data were measured from T2K.

In order to investigate the strangeness, the ratios between the NC and CC

reactions are given by

0(V7 y’p) _ O-JV\?C
o(v,p™p)  otc’

Rycicc =

o1
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FIG. 24: (Color online) The double differential cross sections versus muon transverse momentum

at fixed muon longitudinal momentum. The experimental data were measured from MINERwv.
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FIG. 25: (Color online) The total scaled cross sections of CC v — A scattering in terms of the

incident neutrino energies. The experimental data were measured from MiniBooNE.

_ o(v,v'n)  oXp
R = = 2& 139
NOCC T G(m,tn) T ot (159

Since the CC reaction is independent of isospin and the strangeness, and
other possible effects of the nuclear structure could be cancelled out, these
ratios are useful for probing the strangeness in the nuclei.

We introduce another definition of the ratios by focusing on the nucleon

inside the target nucleus as follows:

! _ (7( 7Vn) _ ONC
NCICC ™ G(v,u7p)  obe
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FIG. 26: (Color online)The ratio of the NC to the CC cross sections of neutrino-nucleus scattering
for 2C as a function of the knocked-out nucleon kinetic energy. For the NC reaction, solid (red)
curves represent the results with g% = —0.19 and ps = —0.4, dashed (black) lines are with g% = 0.0

and ps = —0.4, and dotted (blue) lines are with ¢% = —0.19 and p, = +0.4.

o(v,7'p) _ oxe
O-(ljnu—’_n) a OZ’C.

_§VC/CC = (140)

As another method to measure the effect of the strangeness, we introduce
asymmetries by differences of the v and v scattering cross sections via NC

and CC reactions

AP _ UZV\?C B UZD\%)C (141)
NC/CC T v v
/ 9cc — 9cc
vn vn
n _ Onc — ONC (142)
NC/CcC — ol . — gl
cc cc

Since nominators (denominators) contain only magnetic and axial form fac-

tors with (without) strangeness for a given proton or neutron, it is more
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FIG. 27: (Color online)The ratio of the NC to the CC cross sections of neutrino-nucleus scattering
for 2C as a function of the knocked-out nucleon kinetic energy. For the NC reaction, solid (red)
curves represent the results with g% = —0.19 and ps = —0.4, dashed (black) lines are with g% = 0.0

and ps = —0.4, and dotted (blue) lines are with ¢% = —0.19 and p, = +0.4.

useful for probing the effect of the strange quark contents in nuclei rather

than the previous ratios.

¢ Comparison of structure functions for lepton-nucleus scattering

To extract the structure functions for the neutral-current reaction, the

same method as the electron scattering is used as follows:

o(+h) +o(—h)

— (143)

=v.SL + vrSr,

OMNMp_y p—1 Z, W*
pf

where o denotes the differential cross section and K = 47 T, PlrecOii

denotes the kinematics factor in front of integration in Eq. (130) with the

o4



0.4 T T T T T 0.4

E=500 MeV " E=500 MeV
8 03 | proton / 8 0.3 | neutron ;
S 02t s S 02f s>
oz TTT— — s cZ T T T
01~ - - - - - < 01F 1
O 1 1 1 1 1 O 1 1 1 1 1
0O 100 200 300 0O 100 200 300
Tp (M eV) Tp (M eV)
03 T T T T T 03 T T T T T
E=1 GeV E=1 GeV
g 02f  proton ] g 02 neutron .-
g Br— A g B R M T
o N~ M v c L i
01 - < 0.1
O 1 1 1 1 1 O 1 1 1 1 1
0 250 500 750 0 250 500 750
T, (MeV) T, (MeV)

FIG. 28: (Color online)The ratio of the asymmetries between the NC and CC cross sections of
neutrino-nucleus scattering for '2C as a function of the knocked-out nucleon kinetic energy. For
the NC reaction, solid (red) curves represent the results with g% = —0.19 and ps = —0.4, dashed
(black) lines are with ¢% = 0.0 and ps = —0.4, and dotted (blue) lines are with ¢% = —0.19 and

us = +0.4.

recoil factor f,;} ~ 1. The transverse structure function Sy becomes slope in
term of variable vy and the intercept point is Sy by keeping ¢ and w fixed

because of vy, = 1.
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FIG. 29: (Color online) The solid curves are the results for the electron scattering, the dashed lines

are for the NC neutrino scattering, and the dotted lines are without an axial form factor of the

NC neutrino scattering.
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FIG. 30: (Color online) The solid curves are the results for the electron scattering, the dashed lines

are for the NC neutrino scattering, and the dotted lines are without an axial form factor of the

NC neutrino scattering.

Appendix : Reduced Matrix Elements of Multipole Operators

The following angular matrix elements are needed to evaluate the transi-

tion matrix element. The matrix element for the spin angle function can be

written by

A Wt A KA
(Obe) = [ G040 O ) (14)
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for any operator 0.

The matrix element about a spherical harmonic operator becomes
I{// A T A K A
V) = [ ) YR 6 e
= (jp, LM5' 1) (K1Y || ) (145)

where the double-bar matrix element is called the reduced matrix element.

It is independent on the magnetic quantum numbers and is given by
I(w', k) = (K'Y |R)

_ (1)j+~"'“\/ QJJ&‘,ZLS 1)<j%,LOU'%>. (146)

The other multipole matrix elements with Dirac spinor become

K — K

il YM k) = ——— (&' |[YM |k 147
< N‘ LL| M> [(l)+—1)< M‘ L | M> ( )
"+ k— L
Wil lo Y M k) = K IYM) = g 148
(K'uo YT q|ku) L(2L+1)< Y, | — k) (148)
K +rk+L+1

(Wi Y = kp). (149)

(KW |o Y k) =

V(L+1)(2L+1)

The reduced matrix elements for vetor spherical harmonic operator and

spin operator are given by

/

&l llo Y \lkp) = l] KK 150
Wil Y ) = () (150
"+ k—L
Killlo Y M lkp) = — It (K, —k 151
il Yyl = L, (151
K +rk+L+1
(Wi lo Y llkp) = IL(K, —K). (152)

V(L +1)(2L +1)

In evaluating the transition amplitude, we need the following multiple anal-

ysis relationship;
oy Yl = [ /Y,
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ik T+ k) B
B L(L+1)( Frsfr & 9y )

X <.jb:uba LM’jp,up>IL(K/p, —/ﬁ)b)

(ol Y7 [hy) = / Uy Y 4y dQ,

iRy + Kp) B B
— L(L—}— 1)( fffpgmb gnpfnb)

X (Jopin, LM | jppip) I (Kp, —kp)

W Y = [0, S Y e,
Hb—lip
= ——————=x,Jry T 9x,9x
L(L+1)(fpfb gpg b)

X {Jnptn, LM | jppip) I (Kp, Kp)

(ol Y7 [n) = / LY M, ahydQ,
i

\/m[(ﬁp - ffb)(f/ﬁpglib + g/ﬁpflﬁb)
- L(fnpgmb - g/ipf/ib)]

X (g, LM |ptip) I (Kp, Kp)

<%Wﬁaww=/%wyﬁﬂmm

(4

~ VIRL+ ) [(p = o) (fs 9, = Gy Fis)

— L(f,gpg,{b + gnpfnb)] <jb;ub7 LM‘];D/’LP>

X ]L(KZH /{b)

o8

(153)

(154)

(155)

(156)
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(Wl S, ) = / GUS YY) de,

1
- L(2L+ 1)[('%]?—'_ Kb)(fﬁpfﬁb +gﬁpgl<éb)
- L(flipf/ib - gﬁpgﬁb)]
X Ui, LM iy T2 s —r5) (158)

<¢p‘a‘Y%L+1’¢b> = /pra'Y%Lﬂ%er

= \/(L n 1)(2L n 1) [(/‘fp - /fb)(fﬁpgnb + g/ipflib)

+ (L + 1)(ff€pgf€b - gnpfﬁb)]

X (Jottny LM | jppip) I (kp, Kp) (159)

<¢p’7'Y¥L+1‘¢b> = /%&T’Y'Y%thl%dﬁr

= \/(L n 1)(2L n 1) [(Hp - Hb)(fnpgmb - gfipffib)

+ (L + 1)(ff-@pgf<ab + gmpfﬁb)]

X (Joty, LM | Jppip) IL(Kp, Kb) (160)
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WV =Y | tn) = /pr'VOE'YyL—i—ﬂDber
1
- \/(L T 1)(2L i 1) [(’%P + ’%b) (fmpfmb + gnpgmb)

+ (L + 1)(fﬁpfﬁb - gmpgﬁb)]

X (b, LM | jppip) (s, —Ky). (161)
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