Photo- and Electroproduction of Vector Mesons

Sang-Ho Kim (金相鎬)

Pukyong National University, Busan

Nuclear Physics School, 21-25 , June, 2021

asia pacific center for theoretical physics

https://www.apctp.org/plan.php/nps2021

Contents Introduction Soft hadronic processes 1. $\gamma p \rightarrow \varphi(1020) p$ 2. $\gamma^* p \rightarrow \phi(1020) p$ 3. $\gamma p \rightarrow J/\psi(3096) p$

A. Formalism

B. Results

4. Summary

QCD, the field theory of quark and gluon interactions,
 > is expected to describe the strong force between hadrons.
 > is a successful theory in the limit of short distances (perturbative QCD).

☐ Many of the scattering processes of hadrons are dominated by long-range forces ("soft interactions").

□ A large fraction of these soft interactions is mediated by vacuum quantum number ($J^{PC} = 0^{++}$) exchange and is termed "diffractive".

□ In hadronic interactions, diffraction is well described by Regge theory.

 $\Box \text{ Examples of diffractive scattering processes} > \overline{p} \ p \rightarrow \overline{p} \ p, \ \pi^{\pm} p \rightarrow \pi^{\pm} p, \ \gamma p \rightarrow (\rho, \ \omega, \ \phi, \ J/\psi) \ p \ ...$

Donnachie, Pomeron Physics and QCD (2002)

Donnachie, Pomeron Physics and QCD (2002)

Donnachie, Pomeron Physics and QCD (2002)

06

Is not associated with the meson trajectories.
 Has the vacuum quantum number, I=0 and C=+1.
 Governs relatively high energy regions.

Donnachie & Landshoff (DL) model: The two-gluon exchange mechanism is parametrized as a Pomeron exchange within the Regge phenomenology.

Donnachie, Pomeron Physics and QCD (2002)

Pomeron

1. Exclusive photoproduction of vector mesons

□ Diffractive scattering processes > $\overline{p} p \rightarrow \overline{p} p, \pi^{\pm} p \rightarrow \pi^{\pm} p$ > $\gamma p \rightarrow (\rho, \omega, \phi, J/\psi) p$

□ Particle Data Group 2020 (https://pdg.lbl.gov)

LIGHT UNFLAVORED MESONS (S = C = B = 0) For $I = 1 (\pi, b, \rho, a)$: $u \overline{d}, (u \overline{u} - d \overline{d})/\sqrt{2}, d \overline{u}$; for $I = 0 (\eta, \eta', h, h', \omega, \phi, f, f')$: $c_1(u\overline{u} + d\overline{d}) + c_2(s\overline{s})$ $\rho(770)$ $I^G(J^{PC}) = 1^+(1^{--})$ $\omega(782)$ $I^G(J^{PC}) = 0^-(1^{--})$ $\phi(1020)$ $I^G(J^{PC}) = 0^-(1^{--})$

 $c \ \overline{c} \ MESONS$ (including possibly non- $q \ \overline{q} \ states$) $J/\psi(1S) \qquad I^G(J^{PC}) = 0^-(1^{--})$

1. Exclusive photoproduction of vector mesons

Laget, PLB. 489. 313 (2000)

1. Exclusive photoproduction of vector mesons

1. Exclusive photoproduction of vector mesons

Laget, PLB. 489. 313 (2000)

[S.H.Kim, S.i.Nam, PRC.100.065208 (2019)]

[Dey (CLAS), PRC.89. 055208 (2014)]

spin-density matrices

□ Definition

 \Box λ , λ' : Helicity states of the vector-meson

 \Box For a *t*-channel exchange of X, the momentum of γ and V is collinear in the GJ frame.

Thus, the ρ_{ij}^{k} elements measure the degree of helicity flip due to the *t*-channel exchange of X in the GJ frame.

spin-density matrices

V rest frame Adair frame Helicty frame Gottfried-Jackson frame

□ Definition

$$\begin{split} \rho_{\lambda\lambda'}^{0} &= \frac{1}{N} \sum_{\lambda_{\gamma},\lambda_{i},\lambda_{f}} \mathcal{M}_{\lambda_{f}\lambda;\lambda_{i}\lambda_{\gamma}} \mathcal{M}_{\lambda_{f}\lambda';\lambda_{i}\lambda_{\gamma}}^{*}, \\ \rho_{\lambda\lambda'}^{1} &= \frac{1}{N} \sum_{\lambda_{\gamma},\lambda_{i},\lambda_{f}} \mathcal{M}_{\lambda_{f}\lambda;\lambda_{i}-\lambda_{\gamma}} \mathcal{M}_{\lambda_{f}\lambda';\lambda_{i}\lambda_{\gamma}}^{*}, \\ \rho_{\lambda\lambda'}^{2} &= \frac{i}{N} \sum_{\lambda_{\gamma},\lambda_{i},\lambda_{f}} \lambda_{\gamma} \mathcal{M}_{\lambda_{f}\lambda;\lambda_{i}-\lambda_{\gamma}} \mathcal{M}_{\lambda_{f}\lambda';\lambda_{i}\lambda_{\gamma}}^{*}, \\ \rho_{\lambda\lambda'}^{3} &= \frac{1}{N} \sum_{\lambda_{\gamma},\lambda_{i},\lambda_{f}} \lambda_{\gamma} \mathcal{M}_{\lambda_{f}\lambda;\lambda_{i}\lambda_{\gamma}} \mathcal{M}_{\lambda_{f}\lambda';\lambda_{i}\lambda_{\gamma}}^{*}, \end{split}$$

 Single helicity-flip transition between γ & V

 $\rho_{00}^0 \propto \left| \mathcal{M}_{\lambda_{\gamma=1},\lambda_{\phi=0}} \right|^2 + \left| \mathcal{M}_{\lambda_{\gamma=-1},\lambda_{\phi=0}} \right|^2$

$$-\mathrm{Im}[\rho_{1-1}^2] \approx \rho_{1-1}^1 = \frac{1}{2} \frac{\sigma^N - \sigma^U}{\sigma^N + \sigma^U}$$

 Relative contribution between Natural & Unnatural parity exchanges

□ Convert into other frames by applying Wigner rotations:

$$\begin{aligned} \alpha_{A \to H} &= \theta_{c.m.}, \\ \alpha_{H \to GJ} &= -\cos^{-1} \left(\frac{v - \cos \theta_{c.m.}}{v \cos \theta_{c.m.} - 1} \right) \\ \alpha_{A \to GJ} &= \alpha_{A \to H} + \alpha_{H \to GJ} \end{aligned}$$

v : The velocity of the K meson in the φ rest frame ($\varphi \rightarrow K\overline{K}$ decay)

decay angular distributions ($\phi \rightarrow K\overline{K}$ decay)

final state interaction (FSI)

 $\Box Scattering amplitude: T_{\phi N,\gamma N}(E) = [B_{\phi N,\gamma N}]$

□ Ward-Takahashi identity

 $\mathcal{M}(k) = \epsilon_{\mu}(k)\mathcal{M}^{\mu}(k)$

if we replace ϵ_{μ} with k_{μ} :

$$k_{\mu}\mathcal{M}^{\mu}(k) = 0$$

final state interaction (FSI)

□ Scattering amplitude: $T_{\phi N,\gamma N}(E) = [B_{\phi N,\gamma N}]$

Effective Lagrangians \Box EM vertex $\mathcal{L}_{\gamma\phi f_1} = g_{\gamma\phi f_1} \epsilon^{\mu\nu\alpha\beta} \partial_{\mu} A_{\nu} \partial^{\lambda} \partial_{\lambda} \phi_{\alpha} f_{1\beta}$ $\mathcal{L}_{\gamma\Phi\phi} = \frac{eg_{\gamma\Phi\phi}}{M_{\phi}} \epsilon^{\mu\nu\alpha\beta} \partial_{\mu}A_{\nu}\partial_{\alpha}\phi_{\beta}\Phi$ $\mathcal{L}_{\gamma S \phi} = \frac{e g_{\gamma S \phi}}{M_{\phi}} F^{\mu \nu} \phi_{\mu \nu} S$ □ strong vertex $\mathcal{L}_{f_1NN} = -g_{f_1NN}\bar{N} \bigg[\gamma_{\mu} - i \frac{\kappa_{f_1NN}}{2M_N} \gamma_{\nu} \gamma_{\mu} \partial^{\nu} \bigg] f_1^{\mu} \gamma_5 N$ $\mathcal{L}_{\Phi NN} = -ig_{\Phi NN}\bar{N}\Phi\gamma_5N$ $\mathcal{L}_{SNN} = -g_{SNN}\bar{N}SN$

$$\mathcal{L}_{\gamma NN} = -e\bar{N} \bigg[\gamma_{\mu} - \frac{\kappa_{N}}{2M_{N}} \sigma_{\mu\nu} \partial^{\nu} \bigg] N A^{\mu}$$
$$\mathcal{L}_{\phi NN} = -g_{\phi NN} \bar{N} \bigg[\gamma_{\mu} - \frac{\kappa_{\phi NN}}{2M_{N}} \sigma_{\mu\nu} \partial^{\nu} \bigg] N \phi^{\mu}$$
17

final state interaction (FSI)

□ Scattering amplitude: $T_{\phi N,\gamma N}(E) = [B_{\phi N,\gamma N}]$

$$\mathcal{M} = \varepsilon_{\nu}^{*} \bar{u}_{N'} \mathcal{M}^{\mu\nu} u_{N} \epsilon_{\mu}$$

$$\mathcal{M}_{f_{1}}^{\mu\nu} = i \frac{M_{\phi}^{2} g_{\gamma f_{1} \phi} g_{f_{1} NN}}{t - M_{f_{1}}^{2}} \epsilon^{\mu\nu\alpha\beta} \left[-g_{\alpha\lambda} + \frac{q_{t\alpha}q_{t\lambda}}{M_{f_{1}}^{2}} \right]$$

$$\times \left[\gamma^{\lambda} + \frac{\kappa_{f_{1} NN}}{2M_{N}} \gamma^{\sigma} \gamma^{\lambda} q_{t\sigma} \right] \gamma_{5} k_{1\beta},$$

$$\mathcal{M}_{\Phi}^{\mu\nu} = i \frac{e}{M_{\phi}} \frac{g_{\gamma} \phi \phi g \phi_{NN}}{t - M_{\Phi}^{2}} \epsilon^{\mu\nu\alpha\beta} k_{1\alpha} k_{2\beta} \gamma_{5},$$

$$\mathcal{M}_{S}^{\mu\nu} = \frac{e}{M_{\phi}} \frac{2g_{\gamma} s_{\phi} g_{SNN}}{t - M_{S}^{2} + i\Gamma_{S} M_{S}} \left(k_{1} k_{2} g^{\mu\nu} - k_{1}^{\mu} k_{2}^{\nu} \right),$$

$$\mathcal{M}_{\phi rad,s}^{\mu\nu} = \frac{e g_{\phi NN}}{s - M_{N}^{2}} \left(\gamma^{\nu} - i \frac{\kappa_{\phi NN}}{2M_{N}} \sigma^{\nu\alpha} k_{2\alpha} \right) (q_{s} + M_{N})$$

$$\times \left(\gamma^{\mu} + i \frac{\kappa_{N}}{2M_{N}} \sigma^{\mu\beta} k_{1\beta} \right),$$

$$\mathcal{M}_{\phi rad,u}^{\mu\nu} = \frac{e g_{\phi NN}}{u - M_{N}^{2}} \left(\gamma^{\mu} + i \frac{\kappa_{N}}{2M_{N}} \sigma^{\mu\alpha} k_{1\alpha} \right) (q_{u} + M_{N})$$

$$\times \left(\gamma^{\nu} - i \frac{\kappa_{\phi NN}}{2M_{N}} \sigma^{\nu\beta} k_{2\beta} \right),$$

$$\Box \text{ Effective Lagrangians}$$

$$\Box \text{ EM vertex}$$

$$\mathcal{L}_{\gamma\phi f_{1}} = g_{\gamma\phi f_{1}} \epsilon^{\mu\nu\alpha\beta} \partial_{\mu}A_{\nu}\partial^{\lambda}\partial_{\lambda}\phi_{\alpha}f_{1\beta}$$

$$\mathcal{L}_{\gamma\phi\phi} = \frac{eg_{\gamma\phi\phi}}{M_{\phi}} \epsilon^{\mu\nu\alpha\beta} \partial_{\mu}A_{\nu}\partial_{\alpha}\phi_{\beta}\Phi$$

$$\mathcal{L}_{\gamma S\phi} = \frac{eg_{\gammaS\phi}}{M_{\phi}} F^{\mu\nu}\phi_{\mu\nu}S$$

$$\Box \text{ strong vertex}$$

$$\mathcal{L}_{f_{1}NN} = -g_{f_{1}NN}\bar{N} \Big[\gamma_{\mu} - i\frac{\kappa_{f_{1}NN}}{2M_{N}} \gamma_{\nu}\gamma_{\mu}\partial^{\nu} \Big] f_{1}^{\mu}\gamma_{5}N$$

$$\mathcal{L}_{\phi NN} = -ig_{\phi NN}\bar{N}\Phi\gamma_{5}N$$

$$\mathcal{L}_{SNN} = -g_{SNN}\bar{N}SN$$

$$\left(\mathcal{L}_{\gamma NN} = -e\bar{N} \Big[\gamma_{\mu} - \frac{\kappa_{N}}{2M_{N}} \sigma_{\mu\nu}\partial^{\nu} \Big] NA^{\mu}$$

$$\mathcal{L}_{\phi NN} = -g_{\phi NN}\bar{N} \Big[\gamma_{\mu} - \frac{\kappa_{\phi NN}}{2M_{N}} \sigma_{\mu\nu}\partial^{\nu} \Big] N\phi^{\mu}$$

17

final state interaction (FSI)

 $\Box Scattering amplitude: T_{\phi N,\gamma N}(E) = [B_{\phi N,\gamma N} + T_{\phi N,\gamma N}^{FSI}(E)]$

 \Box decay mode of φ -meson

 $K^+ K^-$

 Γ_1

 $(49.2 \pm 0.5)\%$

 $(34.0 \pm 0.4)\%$

final state interaction (FSI)

2. Exclusive electroproduction of vector mesons

$\gamma^{(*)} p \rightarrow V p$

Decay frame

Adair frame

Helicty frame: in favor of s-channel helicity conservation (SCHC)

Gottfried-Jackson frame: in favor of t-channel helicity conservation (TCHC)

 \Box Photon(γ) polarization vector Transverse comp. ($\lambda_{\gamma}=\pm 1$) [photo-, electro-] Longitudinal comp. ($\lambda\gamma=0$) [electro-]

 \rightarrow ot, ol, ott, olt, R=ol/ot ... (T-L separated cross sections)

[photo-, electro-] [electro-]

[photo-, electro-] [photo-, electro-]

2. Exclusive electroproduction of vector mesons

 $\gamma^* p \rightarrow V(\rho, \omega, \phi, J/\psi) p$ theoretical framework high Q² $Q^2 = 0 < --- > low Q^2$ <<---->> ρ, ω, \dots factorization GPD's *t*-channel Regge handbag <<---->> diagram trajectory exchange

Extending to "the virtual-photon sector" opens the way
 > to explore to what extent meson exchange survives,
 > to observe hard-scattering mechanisms,
 with a second hard scale, "photon virtuality -(ke-ke')²=Q²".

2. Exclusive electroproduction of vector mesons

$\gamma^* \: p \to V(\rho, \: \omega, \: \phi, \: J/\psi) \: p$

[Morand (CLAS), EPJ.A24.445 (2005)]

□ We can test which of the two descriptions - with "hadronic" or "quark" degrees of freedom - applies in the considered kinematical domain.

□ At low photon virtualities ($Q^2 \leq Mv^2$) and low energies ($W \leq$ several GeV), our hadronic effective model is applicable.

□ The Q² dependence of the cross sections is well described. □ The agreement with the exp. data is good at the real photon limit Q²=0.

T-L separated cross sections

[CLAS (Santoro et al.) PRC.78.025210 (2008)] [S.H.Kim, S.i.Nam, PRC.101.065201 (2020)]

Pomeron and S-meson exchanges dominate transverse (T) and longitudinal (L) cross sections, respectively.

T-L separated cross sections

[CLAS (Santoro et al.) PRC.78.025210 (2008)] [S.H.Kim, S.i.Nam, PRC.101.065201 (2020)]

Pomeron and S-meson exchanges dominate transverse (T) and longitudinal (L) cross sections, respectively.

T-L separated cross sections 10 10 (a) W = 2.5 GeV(b) W = 2.8 GeV(c) W = 4.7 GeV5 5 σ_{TT} [nb] 0 -5 -5 2 3 40 2 3 40 2 3 0 1 10 10 (d) W = 2.5 GeV(e) W = 2.8 GeV(f) W = 4.7 GeV5 5 σ_{LT} [nb] -5 -5 2 3 40 2 3 40 2 3 0 1 1 1 4 Q^2 [GeV²]

Pomeron S (ao,fo) PS (π,η) AV (f1) total

□ The signs of Pomeron and meson contributions are opposite to each other. □ σ_{TT} and σ_{LT} become zero as W and Q² increases, indicating SCHC.

spin-density matrix elements (rk^{ij})

 \Box By definition, if SCHC holds, $r_{ij}^{k} = 0$.

The relative contributions of different meson exchanges are verified.
 Our hadronic approach is very successful for describing the data at Q²=(0-4) GeV², W=(2-5) GeV, t=(0-2) GeV².

☐ The LHCb Collaboration reported the pentaquark states $P_c^+(4312, 4440, 4457)$ with the quark content uudcc.

> Its existence can be verified in $\gamma p \rightarrow J/\psi p$ in the *s* channel.

- > Not clear signal from the "Hall D" experiment.
- > The "Hall C" experiment at the 12 JLab GeV will produce new results .

□ The LHCb Collaboration reported the pentaquark states $P_c^+(4312, 4440, 4457)$ with the quark content uudcc.

- > Its existence can be verified in $\gamma p \rightarrow J/\psi p$ in the *s* channel.
- > Not clear signal from the "Hall D" experiment.
- > The "Hall C" experiment at the 12 JLab GeV will produce new results .

[Exp: GlueX, PRL.123.072001 (2019)] [Theory: Brodsky et al, PLB.498.23 (2001) based on PQCD and effective HQ field theory]

□ Particle Data Group 2020 (https://pdg.lbl.gov)

Mesons	reviews	_		
Light Unflavored		•	$\eta_c(1S)$	$0^{+}(0^{-+})$
Further States		•	$J/\psi(1S)$	0-(1)
Strange		•	$\chi_{c0}(1P)$	0+(0++)
Charmed		•	$\chi_{c1}(1P)$	0+(1++
Charmed, Strange (including pos	•	$h_c(1P)$	$0^{-}(1^{+-})$	
non- $q\bar{q}$ states)		•	$\chi_{c2}(1P)$	$0^+(2^{++})$
Bottom		•	$\eta_c(2S)$	$0^+(0^{-+})$
Bottom, Strange		•	$\psi(2S)$	0-(1
Bottom, Charmed		•	$\psi(3770)$	$0^{-}(1^{})$
$c\bar{c}$ (including possibly non- $q\bar{q}$ sta	tes)		$\psi_2(3823)$	$0^{-}(2^{})$
$b\overline{b}$ (including possibly non- $q\overline{q}$ sta	tes)		was $\psi(3823), X(3823)$	
Non $q\bar{q}$ Candidates		•	$\psi_3(3842)$	$0^{-}(3^{})$

☐ The LHCb Collaboration reported the pentaquark states $P_c^+(4312, 4440, 4457)$ with the quark content uudcc.

- > Its existence can be verified in $\gamma p \rightarrow J/\psi p$ in the *s* channel.
- > Not clear signal from the "Hall D" experiment.
- > The "Hall C" experiment at the 12 JLab GeV will produce new results .

\Box co	upling con	nstants							
$\frac{\gamma}{2}$	J/ψ		γ	J/	ψ		(•	$\eta_c(1S)$	$0^+(0^{-+})$
"h	200000		m	6000	00		•	$J/\psi(1S)$	$0^{-}(1^{})$
	· •	<<					•	$\chi_{c0}(1P)$	$0^+(0^{++})$
	$\bigstar \pi, \eta, \dots$			χ_{c0}, j	$\chi_{c1},$ -		•	$\chi_{c1}(1P)$	$0^+(1^{++})$
				1			•	$h_c(1P)$	$0^{-}(1^{+-})$
		>>			•		•	$\chi_{c2}(1P)$	$0^+(2^{++})$
p	p		p	-	p		•	$\eta_c(2S)$	$0^+(0^{-+})$
Which is more dominant?					•	$\psi(2S)$	$0^{-}(1^{})$		
					•	$\psi(3770)$	$0^{-}(1^{})$		
□ ligh	nt mesons	D				_	•	$\psi_2(3823)$ was $\psi_{(3823)}, X_{(3823)}$	$0^{-}(2^{})$
π	$\frac{134}{0^{-}}$	$\frac{\text{Br}_{J/\psi \to M\gamma}}{(3.56 \pm 0.17)}$	$\frac{g_{J/\psi-}}{10^{-5}}$ 0.00	$\frac{M\gamma}{2}$	g_{MNN} 13.0			$\psi_{3}(3842)$	$0^{-}(3^{})$
η	$548 (0^{-})$	(1.108 ± 0.027)	$\cdot 10^{-3}$ 0.02	11	6.34				
η'	$958~(0^-)$	(5.25 ± 0.07) ·	10^{-3} 0.02	26	6.87				
f_1	$1285 (1^+)$	$(6.1 \pm 0.8) \cdot 1$	0^{-4} 0.00	07	2.5 ± 0.5				
$\eta_c(1S)$	2984 (0)	$(1.7 \pm 0.4) \cdot 1$	0 2.1	4	0.0289				

\Box cc mesons

Mesons	Mass (J^P)	$\Gamma_M [{\rm MeV}]$	$\operatorname{Br}_{M \to J/\psi\gamma} [\%]$	$g_{M \to J/\psi\gamma}$	$\operatorname{Br}_{M \to p\bar{p}}$	$g_{M \to p\bar{p}}$
$\chi_{c0}(1P)$	$3415~(0^+)$	10.8	1.40 ± 0.05	1.47	$(2.21 \pm 0.08) \cdot 10^{-4}$	0.0046
$\chi_{c1}(1P)$	$3511 \ (1^+)$	0.84	34.3 ± 1.0	0.10	$(7.60 \pm 0.34) \cdot 10^{-5}$	0.00084
$\eta_c(2S)$	$3638~(0^{-})$	11.3	< 1.4	< 1.51	seen	_
$\chi_{c1}(3872)$	$3872 (1^+)$	< 1.2	> 0.7	> 0.008	not seen	_

total cross section (each contribution)

 $\Box \sigma (light mesons) > \sigma (tetraquark states) [by one ~ two orders of magnitudes]$ $PS mesons S mesons <math>\leftarrow$ mostly

 $\Box \sigma (light mesons) > \sigma (tetraquark states) [by one ~ two orders of magnitudes]$ $PS mesons S mesons <math>\leftarrow$ mostly

□ Thus the tetraquark states will become important for the longitudinal part σ_L for $\gamma^* p \rightarrow J/\psi p$.

Summary

- ◇ For γ p → φ p & γ* p → φ p, we studied the relative contributions between the Pomeson and various meson exchanges.
 The light-meson (π, η, a₀, f₀, ...) contribution is crucial to describe the data at low energies.
- ♦ For $\gamma p \rightarrow J/\psi p$, the light-meson contribution is not negligible to the cross sections and can be confirmed by the upcoming GlueX data at Hall C. The tetraquark state χ_{c0} (3415, 0⁺) is important for the longitudinal part σ_L for $\gamma^* p \rightarrow J/\psi p$.

Summary

- ◇ For γ p → φ p & γ* p → φ p, we studied the relative contributions between the Pomeson and various meson exchanges. The light-meson (π, η, a₀, f₀, ...) contribution is crucial to describe the data at low energies.
- ♦ For $\gamma p \rightarrow J/\psi p$, the light-meson contribution is not negligible to the cross sections and can be confirmed by the upcoming GlueX data at Hall C. The tetraquark state χ_{c0} (3415, 0⁺) is important for the longitudinal part σ_L for $\gamma^* p \rightarrow J/\psi p$.

 \diamond Extension of these elementary processes to reactions off nuclei targets [$\gamma^{(*)} A \rightarrow V A$]

> A distorted-wave impulse approximation within the multiple scattering formulation is used to analyze the low-energy LEPS data [γ ⁴He → φ ⁴He].
 > Extension to γ^(*) A → V[φ, J/ψ, Υ(1S)] A, [A = ²H, ¹²C, ...]

Summary

 ◇ For γ p → φ p & γ* p → φ p, we studied the relative contributions between the Pomeson and various meson exchanges.
 The light-meson (π, η, a₀, f₀, ...) contribution is crucial to describe the data at low energies.

♦ For $\gamma p \rightarrow J/\psi p$, the light-meson contribution is not negligible to the cross sections and can be confirmed by the upcoming GlueX data at Hall C. The tetraquark state χ_{c0} (3415, 0⁺) is important for the longitudinal part σ_L for $\gamma^* p \rightarrow J/\psi p$.

 \diamond Extension of these elementary processes to reactions off nuclei targets [$\gamma^{(*)} A \rightarrow V A$]

> A distorted-wave impulse approximation within the multiple scattering formulation is used to analyze the low-energy LEPS data [γ ⁴He → φ ⁴He].
 > Extension to γ^(*) A → V[φ, J/ψ, Υ(1S)] A, [A = ²H, ¹²C, ...]

 Approved 12 GeV era experiments to date at Jafferson Labarotory: [E12-09-003] Nucleon Resonances Studies with CLAS
 [E12-11-002] Proton Recoil Polarization in the ⁴He(e,e'p)³H, ²He(e,e'p)n, ¹He(e,e'p)
 [E12-12-006] Near Threshold Electroproduction of J/ψ at 11 GeV
 [E12-12-007] Exclusive Phi Meson Electroproduction with CLAS12

 \diamond Electron-Ion Collider (EIC) will carry out the relevant experiments in the future.

Thank you very much for your attention