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I. Introduction

1.1 Historical Remarks

• In 1928, Dirac published his famous paper in which the Driac equation

of the relativistic electron was given.

• One year later, Mott gave the theoretical derivation of the cross section

for the relativistic scattering of Dirac particles by point nuclei, known

as the ”Mott formula”.

• The pioneering experimental studies were begun in 1953 by Hofstadter et

al. at the Stanford University Linear Accelerator (SLAC) with electrons

of 116 MeV energy.

• The second phase at the Stanford studied the charge and magnetic mo-

ment distributions of single nucleons by elastic electron scattering.

• The third phase with higher-current is the study of the complex nuclei

up to 600 MeV at Saclay in later 1960’s.

• After that, several accelerators were built such as MIT Bates with 1

GeV energy, JLab, and so on.

• The neutron skin depth was measured by using electron parity violation

off 208Pb and 40,48Ca at JLab.

• Measured the neutrino-proton and antineutrino-proton elastic scattering

at BNL on the middle of 80’s.
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• Measured the neutrino (antineutrino) neutral (charged)-current quasi-

elastic differential cross sections at MiniBooNE from 2010 to 2015 and

then obtained axial massMA = 1.30 GeV and strange quark form factor

∆s = 0.08 at Q2 = 0.

• The axial mass MA = 0.99 GeV was obtained from antineutrino charge-

current reaction on hydrocarbon at MINERνA.

• The axial mass MA = 1.23 GeV was obtained from neutrino charge-

current reaction on iron at MINOS.

• The axial mass MA = 1.26 GeV was obtained from neutrino charge-

current reaction on iron at T2K.

• Recently neutrino charged-current quasi-elastic scattering with monoen-

ergetic muon neutrino at 236 MeV by using kaon-decays-at rest(KDAR:

K+ → µ+ + νµ) at MiniBooNE.
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FIG. 1: Region in terms of energy transfer at fixed three momentum transfer.

1.2 General Features of lepton Scattering

Different electron scattering processes depending on energy transfer ω as

shown in Fig. 1:

• A large peak at ω = 0 produced by elastic scattering from the charge

distribution in the nuclear ground state.

• Peaks due to the excitation of discrete levels below the particle emission

threshold occur as the energy transfer ω increases.

• Overlapping peaks with several MeV width caused by excitation of col-

lective models, so called “giant resonances”.

• The quasi-elastic peak, where a nucleon is directly knocked out of the

nucleus by the electromagnetic field of the passing electrons. The width
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of the peak, which is dependent on kinematics condition, is a conse-

quence of the internal motion of the nucleon inside the nucleus, referred

to ”Fermi motion”.

• Broad peak which corresponds to pion production processes where the

energy transfer is large enough to excite the individual nucleon.
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FIG. 2: Kinematics for the electron-nucleus scattering

II. The Electron Scattering Theory

2.1 The Dirac Equation

The Dirac equation for a single-particle in a spherically symmetric poten-

tial V (r) is given by

{α·p+ βm+ V (r)}Ψ(r) = EΨ(r) (1)

where m is the mass of the particle, α and β are the standard 4×4 Dirac

matrices and Ψ(r) is the four element wave function. The wave function can

be separated into an angle-dependent part and a radial part via a partial

wave expansion.

When there is no potential, the solution has the well known plane wave
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form given by

Ψ(r) =

√
E +m

2E

 I

σ·p
E+mI

 eip·rχs (2)

where I represents a 2×2 unit matrix and σ contains the 2×2 Pauli matrices.

The notation χs with s = ±1
2 is the Pauli two component spinors. For spin- 12 ,

the eigenfunction of total angular momentum J = L + 1
2σ is represented by

the spin angle function:

χµ
κ(r̂) =

∑
m,s

⟨lm, 1
2
s|jµ⟩Y m

l (r̂)χs (3)

where κ = ±(j + 1
2) is an eigenvalue of the operator K = β(σ·L+ 1), and is

given by

κ =

 l for j = l − 1
2

−l − 1 for j = l + 1
2 .

Here, κ takes on all positive and negative integer values except zero. The

κ value specifies both the total angular momentum quantum number j and

the orbital angular momentum quantum number l

l =

 κ for κ > 0

−κ− 1 for κ < 0
(4)

and j = |κ| − 1
2 .

By using the Rayleigh expansion, the exponential in the plane wave be-

comes

eip·r =
∑
l

(i)l(2l + 1)jl(pr)Pl(cosΘ),

where Θ is the angle between p̂ and r̂. Using the addition theorem of the
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spherical harmonics, this becomes

eip·r =
∑
lm

4π(i)ljl(pr)Y
m
l

∗(p̂)Y m
l (r̂). (5)

Multiply Eq. (5) by spinor χs and substitute the spin angle function of Eq. (3)

to obtain

eip·rχs =
∑
lm

4π(i)ljl(pr)Y
m
l

∗(p̂)Y m
l (r̂)χs

=
∑
κ,µ,m

4π(i)ljl(pr)Y
m
l

∗(p̂)⟨lm, 1
2
s|jµ⟩χµ

κ(r̂). (6)

By using Eq. (6), we finally obtain the the partial wave form for the plane

wave

Ψ(r) =

√
E +m

2E

∑
κµ

4π(i)l⟨lµ− s,
1

2
s|jµ⟩ψµ

κ(r), (7)

where

ψµ
κ(r) =

 jl(pr)χ
µ
κ(r̂)

isκp
E+mjl̄(pr)χ

µ
−κ(r̂)

 (8)

and we have introduced l̄ = l(−κ) and defined sκ = sign(κ) = l−l̄. Therefore,

(σ·L+ 1)χµ
κ(r̂) = −κχµ

κ(r̂)

σrχ
µ
κ(r̂) = −χµ

κ(r̂), (9)

where σr = σ·r̂ is a scalar operator so that σrχ
µ
κ belongs to the same j and

µ values.

For any spherically symmetric potential V (r), the radial part of the wave

function can be separated with the angular function and then, the wave

function can be defined by

ψµ
κ(r) = Rκ(r)χ

µ
κ(r̂) (10)
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where the radial function R is written by

Rκ(r) =

 fκ(r)

igκ(r)

 . (11)

The radial equation can be written as

df

dr
= −κ+ 1

r
f(r) + [m+ E − V (r)]g(r)

dg

dr
=

κ− 1

r
g(r) + [m− E + V (r)]f(r). (12)

For a spherically symmetric potential, the wave function has the same

form as the plane wave but one needs the phase shift due to the potential.

The distorted wave functions for the electrons are obtained by solving the

Dirac equation in the presence of the static Coulomb potential of the nuclear

charge distribution. The Coulomb distorted incoming electron wave function

can be written as a summation of the partial waves, for incoming spin si, as

Ψsi
i (r) =

∑
κiµi

Cκiµi
eiδκiψµi

κi
(r). (13)

The outgoing electron wave function for outgoing spin sf is given by

Ψ
sf
f (r) =

∑
κfµf

Cκfµf
e−iδκfψµf

κf
(r). (14)

In Eq. (13) and Eq. (14), ψµ
κ(r) is the electron eigenstate with angular mo-

mentum quantum number κ, µ given by

ψµ
κ(r) =

 fκ(r)χ
µ
κ(r̂)

igκ(r)χ
µ
−κ(r̂)

 (15)

where χµ
κ(r̂) is the same as the Eq. (3) and the radial functions f(r) (or g(r))

are obtained by solving numerically the two coupled Dirac radial equations.
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To satisfy the incoming (or outgoing) boundary condition, we need

Cκµ =

√
E +m

2E
4π(i)l⟨l µ− s ,

1

2
s|jµ⟩Y µ−s

l

∗
(p̂). (16)

δκ is the phase shift for the partial wave, m is the electron mass, and s is the

electron spin projection.

2.2 Phase Shift Analysis for Relativistic Coulomb Wave Functions

In order to evaluate the phase shift of the continuum state wave func-

tions, we solve the radial wave function for a point charge Coulomb potential

(V(r)=-αZr ). The two coulped radial equations for the point Coulomb poten-

tial are

d

dr
f c = −κ+ 1

r
f c + (m+ E +

αZ

r
)gc

d

dr
gc =

κ− 1

r
gc + (m− E +

αZ

r
)f c (17)

where α = e2 = 1
137 is the fine-structure constant and Z is the atomic(charge)

number. The superscript c denotes the point Coulomb potential.

As usual, there are two independent solutions. One is a regular solution

which is finite at the origin, the other is the irregular solution. The solutions

can be written in terms of the Whittaker functions Mλ,µ(z):

f c =

√
E +m

4pE
exp (

πη

2
)
|Γ(ν + 1− iη)|

Γ(2η + 1)
(r−

3
2 )

× Re[exp (−iπ
2
(ν +

1

2
) + iϕ)M−iη+ 1

2 ,ν
(2ipr)] (18)

gc =

√
E −m

4pE
exp (

πη

2
)
|Γ(ν + 1− iη)|

Γ(2η + 1)
(r−

3
2 )

× Im[exp (−iπ
2
(ν +

1

2
) + iϕ)M−iη+ 1

2 ,ν
(2ipr)], (19)
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where Re means the real part of [...] and Im means the imaginary part of

[...]. The constants ν and η are given by

ν = ±
√
κ2 − (αZ)2 (20)

η =
αZE

p
(21)

and the phase ϕ becomes

e2iϕ = −
κ+ iηm

E

ν + iη
. (22)

The Whittaker function for r→0 becomes

Mλ,µ(z)≈e−
z
2zν+

1
2 . (23)

The asymptotic form at r→∞ is given by

f c≈

√
E +M

4pE
(
1

r
) cos [pr − (l + 1)

π

2
+ ηln (2pr) + δcκ] (24)

gc≈−

√
E −M

4pE
(
1

r
) sin [pr − (l + 1)

π

2
+ ηln (2pr) + δcκ]. (25)

The regular solution needs the positive value ν > 0 and the irregular solutions

needs the negative value ν < 0.

In the asymptotic region, the radial wave functions in the presence of a

short range additional potential can be written in terms of a linear combi-

nation of the regular and the irregular solutions for point charge Coulomb

functions

f = Af cR +Bf cI

g = AgcR +BgcI , (26)
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where the subscript R (or I) denotes the regular (or irregular) solution. The

solutions have the following asymptotic forms as r→∞

f≈

√
E +M

4pE
(
1

r
) cos [pr − (l + 1)

π

2
+ ηln (2pr) + δcκ + δκ] (27)

g≈−

√
E −M

4pE
(
1

r
) sin [pr − (l + 1)

π

2
+ ηln (2pr) + δcκ + δκ]. (28)

The coefficients A and B and the additional phase δκ are given by

A =
f cIg − gcIf

f cIg
c
R − f cRg

c
I

(29)

B =
gcRf − f cRg

f cIg
c
R − f cRg

c
I

(30)

and

tan δκ =
sin θ

A
B + cos θ

(31)

where

θ = δcκ,I − δcκ,R.

The phase difference θ between the regular and irregular point Coulomb

function must be nonzero and gives imprecise values of δκ if θ is too small.

For me→0, the radial functions become

f−κ = gκ , g−κ = fκ,

and the phase shift is

δ−κ = δκ.

We found the regular and the irregular Coulomb wave functions for the nega-

tively charged particle in the Coulomb field. For a positively charged particle

12



such as a proton, the Coulomb wave functions can be obtained by changing

the sign of the charge value Z.

2.3 Relativistic Nucleon Wave Functions

The most general time-independent local Dirac equation containing the

five Lorentz-covariant interaction of Dirac theory can be written as

{α·p+ β[m+ US(r) + γµU
µ
V (r) + γ5UPS(r)

+γµγ5UPV (r) + σµνU
µν
T (r)]}Ψ(r) = EΨ(r) (32)

where α, β, γµ, γ5 and σµν are the 4×4 Dirac matrices. The potential

subscripts S, V , PS, PV and T represent scalar, vector, pseudoscalar, pseu-

dovector and tensor, respectively. The requirement that the parity and the

angular momentum operators commute with each term of the Hamiltonian

in Eq. (32) introduces simplifying restrictions upon the interactions, e.g.,

UPS(r) and UPV (r) become zero. By applying these restrictions to the scalar

term in the Hamiltonian, the function US(r) is independent of angle. The

contraction of vector potential and tensor potential can be expressed as

γµU
µ
V (r) = γ0U

0
V (r)− γ·UV (r) = γ0U

0
V (r)− γrU r

V (r)

σµνU
µν
T (r) = −γ0γ·UT (r) = −γ0γrU r

T (r).

The Eq. (32) becomes

{α·p+β[m+US(r)+γ0U
0
V (r)−γrU r

V (r)−γ0γrU r
T (r)]}Ψ(r) = EΨ(r). (33)

The scalar and zeroth term of the vector potential must be rotationally in-

variant and thus every term become only a function of the magnitude of
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the variable r. For local and time-independent interactions, hermiticity and

time reversal invariance require U r
T (r) to be pure imaginary. However, since

hermiticity requires U r
V (r) to be real while time reversal invariance requires

it to be imaginary it vanishes. One must choose appropriate scalar and vec-

tor potentials that provide the dominant central and spin orbit interactions

to obtain elastic scattering observables. These are referred to as the scalar

potential US(r) = S(r), the vector potential UV (r) = V (r), and is called the

S-V model. Experiment requires that the potentials be large, several hun-

dred MeV in strength, with the scalar attractive and the vector repulsive. By

an extensive fitting to the experimental data the S-V model is recommended

over the others. The single particle wavefunction of good angular momentum

J2, Jz, parity P and time reversal symmetry T in Eq. (33) has the following

form

Ψ(r) =

 fκ(r)χ
µ
κ(r̂)

igκ(r)χ
µ
−κ(r̂)

 . (34)

The coupled radial differential equations can be written by

dfκ
dr

= −κ+ 1

r
fκ(r) + [m+ E + S(r)− V (r)]gκ

dgκ
dr

=
κ− 1

r
gκ(r) + [m− E + S(r) + V (r)]fκ(r). (35)

We can obtain the radial functions fκ(r) and gκ(r) by solving the two differ-

ential equations numerically. Fig. 3 shows that the radial wave function for

3s1/2 state of 208Pb as an example.

Using the global optical potential, obtained from fitting elastic proton

scattering data, the knocked-out proton can be described by scalar and vector

potentials similar to the bound state potentials except that they contain an

imaginary part to describe loss of flux from the elastic channel. The wave
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FIG. 3: Relativistic 3s1/2 wave function in 208Pb. The solid line is fκ and the dash line is gκ.

function for the outgoing nucleon has the same structure as the outgoing

electron wave function (14):

Ψp(r) =
∑
κpµp

Cκpµp
e−iδ∗κpψµp

κp
(r) (36)

where ψ
µp
κp (r) and Cκpµp

are given by

ψµp
κp
(r) =

 f ∗κp
(r)χ

µp
κp(r̂)

g∗κp
(r)χ

µp

−κp
(r̂)


and

Cκpµp
=

√
Ep +M

2Ep
4π(i)lp⟨lpµp − s

1

2
s|jpµp⟩Y

µp−s
lp

∗
(p̂)

and the ∗ denotes the complex conjugate.
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III. The Quasi-elastic Electron Scattering

In our calculation, we make the following assumptions:

• The incoming and outgoing electrons are described by distorted wave

function due to the nuclear static Coulomb potential of the target.

• The virtual photon emitted by the electron is absorbed by a single nu-

cleon.

• The ejected nucleon interacts with the residual nucleus through a rela-

tivistic optical potential.

• The target nucleus is described by a relativistic independent particle

model with the scalar and vector average potentials being determined

in the Hartree approximation of the σ − ω model.

There are two processes: One is called the exclusive (e, e′p) reaction by

detecting simultaneously the final electron and the knocked-out nucleon. The

other one is called the inclusive (e, e′) reaction by detecting only the final

electron.

3.1 Plane Wave Born Approximation (PWBA)

In PWBA, both the incoming and outgoing electrons are described by

the plane wave solutions of the Dirac equation. The well-known transition

matrix element from electrodynamics is given by

Hi =

∫
JµA

µd3r (37)

16



p

p

p

Z

X

Y

A
( , q )

φ

θ
θ

ω
i

f

p

p

e

FIG. 4: Coordinate system.

where Jµ is the nuclear transition current and Aµ is the four potential gen-

erated by the electron current.

In the Lorentz gauge, the electron potential can be expressed in terms of

the retarded Green function G(r′, r) as

Aµ(r) =

∫
jµ(re)G(re, r)dre, (38)

where

G(re, r) =
eiω|re−r|

|re − r|
.

with the electron position vector re, the nuclear position vector r, and the

energy loss ω. The electron current is given by

jµ = ψ̄f(re)γ
µψi(re). (39)

The electron four potential becomes the Möller potential:

Aµ(r) =
4πe

q2 − ω2
eiq·rū(pf)γ

µu(pi)

= eiq·raµ, (40)
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where aµ = 4πe
q2−ω2 ū(pf)γ

µu(pi) and the three momentum transfer q = pi−pf .

In terms of the Möller-type potential, the transition matrix element can be

written as

Hi = aµNµ (41)

where the nuclear form factors can be defined in terms of the nuclear current

density by

Nµ =

∫
Jµ(r)e

iq·rd3r. (42)

The nucleon transition current is given by

Jµ(r) = eψ̄pĴµψb (43)

where Ĵµ is the nucleon current operator and ψb and ψp are the bound and

continuum single particle wave function.

In PWBA, the nuclear form factor is just the Fourier transform of the

current. The cross section for (e, e′p) process can be written as

d3σ

dEfdΩfdΩp
=

1

2

2π

Iin
ρeρp

∑
sisfspµb

1

2jb + 1
|Hi|2 (44)

where Iin is the incoming electron flux given by pin/Ein. The si and sf denote

the initial and the final electron spin, and sp and µb are the outgoing and

the bound nucleon spin projections. The density of states ρe and ρp have the

same form for outgoing electrons and nucleons and are given by the Fermi

phase space as

dp = ρdEdΩ

ρ =
pE

(2π)3
(45)

where p and E are outgoing electron (nucleon) momentum and energy.
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3.2 The Matrix element

In order to calculate the matrix element, we need to know the nucleon

transition current which is given by

Jµ(r) = eψ̄pĴµψb (46)

where Ĵµ is the nucleon current operator. For a free nucleon, the operator

consists of two parts, namely, the Dirac contribution and the contribution of

the anomalous magnetic moment µT :

Ĵµ = F1γ
µ + F2

iµT
2mN

σµνqν. (47)

The charge density (zero component) and the three vector current are given

by

Ĵ0 = F1γ
0 +

µT
2mN

F2α·q (48)

Ĵ = F1γ +
µT
2mN

F2q
0α+

iµT
2mN

F2Σ×q (49)

where µT is the nucleon anomalous magnetic moment (for proton µT = 1.793

and for neutron µT = −1.91). Note q0 = ω and q is an operator in con-

figuration space. The nuclear form factors F1 and F2 are evaluated at four

momentum transfer qµ. They are related to the electric and magnetic form

factors GE and GM by

GE = F1 +
µT q

2
µ

4M 2
F2 (50)

GM = F1 + µTF2. (51)

We choose the standard result:

GE = GM/(µT + 1) = (1− q2µ/0.71)
−2 (52)
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where in this formula qµ is in units of GeV. By using this current operator,

the Fourier transform of the nucleon current density Eq. (42) can be written

as

Nµ =

∫
Jµ(r)e

iq·rd3r. (53)

If we choose a well-defined q, the longitudinal and transverse parts of the

three vector current are defined by the following relations:

JL = J·q̂ (54)

JT = q̂×(J×q̂) (55)

with

J = JL + JT. (56)

The current conservation for the nucleon and electron becomes qµJµ = qµa
µ =

0. Using these relations, the transition matrix element becomes

Hi =

∫
(a0J0 − a·J)eiq·rd3r

=

∫
[(1− ω2

q2
)a0J0 − a·J]eiq·rd3r (57)

and we can define the modified Fourier transform of the nucleon current

density as a four vector in Eq. (53);

Nµ = (N0, Nx, Ny, 0) = (N0, N1, N2, 0) (58)

where

N0 =

∫
−
q2µ
q2
J0e

iq·rd3r (59)

Nx =

∫
Jxe

iq·rd3r (60)

Ny =

∫
Jye

iq·rd3r. (61)
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The cross section can be separated into the electron and nuclear com-

ponents by defining an electron tensor (lepton tensor) in the conventional

manner;

ηµν =
∑
sisf

[ū(pf)γ
µu(pi)]

∗[ū(pf)γ
νu(pi)] (62)

and a nuclear tensor (hadronic tensor);

Wµν =
∑
spµb

N ∗
µNν. (63)

By using the relations, the cross section for (e, e′p) reaction becomes

d3σ

dEfdΩfdΩp
=

1

2

2π

Iin
ρeρp

1

2jb + 1

∑
sisfsPµb

|Hi|2

=
1

2

2π

Iin
ρeρp

1

2jb + 1

∑
sisfsPµb

(4πα)2

q4µ
|ū(pf)γµNµu(pi)|2

=
1

2

2π

Iin
ρeρp

1

2jb + 1

(4πα)2

q4µ

∑
sisfsPµb

ηµνWµν. (64)

♦ Non-relativistic transition operator

Transition current operator is given by

Jµ(q) = (ρ(q), J(q)).

The charge and the vector parts are the Fourier transform of transition

current:

ρ(q) =

∫
dreiq·r⟨f |ρ̂(r)|i⟩,

J(q) =

∫
dreiq·r⟨f |Ĵ(r)|i⟩
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where the operators are given by

ρ̂(r) =
∑
i

eiδ(r − ri),

Ĵ(r) = ĴN(r) + ∇⃗ × µ̂N(r)

with

ei =
1

2
(1 + τ3(i)),

ĴN(r) =
∑
i

eiδ(r − ri)
∇⃗
iM

,

µ̂N(r) =
∑
i

µi
σi
2M

δ(r − ri),

µi =
µp + µn

2
− −µp + µn

2
τ3.

Expand the partial wave

ρ̂(r) = 4π
∑
JM

Y ∗
JM(Ωq)⟨f |M̂ c

JM |i⟩,

Ĵλ(r) = −
√
2π
∑
J≥1

Ĵ⟨f |T̂E
Jλ + λT̂M

Jλ|i⟩

The c, E, and M denot the Coulomb, electric, and magnetic transitions

given by

M̂ c
JM =

∫
d3r jJ(qr)i

JYJM(Ω)ρ̂(r),

T̂E
Jλ =

1

q

∫
d3r ∇⃗ × [jJ(qr)i

JY λ
JJ1] · Ĵ(r),

T̂M
Jλ =

∫
d3r jJ(qr)i

JY λ
JJ1 · Ĵ(r).

The operator Ĵ is substituted into the above equation.

T̂E
Jλ =

1

q

∫
d3r {[∇⃗ × jJ(qr)i

JY λ
JJ1] · ĴN + [q2jJ(qr)i

JyλJJ1] · µ̂N},

T̂M
Jλ =

∫
d3r {[∇⃗ × jJ(qr)i

JY λ
JJ1] · µ̂N + [jJ(qr)i

JyλJJ1] · ĴN}.
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3.3 Inclusion of Electron Coulomb Distortion

Under the electron Coulomb distortion, the Rosenbluth in Eq. (64) is not

valid any more and we need the multipole expansion. For the scalar terms,

the Green function can be expanded as follows:

G(r, r′) =
eiω|r−r′|

|r− r′|
= 4πiω

∑
LM

jL(ωr<)hL(ωr>)Y
M
L (r̂)Y M

L
∗
(r̂′). (65)

For the vector current terms, one can expand the Green function with the

Dyadic I in vector spherical harmonics:

↔
G(r, r′) = I

↔
G(r, r′)

= 4πiω
∑
JLM

jL(ωr<)hL(ωr>)Y
M
JL(r̂)Y

M
JL

∗
(r̂′), (66)

where jL and hL denote the spherical Bessel and Hankel functions, respec-

tively. The vector spherical harmonic function is defined as

YM
JL(r̂) =

∑
µ

⟨LM − µ, 1µ|JM⟩Y M−µ
L (r̂)ξ̂. (67)

In terms of these definitions, the transition matrix element is written as:

Hi = −4πiω
∑
LM

{
∫ ∞

0

ρeY M
L

∗
(r̂)[hL(ωr)

∫ r

0

ρNjL(ωr
′)Y M

L (r̂′)d3r′

+ jL(ωr)

∫ ∞

r

ρNhL(ωr
′)Y M

L (r̂′)d3r′]d3r

−
∑
J

∫ ∞

0

j·YM
LJ

∗
(r̂)[hJ(ωr)

∫ r

0

J·YM
LJ(r̂

′)jJ(ωr
′)d3r′

+ jJ(ωr)

∫ ∞

r

J·YM
LJ(r̂

′)hJ(ωr
′)d3r′]d3r}. (68)

The scalar part of the nucleon current is given by∫
ψ̄pĴ0ψbjL(ωr)Y

M
L (r̂)dΩ = ⟨Jbµb, LM |Jpµp⟩IL(κp, κb)KN

S (r), (69)
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where the radial integration KS(r) can be written as

KN
S (r) = F1(fκp

fκb
+ gκp

gκb
)jL(ωr) +

F2µTω

2M

1

2L+ 1

× [(fκp
gκb

+ gκp
fκb

)((L+ 1)jL+1(ωr)− LJL−1(ωr))

+ (κp − κb)(fκp
gκb

− gκp
fκb

)(jL+1(ωr) + jL−1(ωr))]. (70)

The vector terms become∫
ψ̄pĴψbjL(ωr)·YM

L L(r̂)dΩ = ⟨Jbµb, LM |Jpµp⟩IL(−κp, κb)

× KN
V (r, L) (71)∫

ψ̄pĴψbjL(ωr)·YM
L L−1(r̂)dΩ = ⟨Jbµb, LM |Jpµp⟩IL(κp, κb)

× KN
V (r, L− 1) (72)∫

ψ̄pĴψbjL(ωr)·YM
L L+1(r̂)dΩ = ⟨Jbµb, LM |Jpµp⟩IL(κp, κb)

× KN
V (r, L+ 1), (73)

where the KV ’s are defined in the following way:

KN
V (r, L) =

−i√
L(L+ 1)

{jL(ωr)(κp + κb)[F1(fκp
gκb

+ gκp
fκb

)

+
F2µTω

2M
(fκp

gκb
− gκp

fκb
)] +

µTω

2M

F2

2L+ 1
[(κp + κb)

× (fκp
gκb

+ gκp
fκb

)(LjL+1(ωr)− (L+ 1)jL−1(ωr))

+ L(L+ 1)(fκp
gκb

− gκp
fκb

)(jL+1(ωr) + jL−1(ωr))]} (74)

KN
V (r, L− 1) =

i√
L(2L+ 1)

{jL−1(ωr)[(F1(κp − κb)− L
F2µTω

2M
)

× (fκp
gκb

+ gκp
fκb

) + ((κp − κb)
F2µTω

2M
− LF1)(fκp

gκb
− gκp

fκb
)]

+
F2µTω

2M
(κp − κb)jL(ωr)(fκp

fκb
+ gκp

gκb
)} (75)
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KN
V (r, L+ 1) =

i√
(L+ 1)(2L+ 1)

{jL+1(ωr)[(F1(κp − κb)

+ (L+ 1)
F2µTω

2M
)(fκp

gκb
+ gκp

fκb
) + ((κp − κb)

F2µTω

2M

+ (L+ 1)F1)(fκp
gκb

− gκp
fκb

)]− F2µTω

2M
(κp − κb)jL(ωr)

× (fκp
fκb

+ gκp
gκb

)} (76)

In the same way, the corresponding integrals for the electron part are given

by ∫
ψ̄f ĵ0ψijL(ωr)Y

M
L

∗
(r̂)dΩ = (−1)M⟨Jiµi, L−M |Jfµf⟩IL(κf , κi)

× KE
S (r), (77)

and ∫
ψ̄f ĵψijL(ωr)·YM

L J
∗
(r̂)dΩ = ⟨Jiµi, L−M |Jfµf⟩IL(−κf , κi)

× (−1)L+J+M+1KE
V (r, J), (78)

where J represents L, L+ 1, and L− 1.

In our analysis we are looking at one particular shell, and trying to find

the reduced cross section ρm , which for plane waves in the final state is

related to the probability that a bound proton from a given shell with the

missing momentum pm can be knocked out of the nucleus with asymptotic

momentum p. The reduced cross section as a function of pm is commonly

defined by

ρm(pm) =
1

pEpσep

d3σ

dEfdΩfdΩp
, (79)

where σep denotes the off-shell electron-proton cross section.
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FIG. 5: Reduced cross sections for 208Pb(e, e′p) from the 3s1/2 shell with parallel kinematics. The

kinematics are E=412 MeV, and proton kinetic energy T=100 MeV. The dotted line is the PWBA

result and the dash-dotted line, the solid line is the approximate DWBA result, and the diamonds

are data from NIKHEF.

3.4 Rosenbluth Separation

In the extreme relativistic limit (me = 0), the sum over labels of the

electron tensor can be explicitly carried out using the spin projection operator

for the initial electron and the Trace Theorem:

ηµν =
∑
sisf

[ū(pf)γ
µu(pi)]

∗[ū(pf)γ
νu(pi)] =

1

8
Tr[ ̸ pfγµ(1 + hγ5) ̸ piγν]

=
1

2pipf
[pµi p

ν
f + pνi p

µ
f − gµν(EiEf − pi·pf) + ihϵµνδλpf δpiλ] (80)

where h is +1 for positive electron helicity and −1 for negative electron

helicity.

The first three terms of the electron tensor in Eq. (80) are symmetric with

respect to interchanging µ and ν, and independent of the electron helicity.

However, the last term is antisymmetric for µ and ν, and depends on the

electron helicity h. Therefore, the electron tensor can be written as the
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summation of a symmetric and an antisymmetric tensor:

ηµν = ηµνS + ηµνA . (81)

The general form of a nuclear tensor Wµν can be constructed with the energy

momentum four vectors qµ, pµ, and pµb using four momentum conservation,

and electromagnetic current conservation requires qµWµν = qνWνµ = 0. Thus,

the nuclear tensor can be written as

Wµν = W1gµν +W2pbµpbν +W3pµpν

+ W4(pbµpν + pbνpµ) +W5(pbµpν − pbνpµ). (82)

The constraints were satisfied by constructingWµν from a complete set of four

vectors and second rank tensors. Each coefficient W1–W5 depends only on

Lorentz scalars involving the momentum transfer and the hadron momenta.

This nuclear tensor, just as the electron tensor, consists of a symmetric and

an antisymmetric part in the labels µ ν. The first four terms of the nuclear

tensor are symmetric and the last term is antisymmetric under interchanging

µ and ν:

Wµν = W S
µν +WA

µν. (83)

Since the contraction of a symmetric and an antisymmetric tensor yields zero,

the contraction of the electron and nuclear tensor can be written as

ηµνWµν = ηµνS W
S
µν + ηµνA W

A
µν. (84)

By using the contraction of electron and nuclear tensors, the cross section

for electron scattering from a unpolarized target is given by

d3σ

dEfdΩfdΩp
=

1

2

2π

Iin
ρeρp

1

2jb + 1

(4πα)2

q4µ
(ηµνs W

S
µν + ηµνA W

A
µν)
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=
pEp

(2π)3
σM [

q4µ
q4
RL + (tan2

θe
2
−

q2µ
2q2

)RT −
q2µ
2q2

cos 2ϕpRTT

−
q2µ
q2
(tan2

θe
2
−
q2µ
q2
)1/2cosϕpRLT − h

q2µ
q2
tan

θe
2
sinϕpRLT ′],(85)

where

RL(q, ω) =
q4

q4µ
W00, RT (q, ω) = W11 +W22

cos 2ϕPRTT (q, ω) = W11 −W22, cosϕPRLT (q, ω) = −q
2

q2µ
(W01 +W10)

sinϕPRLT ′(q, ω) = −iq
2

q2µ
(W02 +W20).

σM denotes the Mott cross section given by σM = ( α
2E )

2 cos
2 θe

2

sin4 θe
2

.

The reduced cross section ρm is introduced, which is related to the proba-

bility that a bound nucleon from a given orbit with the missing momentum

pm can be knocked out of the nucleus with asymptotic momentum p. The

reduced cross section as a function of pm is commonly defined by

ρm(pm) =
1

pEpσep

d3σ

dEfdΩfdΩp
, (86)

where the missing momentum is determined by the kinematics, pm = p− q.

The off-shell electron-proton cross section, σep, is not uniquely defined but

we use the form σcc1ep .

There are two kinds of experimental kinematics, parallel and perpendicular

kinematics. In the perpendicular kinematics, the polar angle of the knocked-

out proton is measured with respect of the momentum transfer where the

magnitude of p is fixed at |p| = |q|, and in the parallel kinematics, the

magnitude of the missing momentum pm changes at which p is parallel to q.

In the parallel kinematics, the three interference terms in Eq. (85) disappear
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FIG. 6: The left panel is the parallel kinematics and the right is the perpendicular kinematics.

FIG. 7: The cross sections in parallel kinematics from the 3s1/2 orbit of 208Pb target as a function

of the missing momentum. The incident electron energy is 412 MeV, the proton kinetic energy is

100 MeV, and the data are from NIKHEF.

due to integrating over the azimuthal angle ϕp, while all terms remain in

the perpendicular kinematics except the fifth term which sums to zero for

unpolarized incident electron beam.

3.5 Response Function and Asymmetry

The cross section is given by

d3σ

dEfdΩfdΩp
=

pEp

(2π)3
σM [vLRL + vTRT − vTT cos 2ϕpRTT

− vLT cosϕpRLT − hvLT ′sinϕpRLT ′].

The fourth response function could be obtained by subtracting the cross

sections at azimuthal angles of the outgoing proton ϕp = 0 and ϕp = π and
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FIG. 8: The cross sections in perpendicular kinematics from the p1/2 and p3/2 orbits of 16O targets

as a function of the missing momentum. The incident electron energy is 2441.6 MeV, the proton

kinetic energy is 427 MeV, and the data are from Jlab.

keeping the other electron and outgoing proton kinematics variables fixed.

The fourth response function is a function of the missing momentum given

by

RLT =
σR − σL

2KvLT
, (87)

where L (left) and R (right) indicate the left side at ϕp = 0 and the right

side at ϕp = π of the cross section, respectively. The kinematics factor K is

K = (pEpσM)/(2π3). Of course, this fourth response function can be directly

calculated in the PWBA.

If the incident electron beam is polarized, helicity h=1, one can obtain the

fifth response function by subtracting the down part (−π < ϕp < 0) from the

up part (0 < ϕp < π) of the cross section with respect to the scattering plane,

while all other kinematics variables are kept the same. The fifth structure
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FIG. 9: The fourth response functions from the p1/2 and p3/2 orbits of 16O as a function of the

missing momentum. The solid lines are the extracted fourth functions for the DWBA results, the

dotted lines are the PWBA results, and the diamonds are data from Jlab.

function can be written as

RLT ′ =
σU − σD

2KvLT ′sinϕp
, (88)

where U and D indicate the “up” and “down” part of the cross section,

respectively. This clearly describes the “up-down” asymmetry of the cross

section with respect to the scattering plane.

We also calculate another left-right asymmetry, ALT , defined as

ALT =
σR − σL

σR + σL
. (89)

In this case, the kinematics is the same as for the fourth structure function

in eq. (87).

On the other hand, by adding the left side and the right side of the cross
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FIG. 10: The fifth response functions from the p1/2 and p3/2 orbits of 16O as a function of the

missing momentum. The azimuthal angle of knocked-out proton is ϕp = 400

FIG. 11: The asymmetry for the 16O target.

section, one can obtain the second response function as

σL + σR

2K
= RT + x(θ)(RL +

vTT
vL

RTT ), (90)

where x(θ) = vL
vT

is a function of the electron scattering angle θ.
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FIG. 12: The transverse response functions from the p1/2 and p3/2 orbits of 16O as a function of

the missing momentum.

FIG. 13: The RL + vTT
vL

RTT response functions from the p1/2 and p3/2 orbits of 16O as a function

of the missing momentum.

3.6 Inclusive (e, e′) reaction

The cross section for the (e, e′p) reaction is written as

d3σ

dEfdΩfdΩp
=

pEp

(2π)3
σM [vLRL + vTRT − vTT cos 2ϕpRTT

− vLT cosϕpRLT − hvLT ′sinϕpRLT ′].
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In inclusive processes, the ejected nucleons are not observed, whereas they

are observed in the exclusive processes. The cross section in the (e, e′) reac-

tion can be calculated by integrating over the ejected nucleon angle dΩp and

summing over all the possible channels for the excited nuclear system. We

consider the PWBA calculation with the partial wave expansion. The ex-

plicit form for the nuclear form factors N0 and NT in the PWBA are defined

as the Fourier transforms of the nuclear transition current;

N0 =

∫
J0(r)e

iq·rd3r (91)

NT =

∫
JT(r)e

iq·rd3r

=
∑
λ=±1

ξ̂∗λ

∫
J(r)·ξ̂λeiq·rd3r (92)

where q is an asymptotic momentum transfer along the ẑ-direction and JT =

J+ξ̂
∗
+ + J−ξ̂

∗
− in the spherical coordinate, which is given by ξ̂0 = ẑ, ξ̂±1 =

∓ 1√
2
(x̂ ± iŷ). By using the partial wave expansion, we can easily get the

longitudinal term in the form;

N0 =
√
4π

∑
κpµpmp

∑
LM

√
2L+ 1⟨lpmp,

1

2
sp|jpµp⟩Y

mp

lp

∗
(p̂)e−iδ∗κp

⟨jbµb, LM |jpµp⟩Rκpκb
(q;L). (93)

The transverse term can be written in spherical coordinates

NT = N+ξ̂
∗
+ +N−ξ̂

∗
− (94)

where

N+ =
√
2π

∑
κpµpmp

∑
LM

√
2L+ 1⟨lpmp,

1

2
sp|jpµp⟩Y

mp

lp

∗
(P̂ )e−iδ∗κp

⟨jbµb, LM |jpµp⟩[Rκpκb
(q;M) + Rκpκb

(q;E)] (95)
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N− = −
√
2π

∑
κpµpmp

∑
LM

√
2L+ 1⟨lpmp,

1

2
sp|jpµp⟩Y

mp

lp

∗
(p̂)e−iδ∗κp

⟨jbµb, LM |jpµp⟩[Rκpκb
(q;M)−Rκpκb

(q;E)]. (96)

The label L, M and E denote the longitudinal, magnetic and electric terms.

By using the Dirac multipole operator matrix element given in the Appendix,

we have each term explicitly;

Rκppκb
(q;L) = (4π)

√
Ep +M

2Ep

√
Eb +M

2Eb
(i)lp+LIL(κp, κb)∫

drr2{F1(f
∗
κp
fκb

+ g∗κp
gκb

)jL(qr) +
µTF2q

2M(2L+ 1)

[(−LjL−1(qr) + (L+ 1)jL+1(qr))(f
∗
κp
gκb

+ g∗κp
fκb

)

+(κp − κb)(jL−1(qr) + jL+1(qr))(f
∗
κp
gκb

− g∗κp
fκb

)]} (97)

Rκpκb
(q;M) = (4π)

√
Ep +M

2Ep

√
Eb +M

2Eb

(i)lp+L+1√
L(L+ 1)

IL(κp,−κb)∫
drr2{F1(κp + κb)(f

∗
κp
gκb

+ g∗κp
fκb

)jL(qr)

+
µTF2ω

2M
(κp + κb)(f

∗
κp
gκb

− g∗κp
fκb

)jL(qr)

+
µTF2ω

2M(2L+ 1)
[L(L+ 1)(f ∗κp

fκb
− g∗κp

gκb
)

(jL−1(qr) + jL+1(qr)) + (κp + κb)

(LjL+1(qr)− (L+ 1)jL−1(qr))(f
∗
κp
fκb

+ g∗κp
gκb

)]} (98)

Rκpκb
(q;E) = (4π)

√
Ep +M

2Ep

√
Eb +M

2Eb

(i)lp+LIL(κp, κb)

(2L+ 1)
√
L(L+ 1)∫

drr2{F1[(κp − κb)(f
∗
κp
gκb

+ g∗κp
fκb

)(LjL+1(qr)− (L+ 1)

jL−1(qr)) + L(L+ 1)(f ∗κp
gκb

− g∗κP
fκb

)(jL−1(qr) + jL+1(qr))]
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+
µTF2ω

2M
[L(L+ 1)(f ∗κp

gκb
+ g∗κp

fκb
)(jL−1(qr) + jL+1(qr))

+(κp − κb)(f
∗
κp
gκb

+ g∗κp
fκb

)(Lj+−1(qr)− (L+ 1)jL−1(qr))]

−µTF2q

2M
(2L+ 1)(κp − κb)jL(qr)(f

∗
κp
fκb

+ g∗κp
gκb

)}. (99)

In the (e, e′) process, the longitudinal and the transverse structure functions

remain after integrating the cross section in Eq. (85) over the solid angle

dΩP of the ejected nucleon. We sum over all quantum numbers and use the

following orthogonalities;∫
dΩpY

mp

lp

∗
(p̂)Y

m′
p

l′p
(p̂) = δlpl′pδmpm′

p∑
mpsp

⟨lpmp,
1

2
sp|jpµp⟩⟨lpmp,

1

2
sp|j′pµ′p⟩ = δjpj′pδµpµ′

p∑
µpµb

⟨jbµb, LM |jpµp⟩⟨jbµb, L′M ′|jpµp⟩ =
2jp + 1

2L+ 1
δLL′δMM ′.

Finally, the longitudinal and the transverse structure functions become

Rin
L =

∫
ρpRLdΩp =

ρp
2(2jb + 1)

∑
µbsp

∫
|N0|2dΩp

=
4πρp

2(2jb + 1)

∑
κPLM

(2jp + 1)e2Im(δκp)|Rκpκb
(q;L)|2 (100)

Rin
T =

∫
ρpRTdΩp =

ρp
2(2jb + 1)

∑
µbsp

∫
(|N+|2 + |N−|2)dΩp

=
4πρp

2(2jb + 1)

∑
κpLM

(2jp + 1)e2Im(δκp)(|RκPκb
(q;M)|2

+ |Rκpκb
(q;E)|2) (101)

where Im(δκP
) is the imaginary part of the phase shift for the ejected nucle-

ons. In terms of the structure functions, the cross section in (e, e′) reaction
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FIG. 14: The comparison with Slac data for 12C, 56Fe.

is given by

d2σ

dEfdΩf
= σM [

q4µ
q4
Rin

L (q, ω) + (tan2
θe
2
−

q2µ
2q2

)Rin
T (q, ω)] (102)

where qµ is the four momentum transfer and σM is the Mott cross section.

The structure functions depend only on the momentum transfer and the

energy transfer.

3.7 Coulomb sum rule

From the measured cross section in Eq. (102), the total structure function

is defined as

Stot(q, ω, θ) =

(
ϵ(θ)

σM

)(
q4

Q4

)
d2σ

dΩfdω
, (103)

where the ϵ(θ) is the virtual photon polarization given by (1 + 2q2

Q2 tan
2 θe

2 )
−1

and the four momentum transfer squared is Q2 = ω2 − q2 = −q2µ.

Therefore, the total structure function in Eq. (103) becomes

Stot(q, ω, θ) = ϵ(θ)Rin
L (q, ω) +

(
q2

2Q2

)
Rin

T (q, ω). (104)
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Stot is described as a straight line in terms of the independent variable ϵ(θ)

with slope RL(q, ω) and intercept proportional to RT (q, ω) by keeping the

momentum transfer q and the energy transfer ω fixed.

The Coulomb sum rule (CSR) is defined as the integration of the total

longitudinal structure function in Eq. (104) for inclusive (e, e′) reaction

C(q) =
1

Z

∫ ∞

ωmin

Rin
L (q, ω)

G̃2
E(Q

2)
dω, (105)

with the electric form factor given by

G̃2
E(Q

2) =

[
G2

Ep(Q
2) +

N

Z
G2

En(Q
2)

]
(1 + τ)

(1 + 2τ)
, (106)

where Z and N are number of protons and neutrons of the target, respec-

tively. The last factor corresponds to the relativistic correction factor, in

which τ is given by τ = Q2/4M 2
N with the nucleon mass MN .
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FIG. 15: The Coulomb sum rule for our model in terms of q values. The solid circles are for 40Ca

and the solid rectangles are for 208Pb, respectively.

3.8 y-scaling

The cross section for the inclusive (e, e′) is written as

d2σ

dωdΩe
= σM

{
q4µ
q4
SL(q, ω) + (tan2

θe
2
−

q2µ
2q2

)ST (q, ω)

}
, (107)

where σM = (α/2E)2[cos2(θ/2)/sin4(θ/2)] is the Mott cross section.

The y-scaling function is defined as the ratio of measured cross section to

off-shell electron-nucleon cross section as following:

F (y) =
d2σ

dωdΩe
(Zσep +Nσen)

−1 q

[M 2 + (y + q)2]1/2
, (108)

where σep (σen) denotes the off-shell electron-proton(neutron) cross section.

Z and N are the number of protons and neutrons, and M is the mass of

nucleon. The scaling variable y is given by

ω +MA = (M 2 + q2 + y2 + 2yq)1/2 + (MA−1
2 + y2)1/2, (109)
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FIG. 16: The y-scaling functions are from 12C, 40Ca, 56Fe, 197Au, and 208Pb with 750 MeV and

45o. The calculations of the left panel do not include the final state interaction of the outgoing

nucleons and electron Coulomb distortion. In the right panel, the final state interaction is not

included but electron Coulomb distortion is included.

where MA is the mass of the target nucleus and MA−1 is the mass of the

ground state of the A− 1 nucleus. The point y = 0 corresponds to the peak

of the quasielastic scattering and y < 0 (y > 0) corresponds to the small

(large) ω region.

40



5.0

4.0

3.0

2.0

1.0

0.0
0.30.20.10.0-0.1-0.2-0.3

F(
y)

 (
G

eV
-1

)

y (GeV/c)

0.2 (GeV/c)2 < Q2 < 0.3 (GeV/c)2

E=2.02 GeV
θ=15o

12C
56Fe

197Au

FIG. 17: The y-scaling functions for three different target nuclei from 12C (dash-dot and ▲), 56Fe

(solid and •), and 197Au (dot and ■). The electron energy is E = 2.02 GeV and the scattering
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FIG. 18: The new y′-scaling functions are for the high electron energy E = 1.5 GeV and the

scattering angle θ = 30o from several nuclei.

3.9 Parity violation

Our formalism is based on the Born approximation with single photon and

Z0 boson exchange by the standard electro-weak theory. In the laboratory

frame, the inclusive cross section, which does not detect the outgoing nucle-

ons, is given by the contraction between lepton and hadron tensor. Since the
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kinematic factor of polarized scattering cross sections are canceled each other,

the asymmetry of the parity violation(PV) electron scattering is written as

follows:

A =

dσ+

dΩfdEf
− dσ−

dΩfdEf

dσ+

dΩfdEf
+ dσ−

dΩdEf

= A0
WPV

WEM
, (110)

where the constant A0 is given by

A0 =
GFQ

2

2πα
√
2
, (111)

with the Fermi constant GF and the fine structure constant α.

The electromagnetic total response function is decomposed into the longi-

tudinal and transverse response functions as follows:

WEM = vLR
L
EM + vTR

T
EM , (112)

where RL
EM = |J0

EM |2 is the longitudinal response function and RT
EM =

|Jx
EM |2 + |Jy

EM |2 is the transverse response function. The weak current is

the summation of neutral vector current and neutral axial vector current

through Z0 boson exchange:

WPV = W V
PV +WA

PV . (113)

The weak vector current is given by

W V
PV = vLR

L
PV + vTR

T
PV , (114)

where the longitudinal and transverse response functions are given by RL
PV =

J0∗
EMJ

0
NC and RT

PV = Jx∗
EMJ

x
NC+J

y∗
EMJ

y
NC , respectively. The weak axial vector

current is written as

WA
PV = v′TR

T ′

PV , (115)
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where the transverse response function is contributed in the way RT ′

PV =

J∗
EMJ

NC
AV . The factors of the electron kinematics are given by

vL =
Q4

q4
, vT = tan2

θe
2
+
Q2

2q2
, and v′T = tan

θe
2

√
tan2

θe
2
+
Q2

q2
, (116)

where θe denotes the scattering angle.

The nuclear current is calculated by the Fourier transform of nucleon cur-

rent operator:

Jµ =

∫
ψ̄pĴ

µψbe
iq·rd3r, (117)

where Ĵµ is a free weak nucleon current operator. For a free nucleon, the

current operator for the electromagnetic interaction is composed of the Dirac

and the Pauli form factors given by

Ĵµ
EM = F1(Q

2)γµ + F2(Q
2)

iκ

2MN
σµνqν, (118)

where κ represents nucleon magnetic moment.

The current operator of the neutral current reaction consists of the weak

vector and the axial vector form factors given by

Ĵµ
NC = F V

1 (Q2)γµ + F V
2 (Q2)

iκ

2MN
σµνqν. (119)

By the conservation of the vector current (CVC) hypothesis, the vector form

factors for the proton (neutron), F
V, p(n)
i (Q2), are expressed as

F
V, p(n)
i (Q2) =

(
1

2
− 2 sin2 θW

)
F

p(n)
i (Q2)− 1

2
F

n(p)
i (Q2)− 1

2
F s
i (Q

2), (120)

where θW is the Weinberg angle given by sin2 θW = 0.2224.

The strange vector form factors are usually given by a dipole form, inde-

pendently of the nucleon isospin,

F s
1 (Q

2) =
F s
1 (0)Q

2

(1 + τ)(1 +Q2/M 2
V )

2
,
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FIG. 19: (Color online) The asymmetry of the parity violation from 208Pb.

F s
2 (Q

2) =
F s
2 (0)

(1 + τ)(1 +Q2/M 2
V )

2
, (121)

where τ = Q2/(4M 2
N) and MV = 0.843 GeV is the cut off mass parameter

usually adopted for nucleon electromagnetic form factors. F s
1 (0) is defined

as the squared strange radius of the nucleus, F s
1 (0) = − < r2 > /6 =

dGs
E(Q

2)/dQ2|Q2=0 = 0.53 GeV−2, and F s
2 (0) = µs = −0.04 is an anomalous

strange magnetic moment.

The axial vector current operator is given by

Ĵµ
AV = GA(Q

2)γµγ5. (122)

The axial form factors for the neutral current reaction are given by

GA(Q
2) =

1

2
(∓gA + gsA)/(1 +Q2/M 2

A)
2, (123)

where gA = 1.262, MA = 1.032 GeV, and gsA = −0.19, which represent
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the strange quark contents on the nucleon. −(+) coming from the isospin

dependence denotes the knocked-out proton (neutron), respectively.
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A

B

( E i p i ),

( E f , p f )

( ω 

( E p , P )

)q,

IV. The neutrino-nucleus scattering

We start from a weak current on the nucleon level. The weak current, Jµ,

which takes a V µ − Aµ current form by the standard electro-weak theory,

represents the Fourier transform of the nucleon current density written as

Jµ =

∫
ψ̄pĴ

µψbe
iq·rd3r, (124)

where Ĵµ is a free weak nucleon current operator, and ψp and ψb are wave

functions of the knocked-out and the bound state nucleon, respectively. For

a free nucleon, the current operator comprises the weak vector and the axial

vector form factors

Ĵµ = F V
1 (Q2)γµ + F V

2 (Q2)
i

2MN
σµνqν +GA(Q

2)γµγ5 +
1

2MN
GP (Q

2)qµγ5,

(125)

where MN denotes the mass of the nucleon. By the conservation of the vec-

tor current (CVC) hypothesis, vector form factors for the proton (neutron),
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F
V, p(n)
i (Q2), is expressed as

F
V, p(n)
i (Q2) =

(
1

2
− 2 sin2 θW

)
F

p(n)
i (Q2)− 1

2
F

n(p)
i (Q2)− 1

2
F s
i (Q

2), for the NC

F V
i (Q2) = F p

i (Q
2)− F n

i (Q
2), for the CC(126)

where θW is the Weinberg angle given by sin2 θW = 0.2224.

The neutral current (NC) reaction is ν(ν̄) +N → ν ′(ν̄ ′) +N .

The charged current (CC) reaction is νµ(ν̄µ) + p(n) → µ−(µ+) + n(n).

The strange vector form factors are usually given as a dipole form, inde-

pendently of the nucleon isospin,

F s
1 (Q

2) =
F s
1Q

2

(1 + τ)(1 +Q2/M 2
V )

2
,

F s
2 (Q

2) =
F s
2 (0)

(1 + τ)(1 +Q2/M 2
V )

2
, (127)

where τ = Q2/(4M 2
N) and MV = 0.843 GeV is the cut off mass param-

eter usually adopted for nucleon electromagnetic form factors. F s
1 is de-

fined as the squared strange radius of the nucleus, F s
1 = − < r2 > /6 =

dGs
E(Q

2)/dQ2|Q2=0 = 0.53 GeV−2, and F s
2 (0) = µs is an anomalous strange

magnetic moment.

The axial form factors are given by

GA(Q
2) =

1

2
(∓gA + gsA)/(1 +Q2/M 2

A)
2, for the NC

GA(Q
2) = −gA/(1 +Q2/M 2

A)
2, for the CC (128)

where gA = 1.262, MA = 1.032 GeV, and gsA = −0.19, which represents

the strange quark contents on the nucleon. −(+) coming from the isospin

dependence denotes the knocked-out proton (neutron), respectively. The gsA

represents the strange quark contents in the nucleon.
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The induced pseudoscalar form factor is parameterized by the Goldberger-

Treimann relation

GP (Q
2) =

2MN

Q2 +m2
π

GA(Q
2), (129)

where mπ is the pion mass. But the contribution of the pseudoscalar form

factor vanishes for the NC reaction because of the negligible final lepton mass

participating in this reaction.

In the laboratory frame, the inclusive cross section, which does not detect

the outgoing ν (ν̄), is given by the contraction between lepton and hadron

tensor

dσ

dTp
= 4π2

MNMA−1

(2π)3MA

∫
sin θldθl

∫
sin θpdθppf

−1
recσ

Z,W±

M

×[vLRL + vTRT + hv′TR
′
T ], (130)

where θl denotes the scattering angle of the lepton and h = −1 (h = +1)

corresponds to the helicity of the incident ν (ν̄). The squared four-momentum

transfer is given by Q2 = q2 − ω2 = −q2µ. For the NC reaction, σZM is defined

by

σZM =

(
GF cos(θl/2)EfM

2
Z√

2π(Q2 +M 2
Z)

)
, (131)

and for the CC reaction

σW
±

M =

√
1−

M 2
l

Ef

(
GF cos(θC)EfM

2
W

2π(Q2 +M 2
W )

)2

, (132)

where MZ and MW are the rest mass of Z-boson and W -boson, respectively.

θC denotes the Cabibbo angle given by cos2 θC ≃ 0.9749. The recoil factor

frec is given as

frec =
EA−1

MA

∣∣∣∣1 + Ep

EA−1

[
1− q · p

p2

]∣∣∣∣ . (133)
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For the NC reaction, the kinematical coefficients v are given by

vL = 1, vT = tan2
θl
2
+
Q2

2q2
, v′T = tan

θl
2

[
tan2

θl
2
+
Q2

q2

]1/2
, (134)

and corresponding response functions are expressed as

RL =

∣∣∣∣J0 − ω

q
Jz

∣∣∣∣2 , RT = |Jx|2 + |Jy|2, R′
T = 2Im(Jx∗Jy). (135)

For the CC reaction, the coefficients v are given by

v0L = 1 +

√
1−

M 2
l

E2
f

cos θl,

vzL = 1 +

√
1−

M 2
l

E2
f

cos θl −
2EiEf

q2

(
1− M 2

l

E2
f

)
sin2 θl,

v0zL =
ω

q

(
1 +

√
1−

M 2
l

E2
f

cos θl

)
+
M 2

l

Efq
,

vT = 1−

√
1−

M 2
l

E2
f

cos θl +
EiEf

q2

(
1− M 2

l

E2
f

)
sin2 θl,

v′T =
Ei + Ef

q

(
1−

√
1−

M 2
l

E2
f

cos θl

)
− M 2

l

Efq
. (136)

The corresponding response functions are given by

R0
L = |J0|2, Rz

L = |Jz|2, R0z
L = −2Re(J0Jz∗),

RT = |Jx|2 + |Jy|2, R′
T = 2Im(JxJy∗), (137)

and

vLRL = v0LR
0
L + vzLR

z
L + v0zL R

0z
L . (138)
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FIG. 20: (Color online) The differential cross sections of the NC ν −A scattering from 12C, 40Ca,

56Fe, and 208Pb.
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FIG. 21: (Color online) The differential cross sections of the CC ν −A scattering from 12C, 40Ca,

56Fe, and 208Pb.
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FIG. 22: (Color online) The double differential cross sections of the CC ν −A scattering in terms

of the kinetic energy and the scattering angle of the outgoing muon. The experimental data were

measured from MiniBooNE.
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FIG. 23: (Color online) The flux integrated double differential cross sections in terms of incident

muon momentum at fixed angle. The experimental data were measured from T2K.

In order to investigate the strangeness, the ratios between the NC and CC

reactions are given by

RNC/CC =
σ(ν, ν ′p)

σ(ν, µ−p)
=
σνpNC

σνCC

,
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FIG. 24: (Color online) The double differential cross sections versus muon transverse momentum

at fixed muon longitudinal momentum. The experimental data were measured from MINERν.
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FIG. 25: (Color online) The total scaled cross sections of CC ν − A scattering in terms of the

incident neutrino energies. The experimental data were measured from MiniBooNE.

R̄NC/CC =
σ(ν̄, ν̄ ′n)

σ(ν̄, µ+n)
=
σν̄nNC

σν̄CC

. (139)

Since the CC reaction is independent of isospin and the strangeness, and

other possible effects of the nuclear structure could be cancelled out, these

ratios are useful for probing the strangeness in the nuclei.

We introduce another definition of the ratios by focusing on the nucleon

inside the target nucleus as follows:

R′
NC/CC =

σ(ν, ν ′n)

σ(ν, µ−p)
=
σνnNC

σνCC

,
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FIG. 26: (Color online)The ratio of the NC to the CC cross sections of neutrino-nucleus scattering

for 12C as a function of the knocked-out nucleon kinetic energy. For the NC reaction, solid (red)

curves represent the results with gsA = −0.19 and µs = −0.4, dashed (black) lines are with gsA = 0.0

and µs = −0.4, and dotted (blue) lines are with gsA = −0.19 and µs = +0.4.

R̄′
NC/CC =

σ(ν̄, ν̄ ′p)

σ(ν̄, µ+n)
=
σν̄pNC

σν̄CC

. (140)

As another method to measure the effect of the strangeness, we introduce

asymmetries by differences of the ν and ν̄ scattering cross sections via NC

and CC reactions

Ap
NC/CC =

σνpNC − σν̄pNC

σνCC − σν̄CC

, (141)

An
NC/CC =

σνnNC − σν̄nNC

σνCC − σν̄CC

. (142)

Since nominators (denominators) contain only magnetic and axial form fac-

tors with (without) strangeness for a given proton or neutron, it is more
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FIG. 27: (Color online)The ratio of the NC to the CC cross sections of neutrino-nucleus scattering

for 12C as a function of the knocked-out nucleon kinetic energy. For the NC reaction, solid (red)

curves represent the results with gsA = −0.19 and µs = −0.4, dashed (black) lines are with gsA = 0.0

and µs = −0.4, and dotted (blue) lines are with gsA = −0.19 and µs = +0.4.

useful for probing the effect of the strange quark contents in nuclei rather

than the previous ratios.

♦ Comparison of structure functions for lepton-nucleus scattering

To extract the structure functions for the neutral-current reaction, the

same method as the electron scattering is used as follows:

σ(+h) + σ(−h)
2K

= vLSL + vTST , (143)

where σ denotes the differential cross section and K = 4π2MNMA−1

(2π)3MA
pf−1

recσ
Z, W±

M

denotes the kinematics factor in front of integration in Eq. (130) with the
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FIG. 28: (Color online)The ratio of the asymmetries between the NC and CC cross sections of

neutrino-nucleus scattering for 12C as a function of the knocked-out nucleon kinetic energy. For

the NC reaction, solid (red) curves represent the results with gsA = −0.19 and µs = −0.4, dashed

(black) lines are with gsA = 0.0 and µs = −0.4, and dotted (blue) lines are with gsA = −0.19 and

µs = +0.4.

recoil factor f−1
rec ∼ 1. The transverse structure function ST becomes slope in

term of variable vT and the intercept point is SL by keeping q and ω fixed

because of vL = 1.
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FIG. 29: (Color online) The solid curves are the results for the electron scattering, the dashed lines

are for the NC neutrino scattering, and the dotted lines are without an axial form factor of the

NC neutrino scattering.
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FIG. 30: (Color online) The solid curves are the results for the electron scattering, the dashed lines

are for the NC neutrino scattering, and the dotted lines are without an axial form factor of the

NC neutrino scattering.

Appendix : Reduced Matrix Elements of Multipole Operators

The following angular matrix elements are needed to evaluate the transi-

tion matrix element. The matrix element for the spin angle function can be

written by

⟨κ′µ′|Ô|κµ⟩ =
∫
χκ′

µ′(r̂)
†
Ôχκ

µ(r̂)dΩ (144)
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for any operator Ô.

The matrix element about a spherical harmonic operator becomes

⟨κ′µ′|Y M
L |κµ⟩ =

∫
χκ′

µ′(r̂)
†
Y M
L (r̂)χκ

µ(r̂)dΩ

= ⟨jµ, LM |j′µ′⟩⟨κ′∥Y M
L ∥κ⟩ (145)

where the double-bar matrix element is called the reduced matrix element.

It is independent on the magnetic quantum numbers and is given by

IL(κ
′, κ) = ⟨κ′∥Y M

L ∥κ⟩

= (−1)j+j′−L−1

√
(2j + 1)(2L+ 1)

4π(2j′ + 1)
⟨j1
2
, L0|j′1

2
⟩. (146)

The other multipole matrix elements with Dirac spinor become

⟨κ′µ′|σ·YM
L L|κµ⟩ =

κ− κ′√
L(L+ 1)

⟨κ′µ′|Y M
L |κµ⟩ (147)

⟨κ′µ′|σ·YM
L L−1|κµ⟩ =

κ′ + κ− L√
L(2L+ 1)

⟨κ′µ′|Y M
L | − κµ⟩ (148)

⟨κ′µ′|σ·YM
L L+1|κµ⟩ =

κ′ + κ+ L+ 1√
(L+ 1)(2L+ 1)

⟨κ′µ′|Y M
L | − κµ⟩. (149)

The reduced matrix elements for vetor spherical harmonic operator and

spin operator are given by

⟨κ′µ′∥σ·YM
L L∥κµ⟩ =

κ− κ′√
L(L+ 1)

IL(κ
′, κ) (150)

⟨κ′µ′∥σ·YM
L L−1∥κµ⟩ =

κ′ + κ− L√
L(2L+ 1)

IL(κ
′,−κ) (151)

⟨κ′µ′∥σ·YM
L L+1∥κµ⟩ =

κ′ + κ+ L+ 1√
(L+ 1)(2L+ 1)

IL(κ
′,−κ). (152)

In evaluating the transition amplitude, we need the following multiple anal-

ysis relationship;

⟨ψp|γ·YM
L L|ψb⟩ =

∫
ψp

†γ·YM
L LψbdΩr
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=
i(κb + κp)√
L(L+ 1)

(−fκp
gκb

+ gκp
fκb

)

× ⟨jbµb, LM |jpµp⟩IL(κp,−κb) (153)

⟨ψp|α·YM
L L|ψb⟩ =

∫
ψp

†α·YM
L LψbdΩr

=
i(κb + κp)√
L(L+ 1)

(−fκp
gκb

− gκp
fκb

)

× ⟨jbµb, LM |jpµp⟩IL(κp,−κb) (154)

⟨ψp|γ0Σ·YM
L L|ψb⟩ =

∫
ψp

†γ0Σ·YM
L LψbdΩr

=
κb − κp√
L(L+ 1)

(fκp
fκb

+ gκp
gκb

)

× ⟨jnµb, LM |jpµp⟩IL(κp, κb) (155)

⟨ψp|α·YM
L L−1|ψb⟩ =

∫
ψp

†α·YM
L L−1ψbdΩr

=
i√

L(2L+ 1)
[(κp − κb)(fκp

gκb
+ gκp

fκb
)

− L(fκp
gκb

− gκp
fκb

)]

× ⟨jbµb, LM |jpµp⟩IL(κp, κb) (156)

⟨ψp|γ·YM
L L−1|ψb⟩ =

∫
ψp

†γ·YM
L L−1ψbdΩr

=
i√

L(2L+ 1)
[(κp − κb)(fκp

gκb
− gκp

fκb
)

− L(fκp
gκb

+ gκp
fκb

)]⟨jbµb, LM |jpµp⟩

× IL(κp, κb) (157)
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⟨ψp|γ0Σ·YM
L L−1|ψb⟩ =

∫
ψp

†γ0Σ·YM
L L−1ψbdΩr

=
1√

L(2L+ 1)
[(κp + κb)(fκp

fκb
+ gκp

gκb
)

− L(fκp
fκb

− gκp
gκb

)]

× ⟨jbµb, LM |jpµp⟩IL(κp,−κb) (158)

⟨ψp|α·YM
L L+1|ψb⟩ =

∫
ψp

†α·YM
L L+1ψbdΩr

=
i√

(L+ 1)(2L+ 1)
[(κp − κb)(fκp

gκb
+ gκp

fκb
)

+ (L+ 1)(fκp
gκb

− gκp
fκb

)]

× ⟨jbµb, LM |jpµp⟩IL(κp, κb) (159)

⟨ψp|γ·YM
L L+1|ψb⟩ =

∫
ψp

†γ·YM
L L+1ψbdΩr

=
i√

(L+ 1)(2L+ 1)
[(κp − κb)(fκp

gκb
− gκp

fκb
)

+ (L+ 1)(fκp
gκb

+ gκp
fκb

)]

× ⟨jbµb, LM |jpµp⟩IL(κp, κb) (160)
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⟨ψp|γ0Σ·YM
L L+1|ψb⟩ =

∫
ψp

†γ0Σ·YM
L L+1ψbdΩr

=
1√

(L+ 1)(2L+ 1)
[(κp + κb)(fκp

fκb
+ gκp

gκb
)

+ (L+ 1)(fκp
fκb

− gκp
gκb

)]

× ⟨jbµb, LM |jpµp⟩IL(κp,−κb). (161)
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