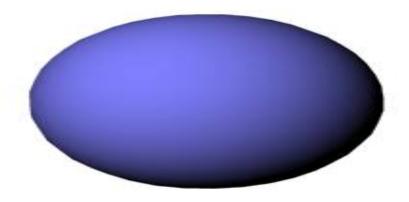
Nuclear Deformation



Nuclear Deformation

Excitation spectra of ¹⁵⁴Sm

$$0.544 - 6^{+}$$

$$0.267 - 4^{+}$$

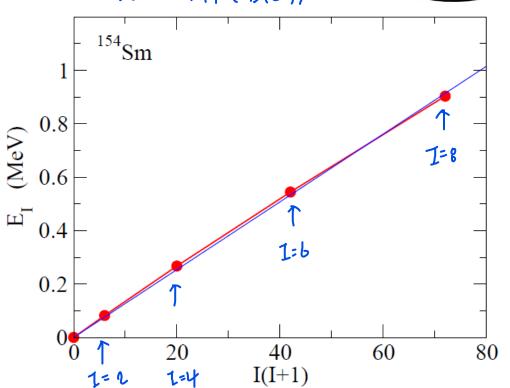
$$0.082 \frac{}{0} \frac{}{0^{+}} \frac{2^{+}}{0^{+}} \frac{}{0^{+}}$$

$$E_I \sim \frac{I(I+1)\hbar^2}{2\mathcal{J}}$$

cf. Rotational energy of a rigid body $E = \frac{1}{2} \mathcal{J}\omega^2 = \frac{I^2}{2\mathcal{J}}$ (Classical mechanics)

$$E = \frac{1}{2} \mathcal{J} \omega^2 = \frac{I^2}{2\mathcal{J}}$$

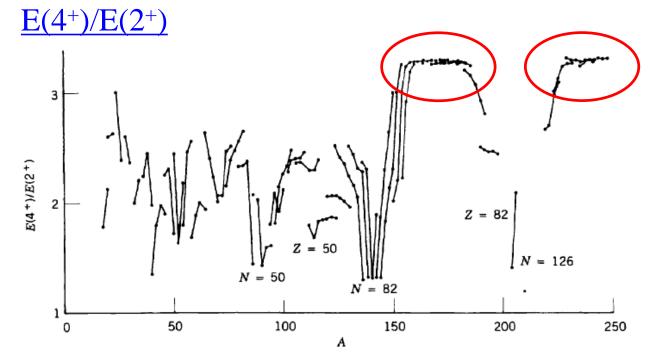
$$(I = \mathcal{J}\omega, \ \omega = \dot{\theta})$$
154Sm is deformed



$$E_I = \frac{I(I+1)\hbar^2}{2\mathcal{J}}$$

$$\longrightarrow E_2 \propto 2 \times 3 = 6, E_4 \propto 4 \times 5 = 20$$

$$\longrightarrow E_4/E_2 = 20/6 = 3.3333 \cdots$$



deformed nuclei:

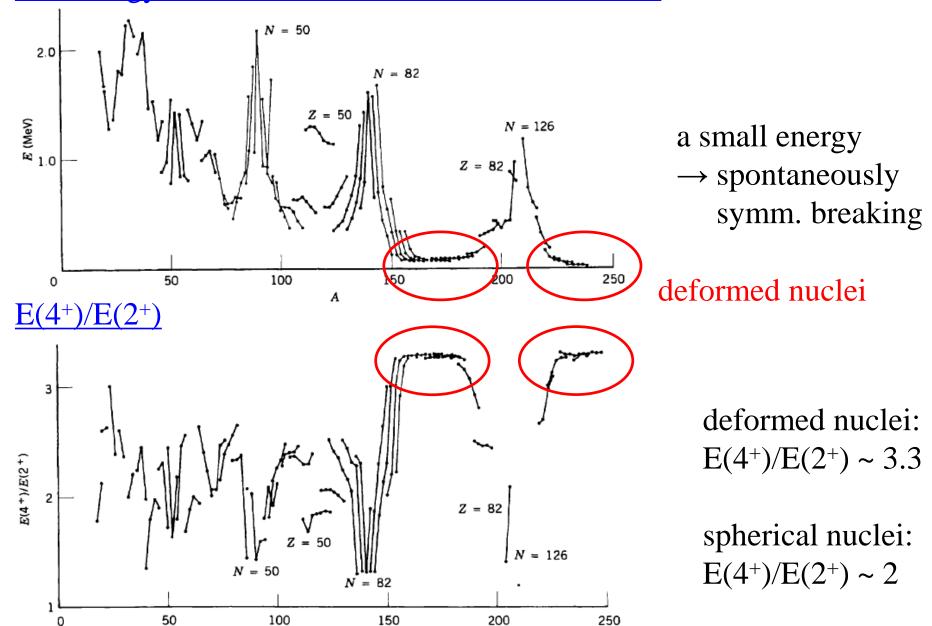
 $E(4^+)/E(2^+) \sim 3.3$

spherical nuclei: $E(4^+)/E(2^+) \sim 2$

K.S. Krane, "Introductory Nuclear Physics"

The energy of the first 2⁺ state in even-even nuclei

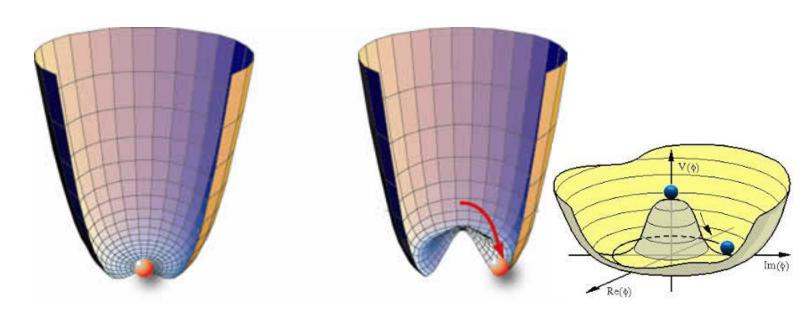
Α



K.S. Krane, "Introductory Nuclear Physics"

Spontaneous symmetry breaking

The vacuum state does not have (i.e, the vacuum state violates) the symmetry which the Hamiltonian has.

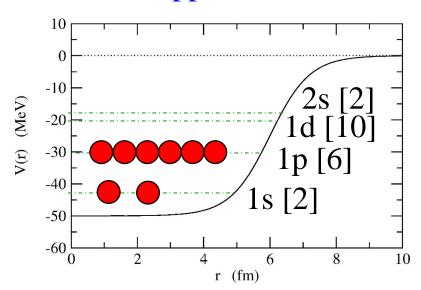


자발 대칭 깨짐이 일어나면 항상 파괴된 대칭의 수 만큼 Goldstone boson(mass=0)이 존재한다.

Nambu-Goldstone mode (zero energy mode) to restore the symmetry

Mean-field approximation and deformation

Mean-field approximation



$$H \sim \sum_{i} \left(-\frac{\hbar^2}{2m} \nabla_i^2 + V_{\mathsf{MF}}(r_i) \right)$$

Slater determinant

$$\Psi_{\mathsf{MF}}(1,2,\cdots,A)$$

$$= \mathcal{A}[\psi_1(1)\psi_2(2)\cdots\psi_A(A)]$$

$$\left(-\frac{\hbar^2}{2m}\nabla^2 + V_{\mathsf{MF}}(r)\right)\psi_k(r) = \epsilon_k\psi_k(r)$$

the original many-body *H*:

$$H = -\sum_{i=1}^{A} \frac{\hbar^2}{2m} \nabla_i^2 + \frac{1}{2} \sum_{i,j}^{A} v(\boldsymbol{r}_i, \boldsymbol{r}_j)$$

$$= \sum_{i=1}^{A} \left(-\frac{\hbar^2}{2m} \nabla_i^2 + V_{\mathsf{MF}}(\boldsymbol{r}_i) \right) + \frac{1}{2} \sum_{i,j}^{A} v(\boldsymbol{r}_i, \boldsymbol{r}_j) - \sum_{i} V_{\mathsf{MF}}(\boldsymbol{r}_i)$$
Here vectors

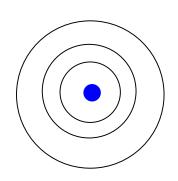
 Ψ_{MF} : does not necessarily possess the symmetries that H has.

Typical Examples

Translational symmetry: always broken in nuclear systems

$$H = -\sum_{i=1}^{A} \frac{\hbar^2}{2m} \nabla_i^2 + \frac{1}{2} \sum_{i,j}^{A} v(r_i - r_j) \rightarrow \sum_{i=1}^{A} \left(-\frac{\hbar^2}{2m} \nabla_i^2 + \underline{V_{\mathsf{MF}}(r_i)} \right)$$

(cf.) atoms

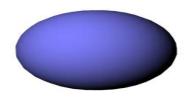


nucleus in the center

translational symmetry: broken from the begining

➤ Rotational symmetry

Deformed solution



Constrained Hartree-Fock method

Q = SIGT B(E2)/502, SIGTS (2/17) AROBE

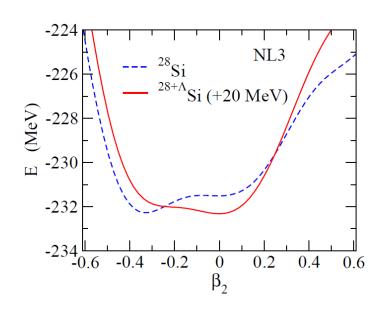
minimize $H' = H - \lambda \hat{Q}_{20}$ with a Slater determinant w.f.

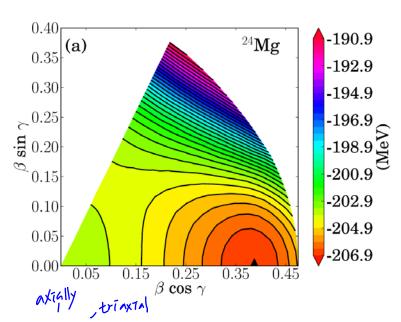
Construtned Variation

$$\hat{Q}_{20} = \sum_{i} r_i^2 Y_{20}(\hat{r}_i)$$
: quadrupole operator

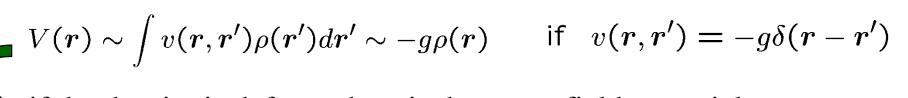
 λ : Lagrange multiplier, to be determined so that $\langle \hat{Q}_{20} \rangle = Q \propto R^2 \beta$

 $E(\beta)$: potential energy curve





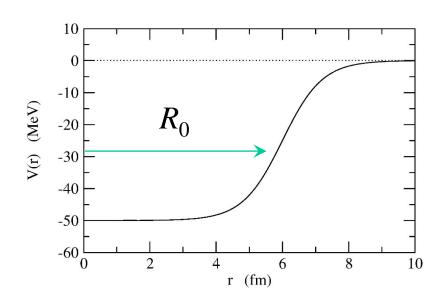
 $E(\beta,\gamma)$: potential energy surface



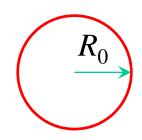
if the density is deformed, so is the mean-field potential

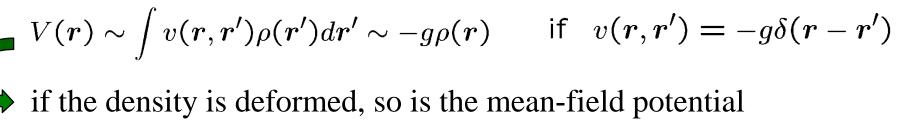
(example) a deformed Woods-Saxon potential

a spherical WS potential:



$$V(r) = -\frac{V_0}{1 + \exp\left(\frac{r - R_0}{a}\right)}$$





(example) a deformed Woods-Saxon potential

a WS potential:

$$V(r) = -\frac{V_0}{1 + \exp\left(\frac{r - R_0}{a}\right)}$$

$$R_0$$

$$R_0$$

$$R_0$$

$$R_0$$

$$R_0$$

$$R_0$$

$$R_0$$

$$R_0$$

$$R_0 \rightarrow R_0(1 + \beta_2 Y_{20}(\theta))$$

$$V(r) \sim \int v(r,r')\rho(r')dr' \sim -g\rho(r)$$
 if $v(r,r') = -g\delta(r-r')$ if the density is deformed, so is the mean-field potential

(example) a deformed Woods-Saxon potential

$$V(r,\theta) = -\frac{V_0}{1 + \exp\left(\frac{r - R_0(\theta)}{a}\right)} = -\frac{V_0}{1 + \exp\left(\frac{r - R_0 - R_0 \beta_2 Y_{20}(\theta)}{a}\right)}$$

$$\sim -\frac{V_0}{1 + \exp\left(\frac{r - R_0(\theta)}{a}\right)} - R_0 \beta_2 Y_{20}(\theta) \frac{d}{dr} \left[\frac{-V_0}{1 + \exp\left(\frac{r - R_0(\theta)}{a}\right)}\right]$$

$$\equiv V_0(r) + V_2(r) Y_{20}(\theta) \qquad V_2(r) = -R_0 \beta_2 V_0'(r)$$

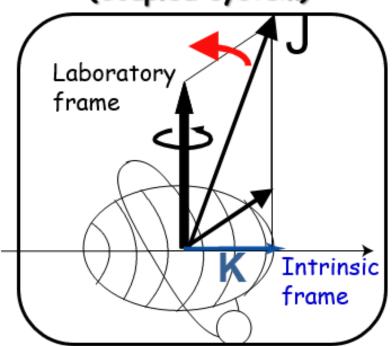
$$V(r) \sim \int v(r,r')\rho(r')dr' \sim -g\rho(r)$$
 if $v(r,r') = -g\delta(r-r')$ if the density is deformed, so is the mean-field potential

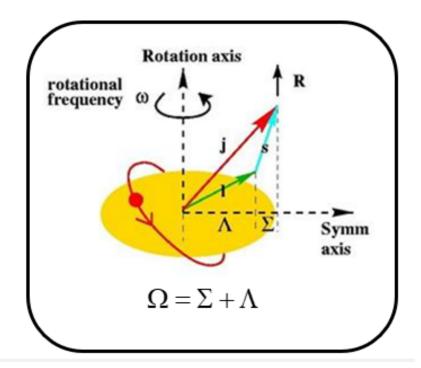
(example) a deformed Woods-Saxon potential

$$V(r,\theta) = -\frac{V_0}{1 + \exp\left(\frac{r - R_0(\theta)}{a}\right)} = -\frac{V_0}{1 + \exp\left(\frac{r - R_0 - R_0 \beta_2 Y_{20}(\theta)}{a}\right)}$$

$$\sim -\frac{V_0}{1+\exp\left(\frac{r-R_0(\mathbf{M})}{a}\right)} - R_0\beta_2 Y_{20}(\theta) \frac{d}{dr} \left[\frac{-V_0}{1+\exp\left(\frac{r-R_0(\mathbf{M})}{a}\right)} \right]$$

* non-spherical potential → angular momentum: not conserved





$$V(r,\theta) \sim V_0(r) - \beta_2 R_0 \frac{dV_0}{dr} Y_{20}(\theta) + \cdots$$

■ the effect of Y_{20} term

Eigen-functions for $\beta_2=0$ (spherical pot.) :

$$\psi_{nll_z}(r) = R_{nl}(r)Y_{ll_z}(\hat{r})$$

eigen-values: E_{nl} (no dependence on l_z)

The change of energy due to the Y_{20} term (1st order perturbation theory):

$$E_{nl} \rightarrow E_{nl} + \langle \psi_{nll_z} | \Delta V | \psi_{nll_z} \rangle$$

$$\Delta V(r) = -\beta_2 R_0 \frac{dV_0}{dr} Y_{20}(\theta)$$

$$V(r,\theta) \sim V_0(r) - \beta_2 R_0 \frac{dV_0}{dr} Y_{20}(\theta) + \cdots$$

■the effect of Y₂₀ term

$$E_{nl} \rightarrow E_{nl} + \langle \psi_{nll_z} | \Delta V | \psi_{nll_z} \rangle$$

$$\Delta V(r) = -\beta_2 R_0 \frac{dV_0(r)}{dr} Y_{20}(\theta)$$

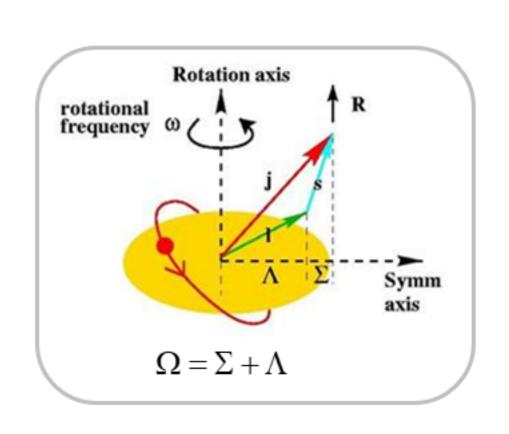
$$\psi_{nll_z}(r) = R_{nl}(r) Y_{ll_z}(\hat{r})$$

$$\Delta E = -\beta_2 R_0 \int_0^\infty r^2 dr |R_{nl}(r)|^2 V_0'(r)$$

$$\times \int d\hat{r} Y_{ll_z}^*(\theta) Y_{20}(\theta) Y_{ll_z}^{\dagger}(\theta)$$

$$\propto -(3l_z^2 - l(l+1))$$

$$\int d\vec{r} \int_{0}^{\infty} \frac{1}{2} (0) \int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{2} (0) = \int \vec{r} dr \underbrace{stmodo}_{-dcoso} d\vec{r} \int_{0}^{\infty} \frac{1}{2} (0) \int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{2} (0) \int_{0}^{\infty} \frac{1}{2} (0)$$



$$V(r,\theta) \sim V_0(r) - \beta_2 R_0 \frac{dV_0}{dr} Y_{20}(\theta) + \cdots$$

■the effect of Y₂₀ term

$$E_{nl} \rightarrow E_{nl} + \langle \psi_{nll_z} | \Delta V | \psi_{nll_z} \rangle$$

$$\Delta E = -\beta_2 R_0 \int_0^\infty r^2 dr |R_{nl}(r)|^2 V_0'(r)$$

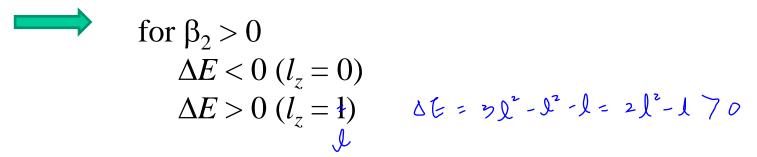
$$\times \int d\hat{r} Y_{ll_z}^*(\theta) Y_{20}(\theta) Y_{ll_z}^{\dagger}(\theta)$$

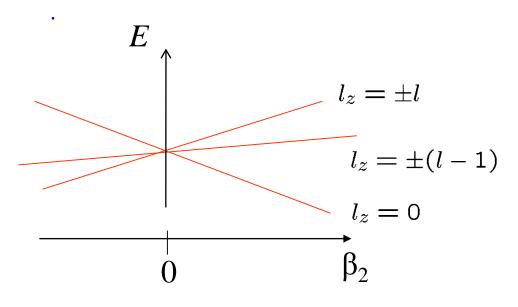
$$\propto -(3l_z^2 - l(l+1))$$

$$\equiv \beta_2 \times \alpha_{nl} \left(3l_z^2 - l(l+1) \right) \quad (\alpha_{nl} > 0)$$

$$V(r,\theta) \sim V_0(r) - \beta_2 R_0 \frac{dV_0}{dr} Y_{20}(\theta) + \cdots$$

$$\Delta E = \beta_2 \times \alpha_{nl} \left(3l_z^2 - l(l+1) \right) \quad (\alpha_{nl} > 0)$$



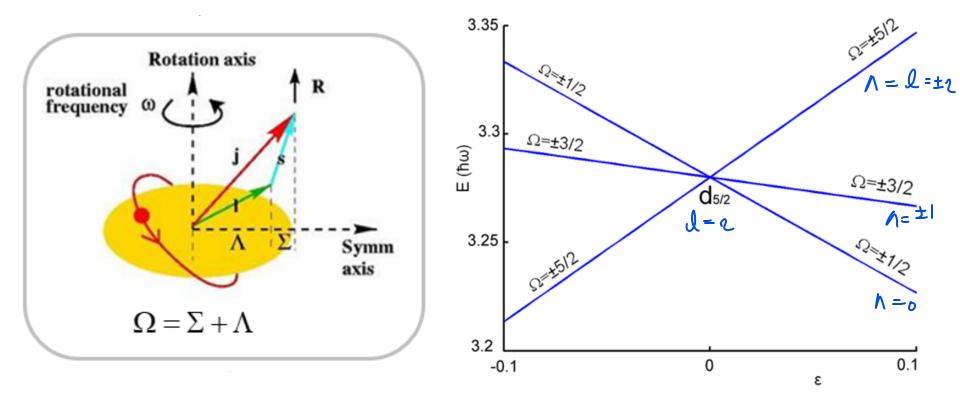


- ✓ degeneracy: resolved (E: now depends on l_7)
- $l_z = \pm (l-1)$ degeneracy: $+l_z$ and $-l_z$

$$\vec{J}$$
 projection on $\vec{z} \rightarrow \vec{\Omega}$
 \vec{J} $\vec{\lambda}$ $\vec{\lambda}$

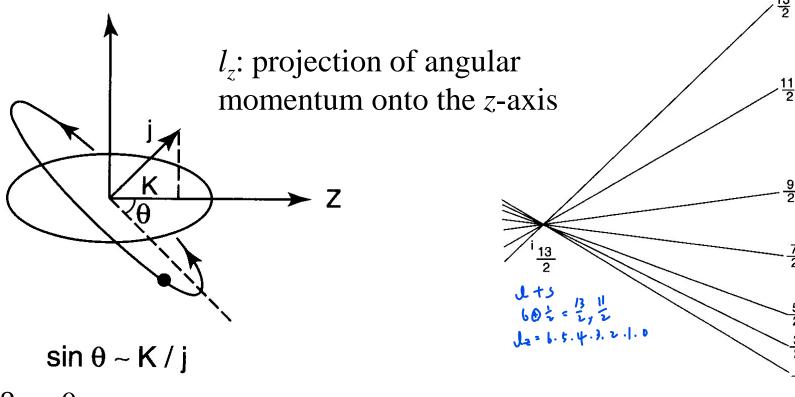
In spherical basis, \mathbf{j} is a good quantum number. \mathbf{J} \longrightarrow \mathbf{K} But in deformed basis, a projection of \mathbf{J} on the nuclear symmetric axis \mathbf{z} , $\mathbf{\Omega}$, is a good quantum number.

Deformed states, $\pm 5/2$, $\pm 3/2$, and $\pm 1/2$, are separated from the spherical state $d_{5/2}$.



> Single particle states in deformed nucleus become more complex.

Geometrical interpretation



for
$$\beta_2 > 0$$

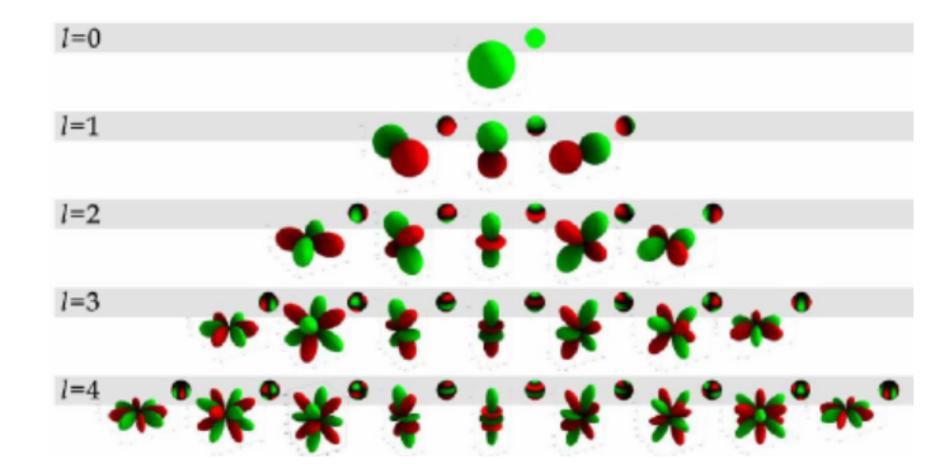
small $l_7 \longleftrightarrow$ a motion along the longer axis

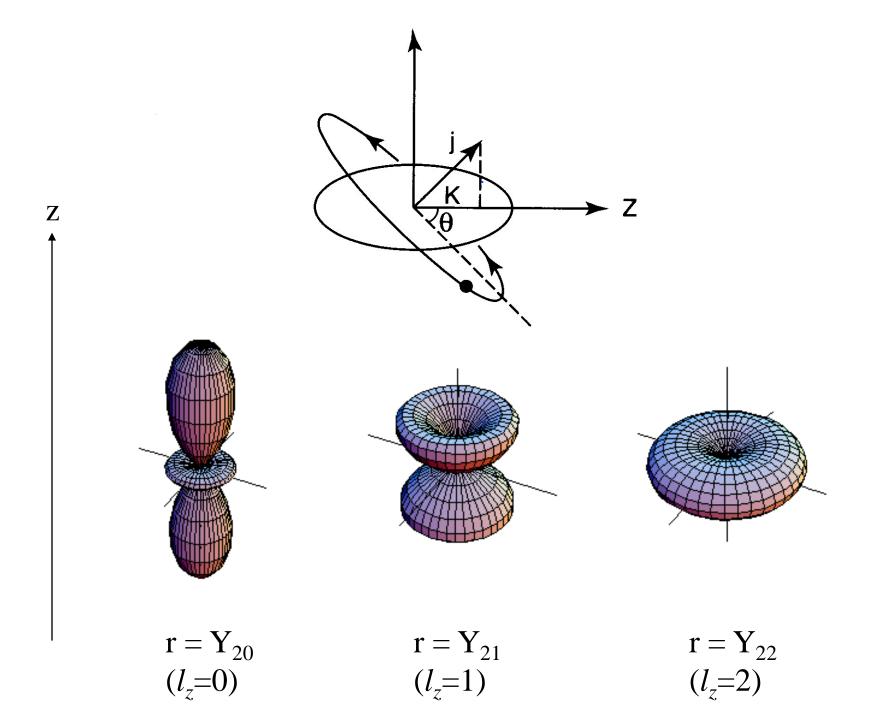
 \rightarrow the energy is lowered

large $l_z \longleftrightarrow$ a motion along the shorter axis $0 = 0^\circ$, $l_z = 1$, $E \uparrow$

 \rightarrow the energy is increased

Κ





$$Y_{\sim 0} = 32^{3} - Y^{3}$$

$$32^{3} - (3^{3} + Y^{3} + 2^{3})$$

$$= 22^{3} - 23^{3} - 30$$

$$= 22^{3} - 23^{3} - 30$$

$$= 22^{3} - 23^{3} - 30$$

$$= 22^{3} - 23^{3} - 30$$

$$= 22^{3} - 23^{3} - 30$$

$$= 22^{3} - 23^{3} - 30$$

$$= 22^{3} - 23^{3} - 30$$

$$= 22^{3} - 23^{3} - 30$$

$$= 22^{3} - 23^{3} - 30$$

$$= 22^{3} - 23^{3} - 30$$

$$= 22^{3} - 23^{3} - 30$$

$$= 22^{3} - 23^{3} - 30$$

$$= 22^{3} - 23^{3} - 30$$

$$= 22^{3} - 23^{3} - 30$$

$$= 22^{3} - 23^{3} - 30$$

$$= 22^{3} - 23^{3} - 30$$

$$= 22^{3} - 23^{3} - 30$$

$$= 22^{3} - 23^{3} - 30$$

$$= 22^{3} - 23^{3} - 30$$

$$= 22^{3} - 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 23^{3} - 30$$

$$= 33^{3} - 30$$

$$= 33^{3} - 30$$

$$= 33^{3} - 30$$

$$= 33^{3} - 30$$

$$= 33^{3} - 30$$

$$= 33^{3} - 30$$

$$= 33^{3} - 30$$

$$= 33^{3} - 30$$

$$= 33^{3} - 30$$

$$= 33^{3} - 30$$

$$= 33^{3} - 30$$

$$= 33^{3} - 30$$

$$= 33^{3} - 30$$

$$= 33^{3} - 30$$

$$= 33^{3} -$$

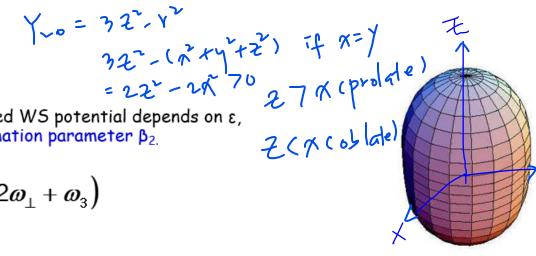
The nuclear shape in the deformed WS potential depends on ε , which is related to as the deformation parameter β_2

$$\varepsilon = 3(\omega_{\perp} - \omega_{3})/(2\omega_{\perp} + \omega_{3})$$
$$\beta_{2} \approx \frac{2}{3}\sqrt{\frac{4\pi}{5}} \varepsilon$$

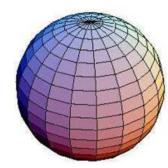
$$R(\theta) = R_0(1 + \beta_2 Y_{20}(\theta))$$

In experimental side, β_2 can be extracted from E2 transition probability.

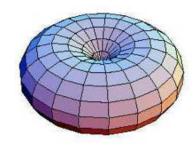
$$\beta_2 = \frac{4\pi}{3ZR_0^2} \left[\frac{B(E2\uparrow)}{e^2} \right]^{1/2} \qquad (R_0 = 1.2A^{1/3})$$



 $\beta_2 > 0$, prolate



 $\beta_2 = 0$, spherical



 $\beta_{\gamma} < 0$, oblate

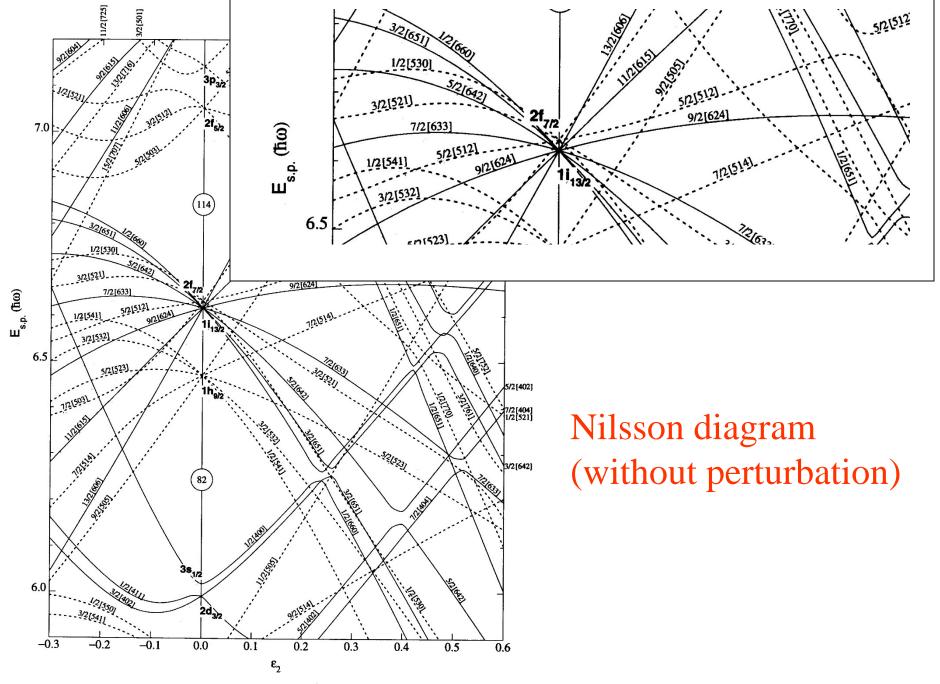
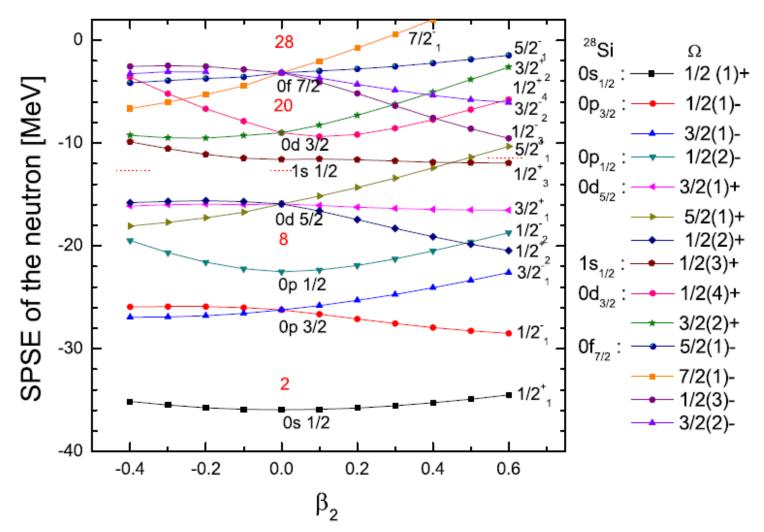


Figure 13. Nilsson diagram for protons, $Z \ge 82$ ($\varepsilon_a = \varepsilon_2^2/6$).

EPJA (x0/17)
Ha et al.



Level scheme of ¹¹₄Be₇

With a spherical potential:

$$\begin{array}{cccc}
 & 1p_{1/2} [2] \\
 & 1p_{3/2} [4]
\end{array}$$

The g.s. of ${}^{11}\text{Be}: I^{\pi} = 1/2^{-}$

very artificial

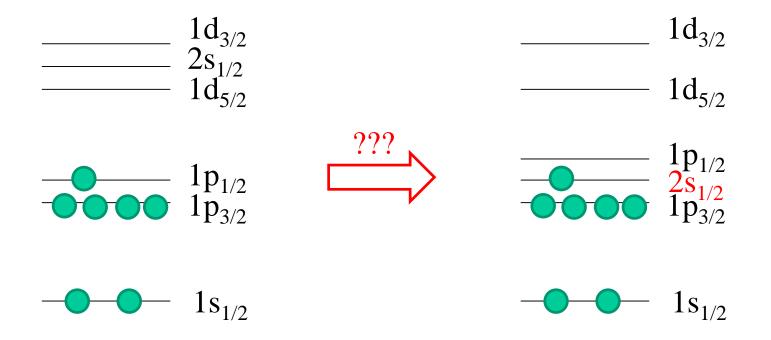
In reality.....

0.32 MeV ______ 1/2-_____ 1/2+

 $\frac{1p_{1/2}}{2s_{1/2}} \\ 1p_{3/2}$

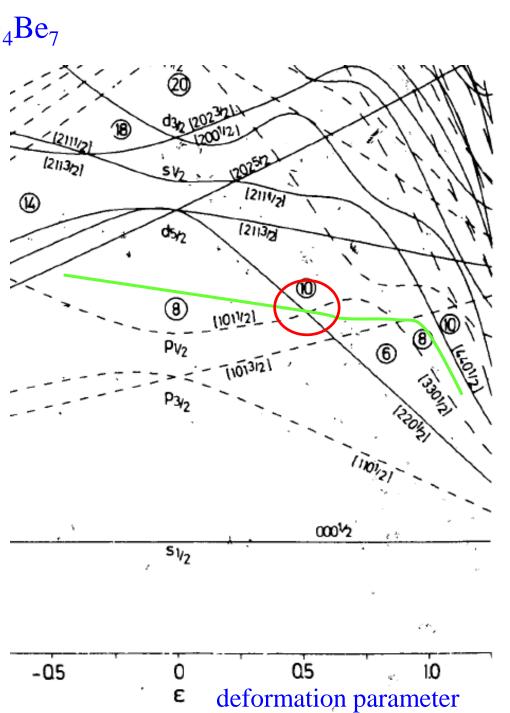
"parity inversion"

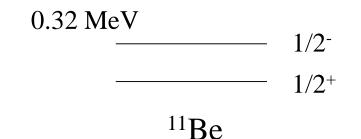
What happens if ¹¹Be is deformed?



Very unnatural.

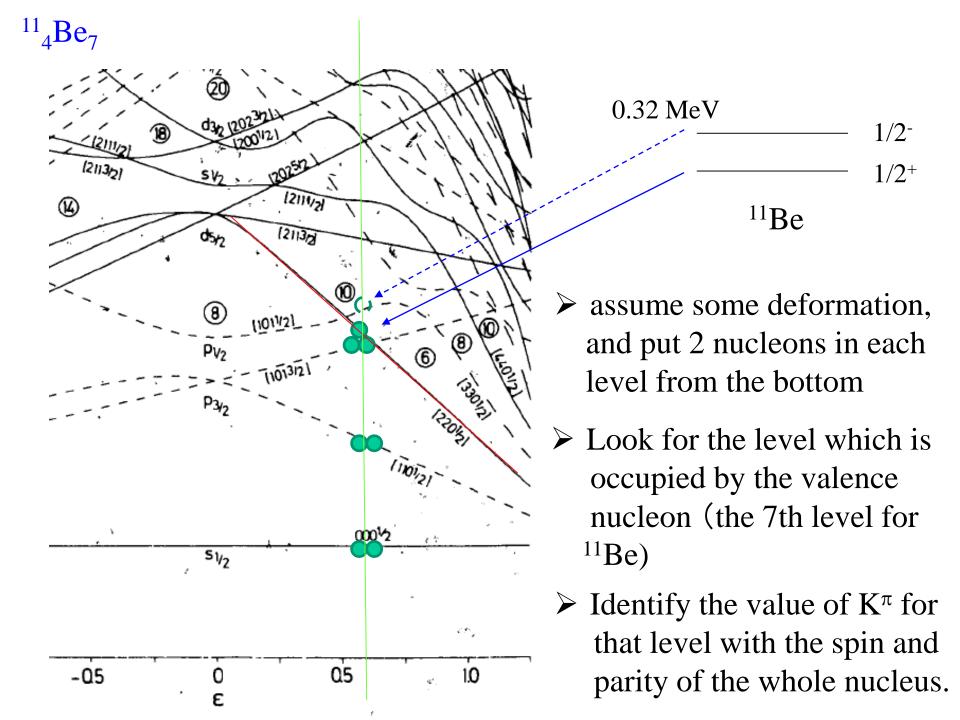
The observed 1/2⁺ state can be more naturally explained if one considers a deformation of ¹¹Be.





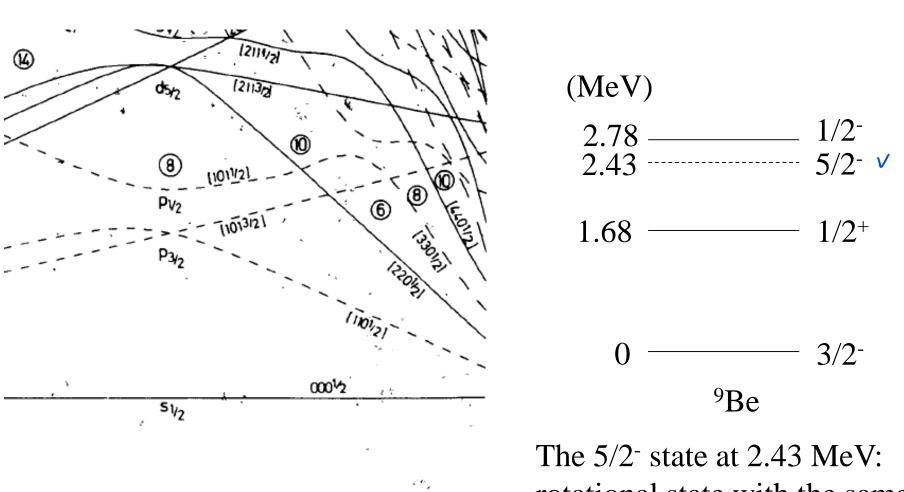
- ▶ assume some deformation,
 and put 2 nucleons in each
 level from the bottom
 (degeneracy of +K and -K)
- ➤ Look for the level which is occupied by the valence nucleon (the 7th level for ¹¹Be)
- \triangleright Identify the value of K^π for that level with the spin and parity of the whole nucleus.

cf. particle-rotor model



Can the level scheme of ⁹₄Be₅ be explained in a similar way?

cf. ${}^{10}B(e,e'K^+){}^{10}_{\Lambda}Be (= {}^{9}Be + \Lambda)$



Q5

-05

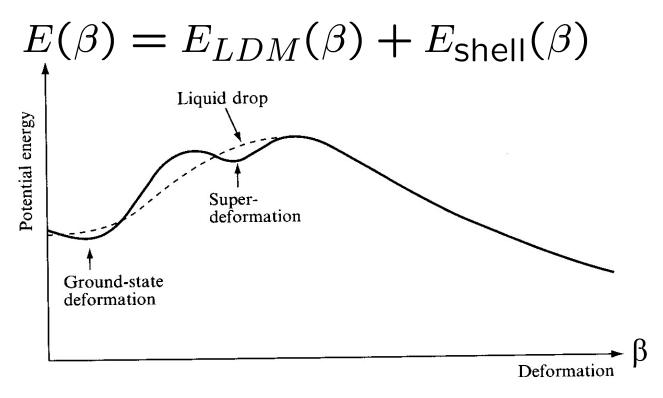
rotational state with the same configuration as the g.s. state (not considered here)

Can the level scheme of ⁹₄Be₅ be explained in a similar way?

cf. ${}^{10}B(e,e'K^+){}^{10}_{\Lambda}Be (= {}^{9}Be + \Lambda)$ Ø (MeV) 2.78 **≠** 2.43 $5/2^{-}$ 1.68 $1/2^{+}$ $3/2^{-}$ $\frac{1}{2} \oplus \frac{3}{2} \text{ from } \frac{1}{2}, \quad J = 1.2$ $\frac{1}{2} \oplus \frac{3}{2} \text{ from } \frac{1}{2}, \quad J = \frac{5}{2}$ Ω5 -05 ⁹Be

nuclear deformation

Deformed energy surface for a given nucleus



LDM only always spherical ground state

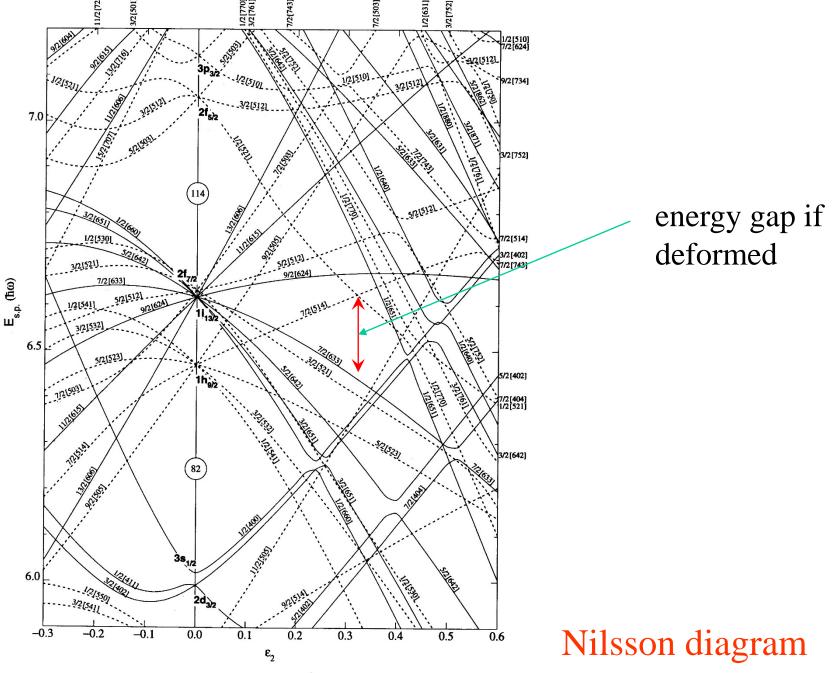
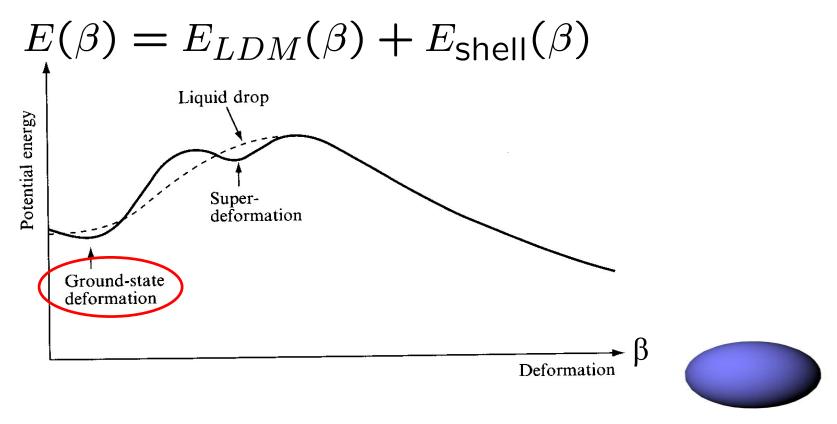


Figure 13. Nilsson diagram for protons, $Z \ge 82$ ($\epsilon_4 = \epsilon_2^2/6$).

nuclear deformation

Deformed energy surface for a given nucleus



LDM only always spherical ground state

Shell correction may lead to a deformed g.s.

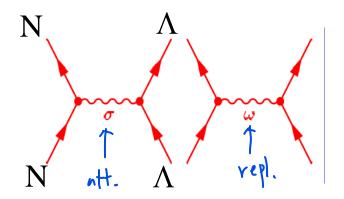
* Spontaneous Symmetry Breaking

RMF calculations for deformed hypernuclei

Hypernuclei: nucleus + Lambda particle

Effect of a Λ particle on nuclear shapes?

Relativistic Mean-field model

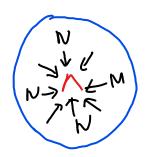


nucleon-nucleon interaction via meson exchange

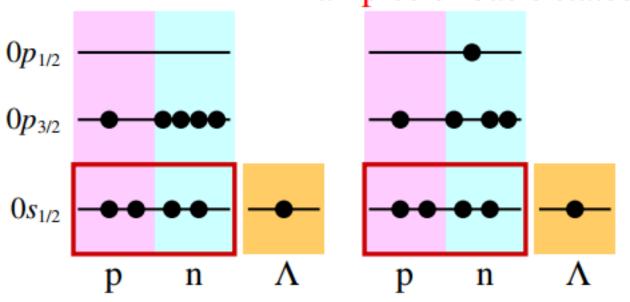
 $\Lambda \sigma$ and $\Lambda \omega$ couplings

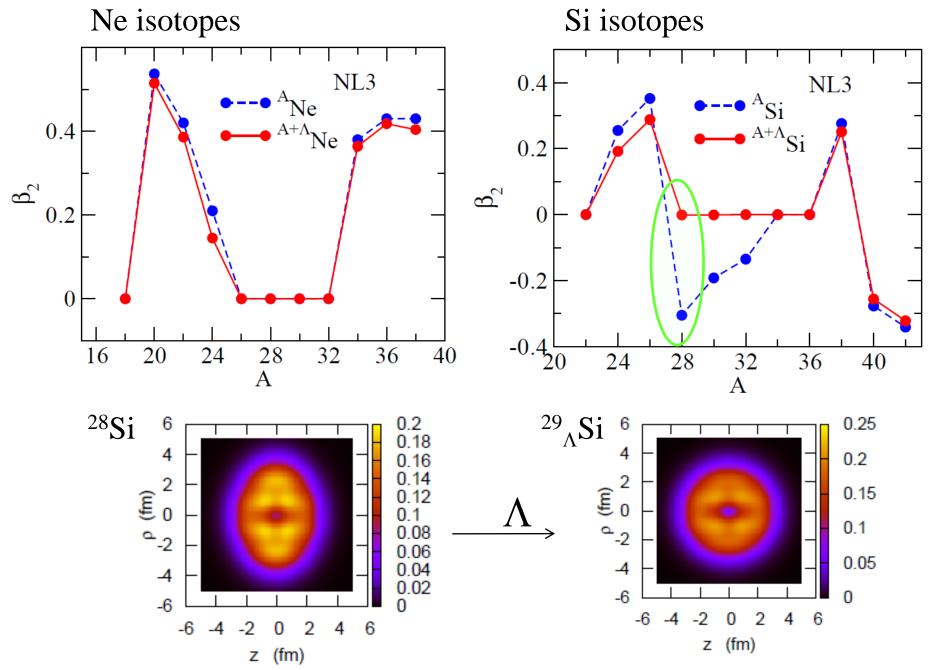
Symbol	Name	Quark content	Electric charge	Mass GeV/c ²	Spin
р	proton	uud	1	0.938	1/2
p	anti- proton	ūūd	-1	0.938	1/2
n	neutron	udd	0	0.940	1/2
Λ	lambda	uds	0	1.116	1/2
Ω^{-}	omega	SSS	-1	1.672	3/2

No Pauli principle Between N and 1.



Examples of basis states





Myaing Thi Win and K.Hagino, PRC78('08)054311

