Photo- and Electroproduction of Vector Mesons

Sang-Ho Kim (金相鎬)

Pukyong National University, Busan

Nuclear Physics School, 21-25 , June, 2021

**asia pacific center for
absorption** theoretical physics

https://www.apctp.org/plan.php/nps2021

Contents Introduction Soft hadronic processes $1. \gamma p \rightarrow \varphi(1020) p$ 2. $\gamma^* p \rightarrow \varphi(1020) p$ 3. γ p \rightarrow J/ψ(3096) p A. Formalism B. Results

4. Summary

❏ QCD, the field theory of quark and gluon interactions, > is expected to describe the strong force between hadrons. > is a successful theory in the limit of short distances (perturbative QCD).

❏ Many of the scattering processes of hadrons are dominated by long-range forces ("soft interactions").

❏ A large fraction of these soft interactions is mediated by vacuum quantum number ($J^{PC} = 0^{++}$) exchange and is termed "diffractive".

❏ In hadronic interactions, diffraction is well described by Regge theory.

❏ Examples of diffractive scattering processes \overline{p} p $\rightarrow \overline{p}$ p, π^{\pm} p $\rightarrow \pi^{\pm}$ p, γ p \rightarrow (ρ , ω , φ , J/ψ) p ...

Donnachie, Pomeron Physics and QCD (2002)

Donnachie, Pomeron Physics and QCD (2002)

Donnachie, Pomeron Physics and QCD (2002)

❏ Is not associated with the meson trajectories. \Box Has the vacuum quantum number, I=0 and C=+1. ❏ Governs relatively high energy regions.

❏ Donnachie & Landshoff (DL) model: The two-gluon exchange mechanism is parametrized as a Pomeron exchange within the Regge phenomenology.

Pomeron

1. Exclusive photoproduction of vector mesons

❏ Diffractive scattering processes $> \overline{p} p \rightarrow \overline{p} p$, $\pi^{\pm} p \rightarrow \pi^{\pm} p$ $> \gamma p \rightarrow (\rho, \omega, \varphi, J/\psi) p$

❏ Particle Data Group 2020 (https://pdg.lbl.gov)

LIGHT UNFLAVORED MESONS $(S = C = B = 0)$ For $I=1$ (π, b, ρ, a) : $u \overline{d}$, $(u \overline{u}- d \overline{d})/\sqrt{2}$, $d \overline{u}$; for $I = 0$ $(\eta, \eta', h, h', \omega, \phi, f, f')$: $c_1(u\overline{u} + d\overline{d}) + c_2(s\overline{s})$ $\rho(770)$ $I^G(J^{PC}) = 1^+(1^{--})$ $\omega(782)$ $I^G(J^{PC}) = 0^-(1^{--})$ $\phi(1020)$ $I^G(J^{PC}) = 0^-(1^{--})$

 $c\bar{c}$ MESONS (including possibly non- $q\bar{q}$ states) $J/\psi(1S)$ $I^G(J^{PC}) = 0^-(1^{--})$

1. Exclusive photoproduction of vector mesons

Laget, PLB.489.313(2000) 10

1. Exclusive photoproduction of vector mesons

1. Exclusive photoproduction of vector mesons

Laget,PLB.489.313(2000)

[S.H.Kim, S.i.Nam, PRC.100.065208 (2019)]

[Dey (CLAS), PRC.89. 055208 (2014)]

spin-density matrices

◻ Definition

 $\Box \lambda$, λ' : Helicity states of the vector-meson

❏ For a *t*-channel exchange of X, the momentum of γ and V is collinear in the GJ frame.

Thus, the pi^k elements measure the degree of helicity flip due to the *t*-channel exchange of X in the GJ frame.

spin-density matrices

 $p₂$

V rest frame Adair frame Helicty frame Gottfried-Jackson frame

◻ Definition

 $z_{\rm GJ}$

$$
\rho_{\lambda\lambda'}^{0} = \frac{1}{N} \sum_{\lambda_{\gamma},\lambda_{i},\lambda_{f}} \mathcal{M}_{\lambda_{f}\lambda;\lambda_{i}\lambda_{\gamma}} \mathcal{M}_{\lambda_{f}\lambda';\lambda_{i}\lambda_{\gamma}}^{*},
$$
\n
$$
\rho_{\lambda\lambda'}^{1} = \frac{1}{N} \sum_{\lambda_{\gamma},\lambda_{i},\lambda_{f}} \mathcal{M}_{\lambda_{f}\lambda;\lambda_{i}-\lambda_{\gamma}} \mathcal{M}_{\lambda_{f}\lambda';\lambda_{i}\lambda_{\gamma}}^{*},
$$
\n
$$
\rho_{\lambda\lambda'}^{2} = \frac{i}{N} \sum_{\lambda_{\gamma},\lambda_{i},\lambda_{f}} \lambda_{\gamma} \mathcal{M}_{\lambda_{f}\lambda;\lambda_{i}-\lambda_{\gamma}} \mathcal{M}_{\lambda_{f}\lambda';\lambda_{i}\lambda_{\gamma}}^{*},
$$
\n
$$
\rho_{\lambda\lambda'}^{3} = \frac{1}{N} \sum_{\lambda_{\gamma},\lambda_{i},\lambda_{f}} \lambda_{\gamma} \mathcal{M}_{\lambda_{f}\lambda;\lambda_{i}\lambda_{\gamma}} \mathcal{M}_{\lambda_{f}\lambda';\lambda_{i}\lambda_{\gamma}}^{*},
$$

‣ Single helicity-flip transition between $\gamma \& V$

$$
-\mathrm{Im}\big[\rho_{1-1}^2\big] \approx \rho_{1-1}^1 = \frac{1}{2} \frac{\sigma^N - \sigma^U}{\sigma^N + \sigma^U}
$$

 $\rho_{00}^0 \propto \left| \mathcal{M}_{\lambda_{\gamma=1},\lambda_{\phi=0}} \right|^2 + \left| \mathcal{M}_{\lambda_{\gamma=-1},\lambda_{\phi=0}} \right|^2$

‣ Relative contribution between Natural & Unnatural parity exchanges

 \Box Convert into other frames by applying Wigner rotations:

$$
\alpha_{A\to H} = \theta_{c.m.},
$$

\n
$$
\alpha_{H\to GJ} = -\cos^{-1}\left(\frac{v - \cos\theta_{c.m.}}{v \cos\theta_{c.m.} - 1}\right)
$$

\n
$$
\alpha_{A\to GJ} = \alpha_{A\to H} + \alpha_{H\to GJ}
$$

v : The velocity of the K meson in the φ rest frame ($\varphi \rightarrow K\overline{K}$ decay)

decay angular distributions ($\varphi \rightarrow K\overline{K}$ decay)

final state interaction (FSI)

□ Scattering amplitude: $T_{\phi N, \gamma N}(E) = [B_{\phi N, \gamma N}]$

❏ Ward-Takahashi identity

 $\mathcal{M}(k) = \epsilon_{\mu}(k) \mathcal{M}^{\mu}(k)$

if we replace ϵ_{μ} with k_{μ} :

$$
k_{\mu}\mathcal{M}^{\mu}(k)=0
$$

final state interaction (FSI)

□ Scattering amplitude: $T_{\phi N,\gamma N}(E) = [B_{\phi N,\gamma N}]$

❏ Effective Lagrangians□ EM vertex $\mathcal{L}_{\gamma\phi f_1}=g_{\gamma\phi f_1}\epsilon^{\mu\nu\alpha\beta}\partial_\mu A_\nu\partial^\lambda\partial_\lambda\phi_\alpha f_{1\beta}$ $\mathcal{L}_{\gamma\Phi\phi}=\frac{eg_{\gamma\Phi\phi}}{M_{\phi}}\epsilon^{\mu\nu\alpha\beta}\partial_{\mu}A_{\nu}\partial_{\alpha}\phi_{\beta}\Phi$ $\mathcal{L}_{\gamma S \phi} = \frac{eg_{\gamma S \phi}}{M_{\phi}} F^{\mu \nu} \phi_{\mu \nu} S$ □ strong vertex $\mathcal{L}_{f_1NN}=-g_{f_1NN}\bar{N}\bigg[\gamma_\mu-i\frac{\kappa_{f_1NN}}{2M_N}\gamma_\nu\gamma_\mu\partial^\nu\bigg]f_1^\mu\gamma_5N$ $\begin{split} \mathcal{L}_{\Phi NN} &= -\,ig_{\Phi NN}\bar{N}\Phi\gamma_5N\\ \mathcal{L}_{SNN} &= -\,g_{SNN}\bar{N}SN \end{split}$

$$
\mathcal{L}_{\gamma NN} = - e\bar{N} \bigg[\gamma_{\mu} - \frac{\kappa_N}{2M_N} \sigma_{\mu\nu} \partial^{\nu} \bigg] NA^{\mu}
$$

$$
\mathcal{L}_{\phi NN} = - g_{\phi NN} \bar{N} \bigg[\gamma_{\mu} - \frac{\kappa_{\phi NN}}{2M_N} \sigma_{\mu\nu} \partial^{\nu} \bigg] N \phi^{\mu}
$$

$$
17
$$

final state interaction (FSI)

□ Scattering amplitude: $T_{\phi N,\gamma N}(E) = [B_{\phi N,\gamma N}]$

Example 12 Exercise Lagrangians

\n
$$
\begin{aligned}\n\Box \text{ EM vertex} \\
\mathcal{L}_{\gamma \phi f_1} &= g_{\gamma \phi f_1} \epsilon^{\mu \nu \alpha \beta} \partial_{\mu} A_{\nu} \partial^{\lambda} \partial_{\lambda} \phi_{\alpha} f_{1\beta} \\
\mathcal{L}_{\gamma \Phi \phi} &= \frac{eg_{\gamma \Phi \phi}}{M_{\phi}} \epsilon^{\mu \nu \alpha \beta} \partial_{\mu} A_{\nu} \partial_{\alpha} \phi_{\beta} \Phi \\
\mathcal{L}_{\gamma S \phi} &= \frac{eg_{\gamma S \phi}}{M_{\phi}} F^{\mu \nu} \phi_{\mu \nu} S \\
\Box \text{ strong vertex} \\
\mathcal{L}_{f_1 NN} &= -g_{f_1 NN} \bar{N} \Big[\gamma_{\mu} - i \frac{\kappa_{f_1 NN}}{2M_N} \gamma_{\nu} \gamma_{\mu} \partial^{\nu} \Big] f_1^{\mu} \gamma_5 N \\
\mathcal{L}_{\Phi NN} &= -ig_{\Phi NN} \bar{N} S N \\
\mathcal{L}_{SNN} &= -g_{SNN} \bar{N} S N \\
\mathcal{L}_{\gamma NN} &= -e \bar{N} \Big[\gamma_{\mu} - \frac{\kappa_N}{2M_N} \sigma_{\mu \nu} \partial^{\nu} \Big] N A^{\mu} \\
\mathcal{L}_{\phi NN} &= -g_{\phi NN} \bar{N} \Big[\gamma_{\mu} - \frac{\kappa_{\phi NN}}{2M_N} \sigma_{\mu \nu} \partial^{\nu} \Big] N \phi^{\mu}\n\end{aligned}
$$

17

final state interaction (FSI)

◻ decay mode of φ-meson

 $K^+ K^-$

 Γ_1

 $(49.2 \pm 0.5)\%$

final state interaction (FSI)

2. Exclusive electroproduction of vector mesons

$\gamma^{(*)}$ p \rightarrow V p

 \Box Photon(γ) polarization vector Transverse comp. $(\lambda_{\gamma}=\pm 1)$ [photo-, electro-] Longitudinal comp. $(\lambda_{\gamma}=0)$ [electro-]

 \rightarrow σ , d σ /d Ω , d σ /dt [photo-, electro-] \rightarrow στ, σι, σττ, σιτ, $R = \sigma L / \sigma T$... [electro-] (T-L separated cross sections)

 \rightarrow spin-density matrices (ρ_{ij}) [photo-, electro-] \rightarrow decay angular distributions (W) [photo-, electro-]

❏ Decay frame

Adair frame

Helicty frame: in favor of s-channel helicity conservation (SCHC)

Gottfried-Jackson frame: in favor of t-channel helicity conservation (TCHC)

2. Exclusive electroproduction of vector mesons

 $γ$ ^{*} $p \rightarrow V(ρ, ω, φ, J/ψ)$ p theoretical framework $\langle \langle - \rangle \rangle$ high Q^2 $Q^2=0$ <---> low Q^2 $\rho, \omega, ...$ factorization GPD's $\boldsymbol{\eta}$ *t*-channel Regge $\vert \ll \sim \rightarrow \rangle$ handbag ajectory exchange trajectory exchange

❏ Extending to "the virtual-photon sector" opens the way > to explore to what extent meson exchange survives, > to observe hard-scattering mechanisms, with a second hard scale, "photon virtuality $-(ke-ke^2)^2=Q^{2}$ ".

2. Exclusive electroproduction of vector mesons

$γ$ ^{*} $p \rightarrow V(ρ, ω, φ, J/ψ)$ p

[Morand (CLAS), EPJ.A24.445 (2005)]

❏ We can test which of the two descriptions - with "hadronic" or "quark" degrees of freedom - applies in the considered kinematical domain.

 \Box At low photon virtualities ($Q^2 \lesssim Mv^2$) and low energies (W \lesssim several GeV), our hadronic effective model is applicable.

 \Box The Q^2 dependence of the cross sections is well described. \Box The agreement with the exp. data is good at the real photon limit Q²=0.

T-L separated cross sections

[CLAS (Santoro et al.) PRC.78.025210 (2008)] [S.H.Kim, S.i.Nam, PRC.101.065201 (2020)]

❏ Pomeron and S-meson exchanges dominate transverse (T) and longitudinal (L) cross sections, respectively.

T-L separated cross sections

[CLAS (Santoro et al.) PRC.78.025210 (2008)] [S.H.Kim, S.i.Nam, PRC.101.065201 (2020)]

❏ Pomeron and S-meson exchanges dominate transverse (T) and longitudinal (L) cross sections, respectively.

❏ The signs of Pomeron and **meson** contributions are opposite to each other. \Box σττ and σιτ become zero as W and Q^2 increases, indicating SCHC.

spin-density matrix elements (rkij)

 \Box By definition, if SCHC holds, $rij^k = 0$.

❏ The relative contributions of different meson exchanges are verified. ❏ Our hadronic approach is very successful for describing the data at $Q^2=(0-4) \text{ GeV}^2$, W=(2-5) GeV, t=(0-2) GeV².

❏ The LHCb Collaboration reported the pentaquark states $P_c^+(4312, 4440, 4457)$ with the quark content uudcc.

 $>$ Its existence can be verified in $\gamma p \rightarrow J/\psi p$ in the *s* channel.

- > Not clear signal from the "Hall D" experiment.
- > The "Hall C" experiment at the 12 JLab GeV will produce new results .

❏ The LHCb Collaboration reported the pentaquark states $P_c^+(4312, 4440, 4457)$ with the quark content uudcc.

- $>$ Its existence can be verified in $\gamma p \rightarrow J/\psi p$ in the *s* channel.
- > Not clear signal from the "Hall D" experiment.
- > The "Hall C" experiment at the 12 JLab GeV will produce new results .

[Exp: GlueX, PRL.123.072001 (2019)] [Theory: Brodsky et al, PLB.498.23 (2001) based on POCD and effective HO field theoryl

❏ Particle Data Group 2020 (https://pdg.lbl.gov)

❏ The LHCb Collaboration reported the pentaquark states $P_c^+(4312, 4440, 4457)$ with the quark content uudcc.

- $>$ Its existence can be verified in $\gamma p \rightarrow J/\psi p$ in the *s* channel.
- > Not clear signal from the "Hall D" experiment.
- > The "Hall C" experiment at the 12 JLab GeV will produce new results .

\Box cc mesons

total cross section (each contribution)

 \Box σ (light mesons) > σ (tetraquark states) [by one ~ two orders of magnitudes] PS mesons S mesons \leftarrow mostly

 \Box σ (light mesons) > σ (tetraquark states) [by one ~ two orders of magnitudes] PS mesons S mesons \leftarrow mostly

 \Box Thus the tetraquark states will become important for the longitudinal part σ for $\gamma^* p \to J/\psi p$.

Summary

- \Diamond For γ p \rightarrow ϕ p & γ^* p \rightarrow ϕ p, we studied the relative contributions between the Pomeson and various meson exchanges. The light-meson $(\pi, \eta, a_0, f_0, ...)$ contribution is crucial to describe the data at low energies.
- \Diamond For γ p \rightarrow J/ ψ p, the light-meson contribution is not negligible to the cross sections and can be confirmed by the upcoming GlueX data at Hall C. The tetraquark state χ_{c0} (3415, 0⁺) is important for the longitudinal part σL for $\gamma^* p \to J/\psi p$.

Summary

- \Diamond For γ p \rightarrow ϕ p & γ^* p \rightarrow ϕ p, we studied the relative contributions between the Pomeson and various meson exchanges. The light-meson $(\pi, \eta, a_0, f_0, ...)$ contribution is crucial to describe the data at low energies.
- \Diamond For γ p \rightarrow J/ ψ p, the light-meson contribution is not negligible to the cross sections and can be confirmed by the upcoming GlueX data at Hall C. The tetraquark state χ_{c0} (3415, 0⁺) is important for the longitudinal part σL for $\gamma^* p \to J/\psi p$.

 \Diamond Extension of these elementary processes to reactions off nuclei targets $[\gamma^{\circ}(A \rightarrow VA]$

 > A distorted-wave impulse approximation within the multiple scattering formulation is used to analyze the low-energy LEPS data $\lceil \gamma^4 \text{He} \rightarrow \varphi^4 \text{He} \rceil$. > Extension to $\gamma^{(*)}$ A \rightarrow V[ϕ , J/ ψ , Y(1S)] A, [A = ²H, ¹²C, ...]

Summary

- \Diamond For γ p \rightarrow ϕ p & γ^* p \rightarrow ϕ p, we studied the relative contributions between the Pomeson and various meson exchanges. The light-meson $(\pi, \eta, a_0, f_0, ...)$ contribution is crucial to describe the data at low energies.
- \Diamond For γ p \rightarrow J/ ψ p, the light-meson contribution is not negligible to the cross sections and can be confirmed by the upcoming GlueX data at Hall C. The tetraquark state χ_{c0} (3415, 0⁺) is important for the longitudinal part σL for $\gamma^* p \to J/\psi p$.

 \Diamond Extension of these elementary processes to reactions off nuclei targets $[\gamma^{\circ}(A \rightarrow VA]$

 > A distorted-wave impulse approximation within the multiple scattering formulation is used to analyze the low-energy LEPS data $\lceil \gamma \rceil^4$ He $\rightarrow \varphi \rceil^4$ He]. > Extension to $\gamma^{(*)}$ A \rightarrow V[ϕ , J/ ψ , Y(1S)] A, [A = ²H, ¹²C, ...]

 \diamondsuit Approved 12 GeV era experiments to date at Jafferson Labarotory: [E12-09-003] Nucleon Resonances Studies with CLAS [E12-11-002] Proton Recoil Polarization in the ${}^{4}He(e,e'p)$ ³H, ${}^{2}He(e,e'p)n$, ${}^{1}He(e,e'p)$ [E12-12-006] Near Threshold Electroproduction of J/ψ at 11 GeV [E12-12-007] Exclusive Phi Meson Electroproduction with CLAS12

 \Diamond Electron-Ion Collider (EIC) will carry out the relevant experiments in the future.

Thank you very much for your attention