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Overview and References

Overview:

• The goal of statistical mechanics is to describe the behaviour of bulk matter starting from

a physical description of the interactions between its microscopic constituents.

• This course introduces the Gibbs probability distributions of classical statistical mechanics,

the relations to thermodynamics and the modern theory of phase transitions and critical

phenomena. The microcanonical, canonical and grand canonical ensembles will be introduced

and illustrated with application to the ideal gas.

References:

• C.J. Thompson, Classical Equilibrium Statistical Mechanics, Oxford Science Publications

(1988).

• J. M. Yeomans, Statistical Mechanics of Phase Transitions, Clarendon Press, Oxford, 1992.

• K. Huang, Statistical Mechanics, 2nd edition, Wiley, New York, 1987.

• R. J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press, London,

1982.

• H.B. Callen, Thermodynamics, Wiley, New York, 1960.

• H.E. Stanley, Introduction to Phase Transitions and Critical Phenomena, Oxford University

Press, 1971.

• C. Domb and M. S. Green/C. Domb and J. L. Lebowitz, Phase Transitions and Critical

Phenomena, Vols. 1–14, Academic Press, London, 1972–1994.
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Lecture Outline

Topic 1. Foundations of Statistical Mechanics

1. Thermodynamics versus statistical mechanics

2. Classical mechanics and phase space

3. Gibbs formulation of microcanonical ensemble

Topic 2. Canonical Ensemble

4. Maxwell-Boltzmann Distribution

5. Gibbs formulation of canonical ensemble

6. Ideal gas in canonical ensemble

Topic 3. Grand Canonical Ensemble

7. Gibbs formulation of grand canonical ensemble

8. Ideal gas in grand canonical ensemble

9. Equivalence of ensembles
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1: Statistical Mechanics Foundations

1. Thermodynamics versus statistical mechanics
2. Classical mechanics and phase space
3. Gibbs formulation of microcanonical ensemble

Josiah Willard Gibbs (1839–1903)

Photographs c© MacTutor Mathematics Archive (http://www-history.mcs.st-andrews.ac.uk)
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Thermodynamics versus Statistical Mechanics

• Thermodynamics is an empirically based science. It describes many of the physical

properties of bulk matter (solids, liquids, gases) in terms of a few state variables such as

absolute temperature T (measured in Kelvin), internal energy U , pressure P , volume V and

magnetic field h and the relationships between them.

• Ultimately, of course, all of the macroscopic properties of matter (in equilibrium with its

surroundings) should be derivable from a knowledge of the fundamental interactions between

the constituent particles. This is the goal of statistical mechanics.

• The foundations of statistical mechanics were laid down by J.W. Gibbs in 1902. Statistical

Mechanics describes all of the macroscopic properties of matter (in equilibrium) starting from

a knowledge of the fundamental interactions between the constituent microscopic particles.

In particular, statistical mechanics provides a derivation of the relations of thermodynamics.

• The term statistical mechanics is a combination of mechanics and statistics. From a

mechanical viewpoint bulk matter, such as 22.4 liters of gas or 60 gram of iron at room

temperature (273K = 0◦C,1K = 1◦C) and pressure, typically consists of a system of N ≈ NA

particles where

NA = 6.0225× 1023 (Avogadro’s number)

1 mole = NA atoms = # of atoms in 12 grams of the isotope carbon-12 (mass number = 12).
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Large Numbers

Computer :







operations = 1010 per second

1 TB = 1013 bits

Human :







brain = 1014 neuron connections

body = 1015 cells

Galaxy :







age = 1017 seconds

stars = 1022

Avogadro : mole = 1023 particles

Universe :







size = 1026 meters

particles = 1080

Googol : number = 10100

Googolplex : number = 10Googol
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Thermodynamics

In thermodynamics the following primitive concepts are introduced:

• System: Any macroscopic ensemble of a large number of constituent components, eg. a

gas of particles or a magnet composed of atoms with spin or elementary magnetic moments.

• State: The equilibrium state (which does not change in time) of a system is determined

by a set of state variables (measured experimentally), eg. {V, T} for a gas and {h, T} for a

magnet.

• State Functions: Quantities such as pressure of a gas P = P(V, T) and magnetization of a

magnet m = m(h, T) which depend only on the state of the system are called state functions.

The differentials of state variables are exact (their integrals are independent of the path).

The differentials of non-state functions such as δW (work) and δQ (heat) are not exact.

• Equation of State: A functional relation between the thermodynamic parameters of a

system, such as f(P, V, T) = 0 or f(m,h, T) = 0 is called an equation of state, eg. for the

ideal gas PV = nRT .

• Thermodynamic Potential: A function of state from which other relevant state functions

can be obtained directly or by differentiation is called a thermodynamic potential. For

example, the Helmholz free energy Ψ is defined by

Ψ(T, V ) = U(T, V )− TS(T, V )

where the internal energy U = U(T, V ), entropy S = S(T, V ) and pressure P = P(T, V ) are

U = −T2 ∂

∂T

(

Ψ

T

)

, S = −∂Ψ

∂T
, P = −∂Ψ

∂V
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Laws of Thermodynamics

First Law: Energy is conserved in infinitesimal thermodynamic processes, along a path in

the T -V plane, converting internal energy and mechanical work into heat

δQ = dU + δW = dU + PdV

where the changes in heat (δQ) and work (δW ) are not exact differentials (they depend on

path) but dU is an exact differential (it is independent of path). Although δQ and δW are

not exact differentials, the related differentials dV and dS are exact differentials

dV =
δW

P
, dS =

δQ

T

Second Law: For irreversible changes of state in a thermally isolated system, the entropy

never decreases

∆S = Sfinal − Sinitial =
∫

γ
dS =

∫

γ

δQ

T
≥ 0

The equality holds for reversible processes.

Third Law: The entropy S of a perfect crystal (one which has no residual entropy)

approaches zero as T → 0. Since it would require an infinite energy for cooling, absolute

zero (0K) can never be reached so that physically

T > 0
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Phase Space and Equations of Motion

• The classical mechanics of a system of N particles with mass m is determined by writing

down an energy function or Hamiltonian describing the particle interactions and solving

(usually numerically) the resulting equations of motion in the 6N-dimensional phase space

Γ = 〈{σ}〉 = 〈{(p1, q1,p2, q2, . . . ,pN , qN)}〉

spanned by the coordinates qi and momenta pi in 3-space. The 6N-dimensional vector σ ∈ Γ

is the microscopic state of the system.

• The Hamiltonian takes the form

H(σ) =
N
∑

i=1

p2i
2m

+ V (q1, q2, . . . , qN) = Kinetic + Potential Energy

• The equations of motion are

ṗi = −∂H

∂qi
(= −∂V

∂qi
= Force)

q̇i =
∂H

∂pi
(=

pi

m
= velocity)

These are equivalent to the Newtonian equations of motion

F i = mq̈i, i = 1,2, . . . , N

• It is not practical to solve this system for N = 6 × 1023 particles. Instead we need to

understand the average statistical behaviour of the mechanical motion of a large number of

particles.
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Statistical Averages

• Statistical mechanics is used to obtain average quantities or expected values for a large

system described, within a given ensemble, by a suitable probability distribution function.

Discrete Random Variable: Suppose a random variable x takes the values x1, x2, . . . , xn with

probabilities p1, p2, . . . , pn where 0 ≤ pk ≤ 1. The average or expected value of the observable

O(x) is then

〈O(x)〉 = E[O(x)] =
n
∑

k=1

O(xk)pk =

∑n
k=1O(xk)pk
∑n

k=1 pk
,

n
∑

k=1

pk = 1

Continuous Random Variable: Suppose that x is a continuous random variable on [a, b]

with the continuous probability density function ρ(x) where 0 ≤ ρ(x) ≤ 1. The average or

expected value of the observable O(x) is then

〈O(x)〉 = E[O(x)] =
∫ b

a
O(x)ρ(x)dx =

∫ b

a
O(x)ρ(x)dx

∫ b

a
ρ(x)dx

,
∫ b

a
ρ(x) dx = 1

These averages are extended to higher dimensions by using multiple integrals and joint

probability distribution functions ρ(x).

Properties of 〈· · · 〉:
1. Normalization: 〈1〉 = 1

2. Linearity: 〈αf(x) + βg(x)〉 = α〈f(x)〉+ β〈g(x)〉, α, β constants
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Indicator Functions

• Let E ⊆ Ω be a subset of Ω viewed as the universal set of all possible “events” E ⊆ Ω.

The indicator (or characteristic) function χE(x) is defined as

χE(x) =







1, x ∈ E

0, x /∈ E

In other words, the indicator function takes value 1 when E happens (is true) and 0 when it

does not happen (is false).

Example: Write down the indicator function for throwing an odd number on a single dice.

Solution: In this example Ω = {1,2,3,4,5,6} and E = {1,3,5}. The indicator function can

be written in terms of Kronecker deltas as

χ{1,3,5}(x) = δx,1 + δx,3 + δx,5 =







1, x = 1,3,5

0, x = 2,4,6

Exercise: Let x, y = 1,2,3,4,5,6 be the random variables for the throw of two dice.

(i) Show that Ω is given by the Cartesian product {1,2,3,4,5,6} × {1,2,3,4,5,6}.

(ii) What is the average number rolled with two dice?

(iii) Find the average value of the observable O(x, y) = x2y2 and show that 〈x2y2〉 = 〈x2〉〈y2〉.

(iv) Write down the indicator function χ≤4(x, y) for rolling less than or equal to 4 with two dice.

(v) Find the average of the observable O(x, y) = χ≤4(x, y) and show it equals Prob(x+y ≤ 4).
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Ensembles

• In statistical mechanics, the averages, or ensembles used to the describe the system depend

on how the system is set up. There are three ensembles in general use. In each ensemble the

details of the connection with thermodynamics is different but each ensemble yields equivalent

results in the thermodynamic limit when N and V are taken to be infinitely large.

Ensemble Fixed Quantities

Microcanonical N E

Canonical N T

Grand Canonical z T

Here N is the total number of particles, E is the total energy and z is the fugacity.

• In the microcanonical ensemble the system is completely isolated so that the number of

particles N is fixed and the total energy E is conserved.

• In the canonical ensemble, the system is not isolated so the energy E is not conserved —

the system is in thermal equilibrium with its environment (a heat reservoir) at temperature

T . The number of particles N is fixed but the average energy is determined statistically by

the temperature T .

• In the grand canonical ensemble the system is in equilibrium with a heat and particle

reservoir — neither the number of particles N or the energy E is fixed — the average

number of particles is controlled by the fugacity z and the average energy is controlled by

the temperature T .
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Microcanonical Ensemble

• If the Hamiltonian (energy function) is autonomous, that is H = H({pj(t), qj(t)}) does not

depend explicitly on t, then the system is conservative and the energy is conserved. In this

case, the mechanical motion takes place on the energy surface

H(σ) = T + V = E (total energy) σ ∈ Γ

• The Ergodic Postulate states that the invariant phase space probability density of an

isolated Hamiltonian system is the uniform distribution on this energy surface

ρ(p, q) =
δ(H − E)

∫

Γ δ(H − E) dΓ

Here δ(x) is the Dirac delta function,

dΓ = dp1dq1dp2dq2 . . . dpNdqN

is a differential element of phase space and the 6N−1 dimensional integral in the denominator

represents the total area of the energy surface.

• Although the postulate is almost certainly not generally true, we use it as a working

assumption as did Gibbs. As is the case for set theory and quantum mechanics, there is no

rigorous foundation to Statistical Mechanics!
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Justification of Statistical Mechanics

• Ultimately, the justification for statistical mechanics rests in agreement with experiments.

It is the averages of observable quantities O(p, q) that are measurable experimentally and

these are to be compared with the averages calculated in the microcanonical ensemble

〈O(p, q)〉 =

∫

Γ
O(p, q)δ(H −E) dΓ
∫

Γ
δ(H − E) dΓ

=

∫

H=E
O(p, q) dΓ

∫

H=E
dΓ

• The connection with thermodynamics in the microcanonical ensemble is due to Boltzmann

and relates the entropy S with the integral over the energy surface

S(U=E,V ) = k logΩ(E), Ω(E) =
1

N !

∫

H=E
dΓ = area of the energy surface

where k is Boltzmann’s constant

k = 1.3805× 10−23 Joules/Kelvin

For a discrete system Ω(E) is the counting of allowed microstates.

• The entropy is a thermodynamic potential. Other thermodynamic quantities are derived

by differentiation

1

T
=

(

∂S

∂E

)

V
, P = T

(

∂S

∂V

)

E

• Although, the microcanonical ensemble is introduced first for theoretical reasons, it is the

canonical and grand canonical ensembles that are used in practical calculations.
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Ideal Gas in Microcanonical Ensemble

• The ideal gas consists of N non-intereacting idealized point particles of mass m. This

provides a good approximation to a realistic gas at high temperatures and low pressures. It is

not a good approximation at low temperatures and high pressures where the gas can undergo

a phase transition to a liquid or solid.

• In the microcanonical ensemble, the ideal gas is defined by the Hamiltonian

H(σ) =
1

2m

N
∑

i=1

p2i

There is only kinetic energy and no potential energy V = 0.

• Since H(σ) is time-independent, conservation of energy implies that

H =
1

2m

N
∑

i=1

p2i = E = total energy = constant

• The motion of the state σ ∈ Γ in phase space is confined to the hypersphere in 3N − 1

dimensional momentum space

p21x + p21y + p21z + · · ·+ p2Nx + p2Ny + p2Nz = 2mE

• In the problem sheets, it is shown that this ideal gas is described by the ideal gas equation

PV = NkT, k = Boltzmann’s constant
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2: Canonical Ensemble

4. Gibbs formulation of canonical ensemble
5. Ideal gas in canonical ensemble
6. Maxwell-Boltzmann distribution

James Clerk Maxwell (1831–1879) Ludwig Eduard Boltzmann (1844–1906)

Photographs c© MacTutor Mathematics Archive (http://www-history.mcs.st-andrews.ac.uk)
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Canonical Ensemble

• The canonical ensemble describes a system of N particles in a box of volume V weakly

coupled to and in thermal equilibrium with an infinitely large heat reservoir at absolute

temperature T . The number of particles in the system is fixed but heat is exchanged with

the environment to maintain a temperature T .

• The fundamental postulate is that the probability density ρ(σ) of points in phase space Γ

is given by

ρ(σ) =
exp(−βH(σ))

∫

Γ
exp(−βH(σ)) dΓ

, σ ∈ Γ

Here H(σ) is the Hamiltonian of the system (excluding interactions with the heat reservoir),

the integral is over all of the accessible phase space and

β =
1

kT
= inverse temperature

where Boltzmann’s constant is

k = 1.3805× 10−23 Joules/Kelvin

• The weight exp(−βH(σ)) is the Boltzmann factor associated with the configuration σ.

Crudely speaking, it gives the unnormalized a priori probability of finding the system in the

state σ.
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Boltzmann Weights

• The probability density ρ(σ)dΓ gives the statistical probability of finding the system in the

phase space volume dΓ about σ. In accord with the interpretation of ρ(σ) as a probability

ρ(σ) ≥ 0,
∫

Γ
ρ(σ) dΓ = 1, 〈O(σ)〉 =

∫

Γ
O(σ)ρ(σ) dΓ =

∫

ΓO(σ) exp(−βH(σ)) dΓ
∫

Γ exp(−βH(σ)) dΓ

• The normalization factor is a fundamental quantity called the canonical partition function

ZN =

∫

Γ
exp(−βH(σ)) dΓ

• Notice also that at high temperatures (T → ∞, β → 0)

ρ(σ) ∼ 1
∫

Γ dΓ

and all states are equally likely (random) while at low temperatures (T → 0, β → ∞) the low

energy (ground) states are most probable.

• Note that energies are additive whereas Boltzmann weights are multiplicative. If E1 and

E2 are the energies of two independent (non-interacting) subsystems then the total energy is

E = E1 + E2

While, if W1 = e−βE1 and W2 = e−βE2 are the Boltzmann weights of these two independent

(non-interacting) subsystems, then the Boltzmann weight of the combined system is

W = e−βE = e−β(E1+E2) = W1W2
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Maxwell-Boltzmann Distribution

• A heuristic argument gives the Gibbs postulate

in the case of a toy model with N distinguishable

particles distributed randomly, that is with equal

probability, among a number of discrete energy

levels Ej, with j = 1,2,3, . . . and nj particles in

each level. The probability of a given distribution

{n1, n2, n3, . . .} satisfies

P ∝ N !

n1!n2!n3! . . .

• In the limit N → ∞, nj → ∞ Stirling’s formula

N ! ∼
(

N

e

)N

, etc.

gives

Energy Levels

E5

E4

E3

E2

E1

n5

n4

n3

n2

n1

logP ∼ N logN −N −
∑

j

(nj lognj − nj)

• To find the most probable configuration, we maximize logP subject to the two constraints

∑

j

nj = N,
∑

j

njEj = E = total energy
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Lagrange Multipliers

• We treat nj as continuous variables (properly we should use the continuous densities

ρj = nj/N), introduce Lagrange multipliers α, β and maximize

N logN −N −
∑

j

(nj lognj − nj)− α
∑

j

nj − β
∑

j

njEj

Differentiating with respect to nj gives

lognj + α+ βEj = 0 or nj = e−αe−βEj

• Therefore
N =

∑

j

nj = e−α
∑

j

e−βEj = e−αZN

and

ρj =
nj

N
=

e−βEj

∑

j

e−βEj
= density of states

gives the probability of finding the particle j in the energy state Ej. This distribution is the

Maxwell-Boltzmann distribution. The constant β is identified as the inverse temperature.

• The total energy E is controlled statistically by the inverse temperature β = 1/kT

E

N
=

∑

j njEj
∑

j nj
=

∑

j Eje
−βEj

∑

j e
−βEj

= 〈Ej〉 =
1

N

∑

j

〈Ej〉

This implies E = E(β) and β = β(E) since E′(β) = −
〈

(Ej − 〈Ej〉)2
〉

< 0 for more than

one energy level Ej. So E(β) is strictly monotone decreasing and E(T) is strictly monotone

increasing as is sensible physically. So β−1 = kT is a measure of the average energy.
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Connection with Thermodynamics

• The canonical partition function ZN is a generating function for the thermodynamic

functions. The (Helmholtz) free energy Ψ = Ψ(T, V ) = U − TS is given by the Gibbs

postulate

Ψ = −kT logZN

where U = U(T, V ) is the internal energy, S = S(T, V ) is the entropy and V is the volume.

• The internal energy is

U = −T2 ∂

∂T

(

Ψ

T

)

= Ψ− T
∂Ψ

∂T
= Ψ+ TS

Hence the entropy is

S = −∂Ψ

∂T

• Similarly, the specific heat (at constant volume) is

CV =
∂U

∂T
= −T

∂2Ψ

∂T2
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Maxwell Relations

• Consider an irreversible infinitesimal transformation along a curve in the V -T plane. The

free energy is

Ψ = Ψ(V, T) = U − TS

Using the first law dU = δQ− δW , the exact differential along this curve is

dΨ = dU − TdS − SdT = δQ− δW − TdS − SdT = TdS − PdV − TdS − SdT

= −PdV − SdT =
∂Ψ

∂V
dV +

∂Ψ

∂T
dT = ∇Ψ · (dV, dT)

• It follows that the pressure P = P(V, T) and entropy S = S(V, T) are given by

P = −∂Ψ

∂V
, S = −∂Ψ

∂T

where we have the Maxwell relation

∂P

∂T
=

∂S

∂V
= − ∂2Ψ

∂V ∂T

and

∇Ψ = −
(

P(V, T), S(V, T)
)

, ∇ =

(

∂

∂V
,
∂

∂T

)

is a two-dimensional irrotational (conservative) vector field so that the integrals in the (V, T)-

plane are path independent.

• Equating the functions multiplying the differentials is only valid because dΨ is an exact

differential. Note that changes in heat and work, δQ and δW , are not exact differentials.
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Ensemble Averages

• The average or expected value of an observable A = A(σ) is given by the ensemble or

thermal average

〈A〉 =

∫

Γ
A(σ) exp(−βH(σ)) dΓ
∫

Γ
exp(−βH(σ)) dΓ

• For example, the internal energy is

U = 〈H〉 =

∫

Γ
H(σ) exp(−βH(σ)) dΓ
∫

Γ
exp(−βH(σ)) dΓ

= − ∂

∂β
log

∫

Γ
exp(−βH(σ)) dΓ = − ∂

∂β
logZN

= −
(

dβ

dT

)−1 ∂

∂T

(

−Ψ

kT

)

= −T2 ∂

∂T

(

Ψ

T

)

as given on a previous slide.
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Philosophy

• Although there is in general no rigorous derivation of the Gibbs ensembles and

their connection with thermodynamics, the fundamental postulates are well confirmed in

applications.

• Physicists adopt the attitude that the postulates are almost certainly correct and use them

without question as the starting point for their calculations.

• Paradoxically, at the same time, mathematicians regard the whole edifice of statistical

mechanics (not to mention set theory, quantum mechanics, etc.) as being based on shaky

foundations! In any case let’s not dwell further on the foundations of statistical mechanics.

Instead, let’s take the Gibbs prescription as given and pragmatically concentrate on practical

applications.
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Ideal Gas

• The ideal gas is a system of noninteracting

point particles of mass m. In the canonical

ensemble, we consider a system of N particles

in a container of volume V and maintained at a

temperature T by a surrounding heat reservoir.

• The Hamiltonian is

H =
N
∑

i=1

p2i
2m

and the canonical partition function is

ZN =
1

N !

∫

V
· · ·

∫

V
dq1 . . . dqN

∫ ∞

−∞
· · ·

∫ ∞

−∞
dp1 . . . dpN exp

(

− β

2m

N
∑

i=1

p2i

)

• The N ! appears here because the N particles are regarded as indistinguishable, that is,

configurations obtained by permuting the particles are considered to be identical (Boltzmann

counting). This is not strictly correct. A proper treatment uses quantum mechanics applied

to a system of Bosons or Fermions.

• Notice that we also ignore relativity which dictates that |v| < c, that is, |pj| < mc where c

is the speed of light.
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Ideal Gas Law

• Using the formula for the Gaussian integral
∫ ∞

−∞
exp(−λx2) dx =

√

π

λ

the partition function of the ideal gas is evaluated as

ZN =
V N

N !

[
∫ ∞

−∞
exp

(

− β

2m
p2
)

dp

]3N

=
V N

N !

(

2πm

β

)3N/2

so the pressure is given by

P = −∂Ψ

∂V
=

∂

∂V
(kT logZN) =

NkT

V

• The ideal gas law is thus

PV = NkT = nRT

where n is the number of moles of gas (N = nNA) and

R = NAk = 8.315 Joules/Kelvin

is the ideal gas constant.
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Equipartition of Energy

• The internal (average kinetic) energy of the ideal gas (V = 0) is

U = 〈H〉 = 〈kinetic energy〉 = − ∂

∂β
logZN =

3N

2β
= 3N(12kT)

This illustrates the equipartition of energy between the 3N (participating) degrees of freedom.

Each (participating) degree of freedom contributes an energy of 1
2kT . It also shows that the

temperature T is indeed a measure of the average internal energy.

• Since the above arguments rely on Gaussian integrals, the participating degrees of freedom

are always harmonic oscillators. Usually these are momenta components but they can include

rotational degrees of freedom (for molecules for example) or spatial degrees of freedom for

(trapped) particles confined by a harmonic (quadratic) potential

V =
N
∑

j=1

λq2

• Notice that, in the canonical ensemble, the internal energy is extensive (grows linearly with

the system size N as N → ∞). Similarly, P , Ψ and S are extensive while T and V are intensive

quantities (independent of the system size).
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Kinetic Theory of Gases

• Derive the Maxwell-Boltzmann velocity distribution of kinetic theory for an ideal gas

dn

dv
= 4πN

(

m

2πkT

)3/2
v2e−mv2/2kT , v = |v|

where the differential dn is the number of molecules with speed between v and v + dv.

• Since the particles do not interact, the Boltzmann factors factorize

exp(−βH) = exp

(

−
N
∑

j=1

βp2j

2m

)

=
N
∏

j=1

exp

(

−
βp2j

2m

)

Particles are independent and identically distributed with joint probability distribution function

ρ({pj}) =
n
∏

j=1

ρ(pj), ρ(p) =
e−βp2/2m

∫

R3
e−βp2/2mdp

where dp = dpx dpy dpz is a differential element of momentum phase space volume.

• The velocity distribution of each particle is the same. Using the one-particle distribution

function ρ(p) gives the number of particles in the differential phase space volume dp as

dn

N
= ρ(p) dp =

e−βp2/2mdp
∫

R3
e−βp2/2mdp

=
e−mv2/2kTdv

∫

R3
e−mv2/2kTdv

=
v2e−mv2/2kTdv

∫ ∞

0
v2e−mv2/2kTdv

= 4π

(

m

2πkT

)3/2
v2e−mv2/2kT dv

where we use p = mv and dv = 4πv2dv to integrate over spherical shells.
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Maxwell-Boltzmann Distribution
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Microcanonical Ideal Gas

• In the microcanonical ensemble the connection with thermodynamics is given by

S(E, V ) = const + k log
Ω(E)

N !

where N is the fixed number of particles in a container of volume V and

Ω(E) =

∫

H=E
dΓ = {Area of energy surface H = E}

(a) Identifying the internal energy with the total energy U = E and regarding the entropy

S = S(E, V ) as a function of E and V , use the first and second laws of thermodynamics

in the form
δQ = dU + δW = dE + PdV, dS =

δQ

T

where Q is heat, W is work, δQ is an inexact differential and dS is an exact differential to

show that

P = T

(

∂S

∂V

)

E
,

1

T
=

(

∂S

∂E

)

V

• From the chain rule we have

dS =
∂S

∂E
dE +

∂S

∂V
dV =

1

T
dE +

P

T
dV

Since dS is an exact differential, we can equate the coefficients

∂S

∂E
=

1

T
,

∂S

∂V
=

P

T

This is the definition of the temperature T in the microcanonical ensemble!
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Gamma Function

(b) The Gamma function is defined by

Γ(z) =
∫ ∞

0
tz−1e−t dt

Use integration by parts to show that Γ(z+1) = z Γ(z) and hence find Γ(n) and Γ(n+1/2)

for n = 0,1,2, . . .

• Integration by parts gives

Γ(z +1) =

∫ ∞

0
tze−t dt = −

[

tze−t
]∞
0

+ z
∫ ∞

0
tz−1e−t dt = z Γ(z)

So, setting x = y2, gives

Γ(1) =

∫ ∞

0
e−x dx = −

[

e−x
]∞
0

= 1, Γ(1/2) =

∫ ∞

0
x−1/2e−x dx = 2

∫ ∞

0
e−y2 dy =

√
π

Hence, by recursion,

Γ(n) = (n− 1)(n− 2)(n− 3) · · · (3)(2)Γ(1) = (n− 1)!

and

Γ
(

n+ 1
2

)

=
(

n− 1
2

)(

n− 3
2

)

· · ·
(

3
2

)

Γ(12) =
(2n− 1)!!

2n

√
π



Surface Area of Hypersphere

(c) Show that the “surface area” and volume of a hypersphere of radius r in n dimensions

are given respectively by

An(r) =
2πn/2 rn−1

Γ(n2)
, Vn(r) =

πn/2rn

Γ(n2 +1)
, Γ(z +1) =

∫ ∞

0
tze−t dt

Hence show that the volume and surface area of a unit hypersphere go to zero as n → ∞.

Hint: consider the integral
∫ ∞

−∞
· · ·

∫ ∞

−∞
e−(x21+x22+···+x2n) dx1dx2 . . . dxn

and evaluate it by integrating over spherical shells using spherical coordinates.

• From dimensional analysis

An(r) = αn rn−1

Now consider evaluating the following multiple integral using spherical shells of volume

An(r) dr and then setting r2 = t

πn/2 =

(
∫ ∞

−∞
e−x2 dx

)n
=

∫ ∞

−∞
· · ·

∫ ∞

−∞
e−(x21+x22+···+x2n) dx1dx2 . . . dxn

=

∫ ∞

0
An(r)e

−r2dr = αn

∫ ∞

0
rn−1e−r2dr = 1

2 αn

∫ ∞

0
t
n
2−1e−tdt = 1

2 αnΓ(n/2)

Hence

αn =
2πn/2

Γ(n/2)
, An(r) =

2πn/2 rn−1

Γ(n/2)



Volume of Hypersphere

• Similarly, integrating by spherical shells, we see that

Vn(r) =

∫ r

0
An(r) dr = αn

∫ r

0
rn−1 dr =

αn rn

n
=

2πn/2

Γ(n/2)

rn

n
=

πn/2 rn

Γ(n2 +1)

From the convergence of the exponential

ex =
∞
∑

n=0

xn

n!
< ∞ ⇒ lim

n→∞
xn

n!
= 0

we see that Γ(n+1) = n! grows much faster than xn for any fixed x. It therefore follows

that

lim
n→∞An(r) = lim

n→∞Vn(r) = 0

which is not at all an intuitively obvious result.

• A ball of unit radius has the maximum surface area in 7 dimensions!

• A ball of unit radius has the maximum volume in 5 dimensions!



Ideal Gas Law and Equipartition of Energy

(d) Use parts (a) and (c) to show that for large N

PV = NkT, E =
3

2
NkT

• For an ideal gas, the energy surface is given by an n = 3N dimensional hypersphere

H =
N
∑

j=1

p2j

2m
= E,

N
∑

j=1

∑

α=x,y,z
p2jα = r2, r = (2mE)1/2

with surface area Ω(E) and entropy S(E, V )

Ω(E) =

∫

H=E
dΓ =

∫

V
dq1 · · ·

∫

V
dqN

∫

H=E
dNp = V N 2π3N/2(2mE)(3N−1)/2

Γ(3N/2)

S(E, V ) = const + k log
Ω(E)

N !

where dNp = dp1 . . . dpN . The pressure is therefore

P = T

(

∂S

∂V

)

E
= NkT

∂

∂V
logV =

NkT

V

Similarly,

1

T
=

(

∂S

∂E

)

V
= 1

2(3N − 1)k
∂

∂E
logE =

(3N − 1)k

2E

Neglecting 1 compared to N , for large N , gives the equipartition of energy

E =
3

2
NkT



3: Grand Canonical Ensemble

7. Gibbs formulation of grand canonical ensemble
8. Ideal gas in grand canonical ensemble
9. Equivalence of ensembles
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Grand Canonical Ensemble

• In some circumstances, it is not sensible to work with a system of a fixed number of

particles. Rather, the system should be in equilibrium with a particle reservoir and the

number of particles should be controlled by a chemical potential µ, or equivalently, an activity

(fugacity)

z = eβµ

• For such cases the grand partition function Ξ is defined by

Ξ(V, T, z) =
∞
∑

N=0

zNZN(V, T)

Mathematically, this is the generating function for the canonical partition functions ZN .

• In the grand canonical ensemble the pressure is defined by

P =
kT

V
logΞ(V, T, z)

The number of particles fluctuates and is not fixed. The average number of particles is

〈N〉 =

∞
∑

N=0

N zN ZN

∞
∑

N=0

zN ZN

=
∂

∂(βµ)
logΞ = z

∂

∂z
logΞ
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• Similarly, the internal energy U and the free energy Ψ are given by

U = − ∂

∂β
logΞ = 〈H〉 =

∞
∑

N=0

zN
∫

Γ
He−βHdΓ

∞
∑

N=0

zN
∫

Γ
e−βHdΓ

Ψ = 〈N〉 kT log z − kT logΞ

It is not easy to derive this last formula for the free energy and we will not need it in this

course.

• In the grand canonical ensemble Ψ, S and V are extensive while P , T and z are intensive.

• In the grand canonical ensemble, the expectation value of an observable A = A(σ;N) is

〈A〉 =

∞
∑

N=0

zN
∫

Γ
A(σ;N) e−βHdΓ

∞
∑

N=0

zN
∫

Γ
e−βHdΓ



Grand Canonical Ideal Gas

• For the ideal gas

ZN =
V N

N !

(

2πm

β

)3N/2

Hence

Ξ =
∞
∑

N=0

zN ZN = exp



zV

(

2πm

β

)3/2




• It follows that

PV = kT logΞ = kTzV

(

2πm

β

)3/2

〈N〉 = z
∂

∂z
logΞ = zV

(

2πm

β

)3/2

Eliminating z between these equations gives the ideal gas law in the form

PV = 〈N〉kT

• The internal energy U of the ideal gas in the grand canonical ensemble is

U = 〈H〉 =

∞
∑

N=0

zN
∫

Γ
H e−βHdΓ

∞
∑

N=0

zN
∫

Γ
e−βHdΓ

=

∞
∑

N=0

zN 〈H〉canZN

∞
∑

N=0

zN ZN

= 3
2kT

∞
∑

N=0

NzN ZN

∞
∑

N=0

zN ZN

= 3〈N〉 1
2kT
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Equivalence of Canonical and Grand Canonical Ensembles

• The canonical and grand canonical ensembles are clearly not equivalent for finite systems

since N and 〈N〉 do not coincide. However, for very large V , the fluctuations of N about

its average 〈N〉 in the grand canonical ensemble are usually very small as is shown in the

Problem Sheets:

〈(N − 〈N〉)2〉
〈N〉2

= o(〈N〉) = o(V )

〈N〉, V → ∞,
〈N〉
V

→ ρ = density

• More specifically, N exhibits a sharply peaked

Gaussian distribution which approaches a Dirac

delta function at 〈N〉 as V → ∞.

• It follows that the canonical and grand

canonical ensembles yield identical results in the

limit V → ∞
P = kρT

As we will see later, to describe the

thermodynamic behaviour of bulk systems it

is necessary to take the thermodynamic limit

V → ∞, 〈N〉 → ∞,
〈N〉
V

→ ρ

o(V )
O(V )

〈N〉 N
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Derivation of Canonical from Microcanonical Ensemble

• The microcanonical formalism applies to an isolated system with a fixed total energy ET .

In the canonical ensemble, the system H is in thermal equilibrium with an infinitely large heat

reservoir HR. Since heat energy can be transferred the system is not isolated. To create an

isolated system we consider the heat reservoir as part of the total system

HT = H +HR = E +ER = ET = const, T = Total, R = Reservoir

We assume that the interactions that maintain thermal equilibrium between the system and

the reservoir are infinitesimally small so that they can be neglected.

• Assume that the reservoir is an ideal gas of particles with mass m in a box of volume V

HR =

NR
∑

j=1

p2j

2m

where we will take NR → ∞.

• The microcanonical distribution is

ρT dΓ dΓR =
δ(H +HR − ET)

Ω(ET )
dΓ dΓR

where dΓ, dΓR, dΓT = dΓ dΓR are phase-space elements for H, HR and HT respectively and

Ω(ET ) is the area of the energy surface HT = H +HR = ET .
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Canonical Probability Distribution

• The canonical probability distribution ρ for H is

ρ dΓ =
(

∫

ρT dΓR

)

dΓ

Now dΓR = ΩR(ER)dER where ΩR(ER) is the area of the energy surface HR = ER for the

reservoir. So, since ET = const,

ρ =
1

Ω(ET )

∫

δ(H +HR −ET )ΩR(ER)dER

=
ΩR(ET −H)

Ω(ET )
=

ΩR(ET −H)

ΩR(ET )

ΩR(ET)

Ω(ET )
= const

ΩR(ET −H)

ΩR(ET )

• If R is an ideal gas in a box of volume V

ΩR(ER) =

∫

V
dq1 · · ·

∫

V
dqNR

∫

∑NR
j=1p

2
j=2mER

dNRp = V NR CNR
r3NR−1 = V NR C′

NR
E

(3NR−1)/2
R

where the constant Cn = 2π3n/2/Γ(3n/2), Γ(x) is the Gamma function and we have evaluated

the volume of a hypersphere with radius r =
√
2mER in 3NR dimensions.
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Limit of Infinitely Large Reservoir NR → ∞
• From above and using the Euler limit limn→∞

(

1− x
n

)n
= e−x gives

ρ ∝ lim
NR→∞

ΩR(ET −H)

ΩR(ET )
= lim

NR→∞

(

1− H

ET

)(3NR−1)/2
= exp(−βH), since ET ∝ NR

where

β = lim
NR→∞

3NR

2ET
= lim

NR→∞
3NR

2ER
since E < ∞

• The total energy ET ∼ ER (as NR → ∞) is a measure of the temperature of the system.

Since the reservoir is an ideal gas, the above result is just the equipartition theorem

U = ET ∼ ER ∼ 3NR(
1
2kT), NR → ∞

We therefore identify β as the inverse temperature

β =
1

kT

• After normalization, we finally obtain the Gibbs canonical distribution

ρ =
exp(−βH)

∫

exp(−βH)dΓ

• The ideal gas is a classical approximation. In quantum mechanics, particles are either

bosons or fermions. The differences between ideal, bose and fermi gases only matter at low

temperatures and high pressures.
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Summary of Ensembles

Microcanonical (N,E fixed)

ρ(p, q) =
δ(H −E)

∫

Γ
δ(H −E) dΓ

〈O(p, q)〉 =

∫

Γ
O(p, q) δ(H − E) dΓ
∫

Γ
δ(H −E) dΓ

=

∫

H=E
O(p, q) dΓ

∫

H=E
dΓ

S(E, V ) = k log

(

1

N !

∫

H=E
dΓ

)

1

T
=

∂S

∂E
, P = T

∂S

∂V

Canonical (N,T fixed)

ρ(σ) =
exp(−βH(σ))

∫

Γ
exp(−βH(σ)) dΓ

, ZN =
∫

Γ
exp(−βH(σ)) dΓ

〈O〉 =

∫

Γ
O(σ) exp(−βH(σ)) dΓ
∫

Γ
exp(−βH(σ)) dΓ
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Ψ(N, V, T) = −kT logZN = U − TS

U = 〈H〉 = −T2 ∂

∂T

(

Ψ

T

)

= Ψ− T
∂Ψ

∂T
= Ψ+ TS

S = −∂Ψ

∂T
, CV =

∂U

∂T
= −T

∂2Ψ

∂T2
, P = −∂Ψ

∂V

Grand Canonical (z, T fixed)

Ξ(V, T, z) =
∞
∑

N=0

zNZN

〈O〉 =

∞
∑

N=0

zN
∫

Γ
O(N, σ) e−βHdΓ

∞
∑

N=0

zN
∫

Γ
e−βHdΓ

P =
kT

V
logΞ(V, T, z), 〈N〉 = z

∂

∂z
logΞ, U = − ∂

∂β
logΞ



Simple Harmonic Oscillator

• The Hamiltonian of the simple harmonic oscillator is

H = 1
2(p

2 + q2), p, q ∈ R

(a) Calculate the averages 〈p2〉, 〈q2〉 in the microcanonical ensemble.

(b) Calculate the averages 〈p2〉, 〈q2〉 in the canonical ensemble at temperature T .

(c) Calculate the internal energy U = 〈H〉 in the canonical ensemble.
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Harmonic Oscillator Solution

(a) In the microcanonical ensemble, the energy surface is the circle p2 + q2 = 2E of radius

r =
√
2E where the constant E is the total energy. This energy surface is parametrized

in polar coordinates by

q = r cos θ, p = r sin θ

Hence in this ensemble

〈q2〉 =

∫

H=E q2 dp dq
∫

H=E dp dq
=

∫ 2π
0 r2 cos2 θ dθ

∫ 2π
0 dθ

=
2E

2
= E

where we have used the fact that the element of arc length is ds = r dθ with r constant.

Similarly, 〈p2〉 = E. In fact, by symmetry, we must have 〈q2〉 = 〈p2〉 = 1
2〈2E〉 = E without

evaluating any integrals!

(b) In the canonical ensemble with inverse temperature β = 1/kT

〈p2〉 = 〈q2〉 =

∫

Γ q2 e−βH dΓ
∫

Γ e−βHdΓ
=

∫∞
−∞ q2 e−

β
2q

2
dq

∫∞
−∞ e−

β
2q

2
dq

=
1

β
= kT

where we have used symmetry and evaluated the Gaussian moment integral.

(c) In particular, in the canonical ensemble, this gives

〈H〉 =
〈

1
2(p

2 + q2)
〉

= kT = n(12kT), n = 2 = # of degrees of freedom

in accord with the equipartition theorem that asserts that each (participating) degree of

freedom has 1
2kT of energy.



Statistical Mechanics of Lattice Models
APCTP, December 2016

Paul A. Pearce

School of Mathematics and Statistics

University of Melbourne

Abstract: This is the second part of a three part series of lectures presenting an introductory

Masters level course on Statistical Mechanics. Each part consists of about 6 lectures. The

first part introduced the classical ensembles of Gibbs with applications to the ideal gas. The

second part introduces lattice spin models, the thermodynamic limit, one-dimensional models

and mean-field theory. The third part will cover scaling and universality in critical phenomena,

the renormalization group, random walks and percolation.

• These Lectures are supported under an ICTP Visiting Scholar Award in conjunction with

the ICTP Affiliated Center at APCTP.

c© These materials were prepared by Paul A. Pearce, 2011–2016

0-1



Overview and References

Overview:

• The goal of statistical mechanics is to describe the behaviour of bulk matter starting from

a physical description of the interactions between its microscopic constituents.

• The second part of this course introduces the Ising model and other lattice spin models,

the thermodynamic limit, convexity and thermodynamic stability, one-dimensional models

including Tonks - van der Waals gas, the transfer matrix technique and mean-field theory.

References:

• C.J. Thompson, Classical Equilibrium Statistical Mechanics, Oxford Science Publications

(1988).

• J. M. Yeomans, Statistical Mechanics of Phase Transitions, Clarendon Press, Oxford, 1992.

• K. Huang, Statistical Mechanics, 2nd edition, Wiley, New York, 1987.

• R. J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press, London,

1982.

• H.B. Callen, Thermodynamics, Wiley, New York, 1960.

• H.E. Stanley, Introduction to Phase Transitions and Critical Phenomena, Oxford University

Press, 1971.

• C. Domb and M. S. Green/C. Domb and J. L. Lebowitz, Phase Transitions and Critical

Phenomena, Vols. 1–14, Academic Press, London, 1972–1994.
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Lecture Outline

Topic 4. Lattice Spin Models

10. Ising paramagnet

11. Ising ferromagnets

12. Ising lattice gas

Topic 5. Thermodynamic Limit

13. Extensive functions and thermodynamic limit

14. Existence of thermodynamic limit

15. Convexity and thermodynamic stability

Topic 6. One-Dimensional Models

16. Open/periodic Ising spin chains

17. Tonks gas

18. Tonks-van der Waals gas

Topic 7. Mean-Field Theory

19. Van der Waals-Maxwell fluid

20. Curie-Weiss theory of ferromagnetism

21. Equivalent neighbour model

0-3



4: Lattice Spin Models

10. Ising paramagnet
11. Ising ferromagnets
12. Ising lattice gas
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Lattice Spin Models

• In many applications of statistical mechanics the particles are fixed or localized in space.

In such cases there is no kinetic energy contribution to the Hamiltonian. Within a magnetic

crystal, for example, the atoms have an intrinsic angular momentum or spin. The interactions

between these discrete spins give rise to the magnetic properties of the material.

• A spin Hamiltonian for a system of N atoms (particles) is of the form

H(σ) = V (σ1, σ2, . . . , σN)

where σ = {σ1, σ2, . . . , σN} denotes the configuration and the spin σi is a discrete variable

describing the state of the particle at the lattice site i.

• The canonical partition function is then given by the configurational sum

ZN =
∑

σ
exp(−βH(σ))
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Ising Paramagnet

• In the presence of an external magnetic field h, the magnetic moments or spins of atoms

within magnetic materials tend to align themselves with the field. The first explanation of

this phenomenon was due to Langevin in 1905.

• For simplicity, let us assume that the spins are given by

σi =











+1, if spin i is parallel to h

−1, if spin i is antiparallel to h

Such two-valued spins are called Ising spins after Ernst Ising who first studied such models

in 1925.

• The Hamiltonian or energy function for the Ising paramagnet is

H = −h
N
∑

i=1

σi, h ≥ 0

Clearly, the lowest energy (ground) state occurs when all the spins align with the external

field, that is, σi = +1 for all i.
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Paramagnet Partition Function

• If we set B = βh, the canonical partition function is given by

ZN =
∑

σ
exp

(

βh
N
∑

i=1

σi

)

=
∑

σ1=±1

∑

σ2=±1

. . .
∑

σN=±1

eBσ1eBσ2 . . . eBσN = (2coshB)N

• The (intensive) free energy per spin ψ is thus

−βψ = −βΨ
N

=
1

N
logZN = log(2 coshB)

• The magnetization is

m =

〈

1

N

∑

i

σi

〉

=

∑

σ

(

1

N

∑

i

σi

)

exp

(

B
N
∑

i=1

σi

)

∑

σ
exp

(

B
N
∑

i=1

σi

)

=
1

N

∂

∂B
logZN = − ∂

∂B
(βψ) = −∂ψ

∂h
= tanhB

• In the absence of an external magnetic field (B → 0) there is no permanent magnetization

as in ferromagnetic materials such as iron and nickel.
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Ising Magnets

• In magnets, such ferromagnets, antiferromagnets and ferrimagnets, there are additional

interactions between spins that give rise to the cooperative alignment or anti-alignment of

spins in the absence of an external magnetic field. The first such model of a magnet was

due to Ising and Lenz.

• The Hamiltonian of an Ising magnet is

H = −
∑

〈i,j〉
Ji,jσiσj − h

∑

i

σi = −
∑

i<j

Ji,jσiσj − h
∑

i

σi = −1
2

N
∑

i,j=1

Ji,jσiσj − h
∑

i

σi

where the first sum is over all distinct pairs of spins on the lattice and Ji,j = Jj,i is the

strength of interaction between the spins at sites i and j with Jj,j = 0 for all j.

• To energetically favour the mutual alignment of spins, as in a ferromagnet, we assume

Ji,j ≥ 0 for all i and j. Physically, the interactions between spins in a magnetic substance are

short ranged. The simplest possibility is nearest neighbour interactions so that

Ji,j =











J, i, j adjacent

0, otherwise
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Ising Lattice Gas

• The Ising model can also be interpreted as a model of a lattice gas. Consider a system of

N particles on a regular lattice Λ of V sites corresponding to V cells.

• A typical interaction potential φij = φji = φ(|i − j|) between particles of gas is of the

Lennard-Jones form with a hard-core repulsion and an attractive long-range tail. We therefore

introduce occupation numbers

tj =











1, if site (cell) j is occupied

0, if site (cell) j is unoccupied

so that the hard-core repulsion excludes multiple occupancy of a site (cell).

• The Hamiltonian of the lattice gas is then

H = −1
2

∑

i,j∈Λ
φijtitj

with φj,j = 0 and

V
∑

j=1

tj = N
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Partition Function of the Ising Lattice Gas

• The canonical partition function is

ZN =
∑

t

′
exp(−βH)

where the sum on t is restricted by
∑V
j=1 tj = N . Similarly, the grand partition function is

Ξ(V, T, z) =
∞
∑

N=0

zN ZN =
∞
∑

N=0

∑

∑V
j=1 tj=N

z
∑V
j=1 tj e

1
2β
∑

i,j φijtitj

=
∑

t

z
∑V
j=1 tj e

1
2β
∑

i,j φijtitj

where ZN = 0 for N > V and the configurational sum over t = {t1, t2, . . . , tV } is unrestricted.

• To see the equivalence of the Ising magnet and the lattice gas observe that we can set

tj =
1
2(1− σj)

with σj = ±1. Substituting this into the grand partition function gives

Ξ =
∑

σ
e
β
8

∑

i,j φij(1−σi)(1−σj)+
1
2 log z

∑

i(1−σi)

= e
β
8

∑

i,j φij+
V
2 log z ∑

σ
e
β
8

∑

i,j φijσiσj−(β4
∑

j φij+
1
2 log z)

∑

i σi

since
∑

j φij is independent of i for regular periodic lattices. This establishes a correspondence

with

Jij = 1
4 φij, βh = −β

8

V
∑

j=1

φij − 1
2 log z
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Ising Magnet/Lattice Gas Correspondence

• This correspondence extends to all the thermodynamic quantities for the gas and the

magnet (even though we have not solved either). For example, we have

βP =
1

V
logΞ = β

8

∑

j

φij +
1
2 log z+

1

V
logZ(magnet)

V

= −βh− β
2

∑

j

Jij −
βΨ

V

where Ψ is the canonical free energy of the Ising magnet.

• Similarly, the density ρ of the lattice gas is related to the magnetization m by

ρ =

〈

1

V

V
∑

j=1

tj

〉

=

〈

1

V

V
∑

j=1

1
2(1− σj)

〉

= 1
2

(

1−
〈

1

V

V
∑

j=1

σj

〉)

= 1
2(1−m)

and so on where we use the fact that 〈tj〉grand = 〈12(1− σj)〉canonical.

• The Ising model can also be interpreted as a model of a binary alloy such as brass which

is an alloy of copper and zinc. In this case

tj =











1, if site j is occupied by an Cu atom

0, if site j is occupied by an Zn atom
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5: Thermodynamic Limit

13. Extensive functions and thermodynamic limit
14. Existence of thermodynamic limit
15. Convexity and thermodynamic stability

Léon Charles Prudent van Hove (1924–1990)

Photographs c© MacTutor Mathematics Archive (http://www-history.mcs.st-andrews.ac.uk)

2



Thermodynamic Limit

• In general, it is impossible to evaluate the partition function of an Ising model on a lattice

of N = 6× 1023 sites. Moreover, for finite N , the extensive free energy Ψ given by

−βΨ = logZN = log
∑

σ
e−H/kT

is an analytic function of h and T > 0. This follows because the Boltzmann weights are

analytic, so the finite sum giving ZN is analytic and ZN > 0 so the logarithm is analytic.

• Effectively N is infinite and what we need to evaluate is not the free energy Ψ, which is

extensive and grows with the size of the system, but rather the free energy per site ψ in the

thermodynamic limit

− βψ = − lim
N→∞

β

N
Ψ = lim

N→∞
1

N
logZN

The free energy per site ψ is an intensive quantity. The thermodynamic limit must be taken

“in the sense of van Hove” so that, as N → ∞ in d dimensions, the region Λ contains an

arbitrarily large d-dimensional hypercube centred on the origin. This limit, which is often

written Λ → ∞ with N = |Λ|, ensures that the limiting region is properly d-dimensional.

• It can be shown quite generally that, for finite interactions, this limit exists and is

independent of the boundary conditions provided the interactions decay sufficiently rapidly

with distance. However, the resulting limiting free energy need not be an analytic function

of the thermodynamic variables such as h and T .
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Phase Transitions

• Mathematically, a phase transition should manifest itself as a singularity in the

thermodynamic functions. If the free energy is an analytic function of the state variables, then

all of the thermodynamic functions obtained by differentiation are also analytic. A natural

definition, therefore, is that a phase transition point is a non-analytic point of the limiting

free energy ψ or pressure P as a function of temperature and the other state variables.

Points where the limiting free energy is singular (nonanalytic) are called phase transition

points. This nonanalyticity leads to singular behaviour (discontinuities or divergences) in the

thermodynamic functions such as order parameters, internal energies and specific heats.

• The ideal gas and the paramagnet, do not undergo phase transitions or abrupt changes

of phase. The ideal gas does not admit a liquid or solid phase only a fluid phase and the

paramagnet does not exhibit a ferromagentic phase which is spontaneously magnetized in

the absence of an external magnetic field.

• For a gas, described by the grand canonical ensemble, the limiting pressure in the

thermodynamic limit is defined by

βP = lim
V→∞

ρ=〈N〉/V

1

V
logΞ(V, T, z)

where ρ is the particle density.
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Existence of Thermodynamic Limit

• The limiting free energy will only exist for appropriate classes of interaction Hamiltonians

with sufficiently rapid decay of interactions at large distances.

• Consider an Ising magnet on a square lattice with nearest-neighbour interactions and free

boundary conditions (so that the spins are summed over freely on the boundary) and let

ψ(N) = Ψ/N be the intensive free energy so that

−βψ = −β lim
N→∞

ψ(N) = lim
N→∞

1

N
log

∑

σ
exp(−βH)

where

H(N) = −J
∑

〈i j〉
σiσj

with 2n spins along the side of the square so that N = 2n × 2n = 22n.

• We decompose this Hamiltonian as

H(22n) = H1(2
2(n−1)) +H2(2

2(n−1))

+H3(2
2(n−1)) +H4(2

2(n−1)) +H ′

where H ′ is the contribution to the energy from the (dashed) bonds in the corridors.
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Division into Cells

1

43

2

• The two-dimensional square lattice, with 2n spins on a side, divided into four cells

(quadrants). Here n = 3 so 2n = 8 and each cell has 2n−1 = 4 spins on a side. The

four corridors emanating from the center (indicated with dashed interaction bonds) are one-

dimensional. As n → ∞, the length of both sides of the square become large so that the

thermodynamic limit is approached in the sense of van Hove.
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Estimates

• We now estimate

|H ′| ≤ 4|J |2n−1 = 2n+1 |J |

and

Z22n =
∑

σ
e−βH =

∑

σ

1∑

σ

2∑

σ

3∑

σ

4
e−β(H1+H2+H3+H4+H

′)

≤ exp(2n+1β|J |)
(

∑

σ

1
e−βH1

)(

∑

σ

2
e−βH2

)(

∑

σ

3
e−βH3

)(

∑

σ

4
e−βH4

)

= exp(2n+1β|J |)Z4
22(n−1)

• But ψ(N) = − 1
βN logZN so that

ψ(22n) ≥ ψ(22(n−1))− |J |
2n−1

• Similarly,

Z22n ≥ exp(−2n+1β|J |)Z4
22(n−1)

and

ψ(22n) ≤ ψ(22(n−1)) +
|J |

2n−1

Hence

∣

∣

∣ψ(22n)− ψ(22(n−1))
∣

∣

∣ ≤ |J |
2n−1
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Cauchy Sequences

• To show that ψ(22n) posseses a limit ψ as n→ ∞ we show the sequence ψ(22n) is Cauchy
∣

∣

∣ψ(22(n+m))− ψ(22n)
∣

∣

∣ ≤
∣

∣

∣ψ(22(n+m))− ψ(22(n+m−1))
∣

∣

∣

+
∣

∣

∣ψ(22(n+m−1))− ψ(22(n+m−2))
∣

∣

∣+ · · ·+
∣

∣

∣ψ(22(n+1))− ψ(22n)
∣

∣

∣

≤ |J |
(

1

2n+m−1
+

1

2n+m−2
+ · · ·+ 1

2n

)

= |J |
n+m−1
∑

k=n

2−k

≤ |J |
∞
∑

k=n

2−k =
|J |

2n−1
→ 0 as n→ ∞

• Since Cauchy sequences are convergent

ψ = lim
n→∞ψ(N)

exists. Taking m→ ∞ in the above results gives

|ψ − ψ(22n)| = lim
m→∞ |ψ(22(n+m))− ψ(22n)| ≤ |J |

2n−1

so the convergence is exponentially fast.
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Related Thermodynamic Limits

• The result

∣

∣

∣ψ − ψ(L2)
∣

∣

∣ ≤ 2|J |
L

follows by considering lengths M = 2nL on a side.

• Similar arguments apply for other boundary conditions (eg. periodic boundary conditions)

to show that the thermodynamic limit is independent of the boundary conditions.

• The arguments also generalize to higher dimensions, to larger classes of interactions (finite-

range or with suitable long-distance decay) and to continuum systems.

• Roughly speaking all that is required is that, for large system sizes, the surface energies

obtained by dividing the volume into cells are small compared to the bulk energies.

• The theorem for the existence of the thermodynamic limit can break down if any of the

interactions become infinitely strong J → ±∞

2-7



Convexity

Definition: A function f(x) on [a, b] is convex on [a, b] if for any λ ∈ (0,1)

f
(

λx1 + (1− λ)x2
)

≤ λf(x1) + (1− λ)f(x2)

In words, f(x) is convex if the straight line chord joining the points (x1, f(x1)) and (x2, f(x2))

lies entirely above the curve of f(x). The function f(x) is concave if −f(x) is convex.

• The function f(x) = ex is convex on R and f(x) = log x is concave on (0,∞). A linear

function is both convex and concave.

• A convex function defined on an open interval is continuous and piecewise differentiable,

that is, differentiable at all but at most countably many points. It can have have corners (at

the points where it is not differentiable) and straight line (polygonal) segments.

• A C1 function f(x) is convex if and only if, at each x = x0, the tangent to the curve lies

entirely below the curve
f(x0) + f ′(x0)(x− x0) ≤ f(x)

• If f(x) is C2 on [a, b], then f(x) is convex on [a, b] if and only if f ′′(x) ≥ 0 on [a, b].

Theorem 1 (Limits and Convexity)

If the pointwise limit f(x) = limn→∞ fn(x) of the convex functions fn(x) exists, then f(x) is

convex. Furthermore, if fn(x) is C2 and convex and f(x) is differentiable, then

lim
n→∞ fn(x) = f(x) ⇒ lim

n→∞
dfn

dx
=

d

dx
lim
n→∞ fn(x) =

df

dx
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Convexity and Thermodynamic Stability

• Let λ be a thermodynamic field, such as J or h, that appears linearly in the Hamiltonian

so that

− βH = H0 + λH1

• Then the free energy is a concave function of λ, that is,

∂2Ψ

∂λ2
=

∂2

∂λ2
(−kT logZN) ≤ 0

• In particular, if

ZN =
∑

σ
e−βH =

∑

σ
eH0+λH1

this follows because

∂2

∂λ2
log

∑

σ
eH0+λH1 =

∂

∂λ

[

∑

σH1e
H0+λH1

∑

σ e
H0+λH1

]

=
∂

∂λ
〈H1〉

=

∑

σH
2
1 e

H0+λH1

∑

σ e
H0+λH1

− (
∑

σH1e
H0+λH1)2

(
∑

σ e
H0+λH1)2

= 〈H2
1〉 − 〈H1〉2 =

〈(

H1 − 〈H1〉
)2〉 ≥ 0
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Convexity in Ising Magnet/Lattice Gas

Consider the Ising magnet
H = −

∑

i,j∈Λ
Jijσiσj − h

∑

i∈Λ
σi

• By convexity, we can interchange the order of limits and differentiation so that

m = − lim
N→∞

1

N

∂Ψ

∂h
= − ∂

∂h
lim
N→∞

Ψ

N
= −∂ψ

∂h

• The parameter λ = B = βh appears linearly in −βH. It follows from convexity that

1

N

∂2

∂B2
logZN =

∂

∂B

〈

1

N

∑

i∈Λ
σi

〉

=
∂m

∂B
=

1

β

∂m

∂h
≥ 0

so that, in a finite or infinite system, the magnetization or average magnetic moment m is a

non-decreasing function of the external magnetic field h.

• Similarly, in the grand canonical ensemble for the Ising lattice gas we start with

βP =
1

V
logΞ

Ξ =
∞
∑

N=0

zNZN =
∑

t

e
∑

i,j φijtitj+βµ
∑V
j=1 tj

ρ =
1

v
= z

∂

∂z

(

1

V
logΞ

)

= z
∂

∂z
(βP)

where

v =
V

〈N〉 =
1

ρ
= specific volume
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Thermodynamic Stability

• From the previous relations, we find

− z

v2
∂v

∂z
= z

∂

∂z

(

1

v

)

= z
∂

∂z
z
∂

∂z

(

1

V
logΞ

)

=
∂2

∂(βµ)2

(

1

V
logΞ

)

=
1

V

〈(

N − 〈N〉
)2〉 ≥ 0

Here the result again follows by convexity since, writing z = eβµ, we see that the field βµ

appears linearly in the exponential (Hamiltonian). It follows that
∂v

∂z
≤ 0 so that ρ increases

as z increases.

• Using v = v(T, z) to eliminate z gives P = P(v, T). Holding T fixed means that v and P

are effectively functions of one variable and

β
∂P

∂v
= β

∂P

∂z

∂z

∂v
=

1

vz

∂z

∂v
≤ 0

In words this states that, at constant temperature, increasing the pressure on a fluid

compresses it (ie. decreases its volume). This intuitive result is called thermodynamic

stability and it is usually stated by asserting that the isothermal compressibility KT is positive

KT = −1

v

∂v

∂P
≥ 0
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6: One-Dimensional Models

16. Open/periodic Ising spin chains
17. Tonks gas
18. Tonks-van der Waals gas

Johannes Diderik van der Waals (1837–1923)
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Open Ising Spin Chain

• The limiting free energy of the nearest neighbour Ising model on a (one-dimensional) chain

was evaluated by Ising in 1925.

• The free energy should be independent of the boundary conditions so let us begin by

solving the open chain (free boundary conditions). The Hamiltonian of the open Ising spin

chain in zero field is

H = −J
N−1
∑

i=1

σiσi+1

• Setting K = βJ, the problem is to evaluate the partition function

ZN =
∑

σ
exp

(

K
N−1
∑

i=1

σiσi+1

)

=
∑

σ1=±1

· · ·
∑

σN=±1

eKσ1σ2 . . . eKσN−1σN

=
∑

σ1=±1

(2 coshK)N−1 = 2(2 coshK)N−1

Hence

− βψ = lim
N→∞

1

N
logZN = log(2 coshK)
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Correlations in Open Chain

Consider an inhomogeneous open Ising chain

H = −
N−1
∑

i=1

Jiσiσi+1

• The probability that σi and σi+r are parallel is

Prob(σi = σi+r) =
〈

1
2(1 + σiσi+r)

〉

= 1
2(1 + 〈σiσi+r〉)

where the correlation function is

〈σiσi+r〉 =

∑

σ
σiσi+r exp(−βH(σ))

∑

σ
exp(−βH(σ))

∼ exp
(

− r

ξ

)

, r → ∞

and the correlation length ξ is a measure of the distance over which the spins are corelated.

Now we have the identity

LHS :=
∑

σ
exp





N−1
∑

i=1

Kiσiσi+1



 = 2
N−1
∏

i=1

2 coshKi := RHS

• So
∂
∂Ki

. . . ∂
∂Ki+r−1

LHS

LHS
=

∂
∂Ki

. . . ∂
∂Ki+r−1

RHS

RHS
and

〈σiσi+r〉 = (tanhKi) . . . (tanhKi+r−1)

→ (tanhK)r, Ki → K

Hence
ξ−1 = − log tanhK → 0 as T → 0
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Closed Ising Spin Chain

• The limiting free energy of the nearest-neighbour Ising model on a closed (periodic) chain

can be evaluated, even in the presence of an external magnetic field, using transfer matrices.

• The Hamiltonian of the closed ferromagnetic Ising spin chain in a field is

H = −J
N
∑

i=1

σiσi+1 − h
N
∑

i=1

σi, J > 0

The problem is to evaluate the partition function

ZN =
∑

σ
exp



K
N
∑

i=1

σiσi+1 +B
N
∑

i=1

σi





=
∑

σ

N
∏

i=1

exp
[

Kσiσi+1 + 1
2B(σi+ σi+1)

]

where K = βJ and B = βh and, since the chain is periodic, σN+1 = σ1.

• Using periodicity, we have symmetrically shared the magnetic field B between the sites i

and i+1.
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Matrix Trace

• Abstractly, a trace on an algebra of operators is a linear functional tr satisfying

tr(αA+ βB) = α trA+ β trB, trAB = trBA

where A,B are operators and α, β are scalars. It immediately follows that tr is cyclic, that is,

trABC . . .G = trBC . . .GA.

• A matrix trace on (real or complex) n × n matrices A with entries Ajk is defined as the

sum over diagonal entries

TrA =
n
∑

j=1

Ajj

Tr(αA+ βB) =
n
∑

j=1

(αAjj + βBjj) = α
n
∑

j=1

Ajj + β
n
∑

j=1

Bjj = αTrA+ βTrB

TrAB =
n
∑

i=1

(AB)ii =
n
∑

i=1

n
∑

j=1

AijBji =
n
∑

j=1

n
∑

i=1

BjiAij =
n
∑

j=1

(BA)jj = TrBA

• From cyclicity, the trace Tr is invariant under similarity transformations (a change of basis)

TrS−1AS = TrASS−1 = TrA

Any matrix A can be brought to upper triangular (Jordan canonical form) by some similarity

transformation S. Since the diagonal entries of the triangular matrix T = S−1AS are the

eigenvalues λj of T and A, it follows that

TrA = TrT =
n
∑

j=1

λj
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Transfer Matrix

• Let us define a 2× 2 transfer matrix T with elements

T σ,σ′ = 〈σ|T |σ′〉 = exp
[

Kσσ′ + 1
2B(σ+ σ′)

]

that is

T =

(

〈1|T |1〉 〈1|T | −1〉
〈−1|T |1〉 〈−1|T | −1〉

)

=

(

eK+B e−K

e−K eK−B

)

where we have introduced Dirac’s bra and ket notation 〈bra|c|ket〉.

• We can then write

ZN =
∑

σ1

· · ·
∑

σN

〈σ1|T |σ2〉〈σ2|T |σ3〉 . . . 〈σN−1|T |σN〉〈σN |T |σ1〉

• These are matrix products so

ZN =
∑

σ1

〈σ1|TN |σ1〉 = TrTN = λN+ + λN−

where λ+ ≥ λ− are the eigenvalues of T . Since T is a real symmetric matrix, it is diagonalizable

with real eigenvalues λ±.

• The transfer matrix technique has reduced the problem of calculating the partition function

to a problem in linear algebra!
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Transfer Matrix Eigenvalues

• The characteristic polynomial of T is

λ2 − (2eK coshB)λ+2sinh2K = 0

so

λ± = eK coshB ±
√

e2K sinh2B+ e−2K

and for T > 0 we have λ+ > λ− > 0.

• It follows that

1

N
logZN =

1

N
log(λN+ + λN−) =

1

N
logλN+

[

1+

(

λ−
λ+

)N]

= logλ+ +
1

N
log

[

1 +

(

λ−
λ+

)N]

→ logλ+ as N → ∞.

• Hence the free energy per spin ψ in the thermodyamic limit is given by

−βψ = lim
N→∞

1

N
logZN = logλ+

→ log(2 coshK) as h→ 0

Since the limiting free energy per spin is independent of boundary conditions, this result

agrees with the open spin chain result for h = 0.
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No Spontaneous Magnetization in 1-d

• The magnetization is

m = − ∂

∂B
(βψ) =

∂

∂B
logλ+ =

sinhB
√

sinh2B+ e−4K

Clearly, 0 ≤ m ≤ 1 and m→ 1 if either J → ∞, h→ ∞ or T → 0.

• In zero field (h → 0±) the magnetization vanishes, so there is no residual or spontaneous

magnetization! Moreover, for T > 0, the limiting free energy is an analytic function of h and

T so the Ising spin chain does not undergo a phase transition. This is a general feature of

one-dimensional models with finite-range interactions.

Correlation Length

• The correlation length in a field can also be calculated using the transfer matrix giving

ξ−1 = − log

(

λ−
λ+

)

→ − log tanhK as h→ 0

3-7



van Hove’s Theorem

Theorem 2 (van Hove)

The limiting free energy ψ(h, T) of the one-dimensional finite-range Ising model

H = −
∑

1≤i<j≤N
J(j − i)σiσj − h

N
∑

i=1

σi

with
J(k) = 0 for k > R, T primitive

is an analytic function of h and T for T > 0 and

lim
h→0±

m(h, T) = 0 for T > 0

Sketch of Proof: For interactions with finite-range R, we can always define a finite-

dimensional transfer matrix T by grouping R consecutive spins together as a “superspin”.

Since the elements of T are Boltzmann weights, T is a nonnegative matrix (has all nonnegative

entries). The van Hove theorem then follows from the Perron-Frobenius theorem.

Theorem 3 (Perron-Frobenius)

If T is primitive, that is, T p > 0 (entry-by-entry) for some natural number p ≥ 1, then

(i) There is a unique real positive (non-degenerate) eigenvector x1 of T

Tx1 = λ1x1, x1 > 0 (entry-by-entry)

(ii) The eigenvalues λj ∈ C of the n× n matrix T satisfy

λ1 > |λ2| ≥ |λ3| ≥ · · · ≥ |λn| ≥ 0
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Perron-Frobenius and Analyticity

• By the Perron-Frobenius theorem, the eigenvalues of T satisfy

λmax = λ1 > |λ2| ≥ |λ3| ≥ · · · ≥ |λn| ≥ 0

that is, the largest eigenvalue is real, positive and nondegenerate. Hence

1

N
logZN =

1

N
log(λN1 + · · ·+ λNn )

= logλ1 +
1

N
log

[

1 +

(

λ2
λ1

)N
+

(

λ3
λ1

)N
+ · · ·+

(

λn

λ1

)N]

→ logλmax as N → ∞.

• So

− βψ(h, T) = lim
N→∞

1

N
logZN = logλmax

and m(h, T) are analytic because λmax > 0 is analytic. But the magnetization is an odd

function of h, that is m(h, T) = −m(−h, T), so m(0, T) = 0 = m(0±, T) by continuity.

Theorem 4 (Analyticity) Suppose the entries of the finite n× n matrix

T = T (z) = T (z1, z2, . . . , zm)

are analytic in z in some common domain D. Then an individual eigenvalue λj(z) is analytic

in z ∈ D except possibly when it coalesces with another eigenvalue, λj(z) = λi(z) for some i.
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Spontaneous Magnetization in Two or More Dimensions

• In sharp contrast to the one dimensional Ising model, Ising models on cubic lattices in two

or more dimensions

H = −J
∑

〈i,j〉
σiσj − h

∑

i

σi

do exhibit spontaneous magnetization and therefore undergo phase transitions!

m0(T) = lim
h→0+

m(h, T) > 0, T < Tc

• The zero-field Ising model on the square lattice was solved by L. Onsager in 1944 and

the spontaneous magnetization m0(T) was calculated by C.N. Yang in 1952.

0.0 0.5 1.0 1.5

0.0

0.2

0.4

0.6

0.8

1.0

m0(T)

TTc

h

m > 0

Tc T

m < 0
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Other Lattice Models

• The spin-1 Ising model, with spins σi = 0,±1, is

H = −J
∑

〈i,j〉
σiσj − h

∑

i

σi

• The Q-state Potts model, with spins σi = 1,2, . . . , Q, is

H = −J
∑

〈i,j〉
δ(σi, σj)− h

∑

i

δ(σi,1)

where the Kronecker delta is

δ(σ, σ′) =







1, σ = σ′

0, otherwise

• There are many other models with different symmetries (discrete, continuous, quantum,

etc.) which exhibit phase transitions and therefore are of much interest.

• The spin-12 Ising model is also a model of a lattice gas with occupation numbers

ti =
1
2(1− σi) =







1, i is occupied (σi = −1)

0, i is unoccupied (σi = 1)

In this case the hard-core repulsion between atoms excludes multiple occupancy of a site. A

more realistic model of a gas, however, should allow for a continuous distribution of particles

with a non-zero diameter as in the one-dimensional Tonks gas.

3-11



Finding Eigenvectors from Symmetry

• Solving the characteristic polynomial to find eigenvalues of 3× 3 or larger matrices is not

usually practicable. However, if the matrix has symmetries, the form of the eigenvectors can

often be guessed so that the corresponding eigenvalues can be obtained indirectly.

Cyclic Matrices: Let the n × n matrix C be a cyclic (circulant) matrix so that its entries

are given by Cj,k = cj−k mod n with j, k = 0,1, . . . , n− 1. The matrix has cyclic Zn symmetry

because it commutes with the cyclic rotation matrix Ω

C =

















c0 cn−1 cn−2 · · · c1
c1 c0 cn−1 · · · c2
c2 c1 c0 · · · c3
... ... ... . . . ...

cn−1 cn−2 cn−3 · · · c0

















, Ω =

















0 1 0 · · · 0
0 0 1 · · · 0
... ... ... . . . ...
0 0 0 · · · 1
1 0 0 · · · 0

















, C = Ω−1CΩ, ΩC = CΩ

The complex eigenvectors of the commuting matrices C and Ω must be common. The form

of the complex eigenvectors can therefore be guessed in terms of the nth roots of unity ωj

Cvj = λjvj, vj = (1, ωj, ω
2
j , . . . , ω

n−1
j )T , ωj = e2πij/n

This yields the complex eigenvalues

λj =
n−1
∑

k=0

ωkj cn−k, j = 0,1, . . . , n− 1

This is recognized as the discrete Fourier transform. If C is also a real symmetric matrix with

ck = cn−k, then the eigenvalues are real.
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Z2 Symmetric Eigenvectors

• Let A be diagonalizable with a Z2 symmetry so that it commutes with an involution matrix R

A = R−1AR, RA = AR, R2 = I, R = R−1

Since A and R commute, they are simultaneously diagonalizable with a common set of

eigenvectors. To see this, let x be an eigenvector of A

Ax = λx

and define the symmetric/anti-symmetric orthogonal projectors

P± = 1
2(I ±R), P2

± = P±, P+P− = P−P+ = 0, P+ + P− = I, RP± = ±P±
• It then follows that P±x are eigenvectors of R with eigenvalues r = ±1 given by

R(P±x) = ±(P±x) = r(P±x)

and simultaneous eigenvectors of A with eigenvalue λ

Ax = λx ⇒ A(P+x+ P−x) = λ(P+x+ P−x) × P±
⇒ A(P±x) = λ(P±x) P±A = AP±

Exercise: Use symmetry to find the eigenvectors and eigenvalues of the Z2 symmetric matrix

A and check your answer by factorizing the characteristic polynomial:

A =







1 3 2
3 1 3
2 3 1






, R =







0 0 1
0 1 0
1 0 0






, Hint: Show eigenvectors P±x are of the form







a
b
a






or







c
0
−c
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Tonks Gas

• Tonks gas is a model of hard-core particles (spheres or rods) in one dimension, i.e., one-

dimensional billiard balls. The pair interaction (hard-core) potential is

φ(r) = φhc(r) =











∞, 0 ≤ r < a

0, r ≥ a

0 L L+a

x1 x2 x3 xN+1

• The Hamiltonian for N rods on the interval 0 ≤ x ≤ L is

H(x) =
∑

1≤i<j≤N
φhc(|xi − xj|)

Note H is a symmetric function of x1, x2, . . . , xN and the kinetic energy is omitted.

• The canonical partition function (with Boltzmann counting) is

ZN =
1

N !

∫ L

0
· · ·

∫ L

0
exp [−βH(x)] dx1 . . . dxN =

∫

· · ·
∫

R
exp [−βH(x)] dx1 . . . dxN

where R is the region

R : 0 ≤ x1 ≤ x2 ≤ . . . ≤ xN ≤ L
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Change of Variables

• Now exp(−βφhc) = 0 or 1 so

ZN =

∫

· · ·
∫

R′
dx1 . . . dxN

where

R′ : 0 ≤ x1 ≤ x2 − a, a ≤ x2 ≤ x3 − a,

. . . , (i− 1)a ≤ xi ≤ xi+1 − a, . . .

. . . , (N − 1)a ≤ xN ≤ xN+1 − a = L.

• Changing variables to yi = xi − (i− 1)a we find that

0 ≤ yi ≤ xi+1 − a− (i− 1)a = xi+1 − ia = yi+1

• Hence

ZN =

∫ ℓ

0
dyN

∫ yN

0
dyN−1 · · ·

∫ y3

0
dy2

∫ y2

0
dy1 =

ℓN

N !

where ℓ = L− (N − 1)a is the effective volume.
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Equation of State

• Using Stirling’s formula N ! ∼ (N/e)N , the limiting free energy is given by

−βψ = lim
N,L→∞
L/N=v

1

N
logZN

= 1+ lim
N,L→∞

log
L− (N − 1)a

N

= 1+ log(v − a)

where v > a is the volume per particle. The limit v → a is the close packing limit.

• The pressure is

P = −∂ψ
∂v

=
kT

v − a

so the equation of state is

P(v − a) = kT

which is the ideal gas law with the volume per particle V/N replaced with the free volume

per particle v − a. The free energy is analytic for v > a so there is no phase transition.
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Tonks – van der Waals Gas

• In one dimension, Tonks gas is an improvement

over the ideal gas since it takes into account

the finite size of particles and the hard-core

exclusion between them. However, real particles

also interact through attractive Lennard-Jones

dispersion forces. A simple way to model this is

provided by the Tonks–van der Waals potential

φ(r) = φhc(r)−
α

L
, α > 0

r
L

φ

−α
L

• The parameter α is the integrated strength of the attractive potential.

• This model is solvable but unrealistic because the strength of the potential should not

depend upon the size L of the system. The Hamiltonian is

H =
∑

1≤i<j≤N

[

φhc(|xi − xj|)−
α

L

]

= −αN(N − 1)

2L
+HTonks

• Hence

ZN = exp

[

βαN(N − 1)

2L

]

ZTonksN
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van der Waals Equation of State

• The free energy is given by

−βψ = lim
N,L→∞
L/N=v

1

N
logZN =

βα

2v
+1+ log(v − a)

It follows that the pressure is

P = −∂ψ
∂v

=
kT

v − a
− α

2v2
= Phc −

α

2v2

• The pressure is reduced, relative to Tonks gas, due to the attractive interactions of the

particles by an amount proportional to the strength α of the interactions and also proportional

to the square of the density ρ2 = 1/v2 which gives the probability of two particles interacting.

• The equation of state is modified to

(

P +
α

2v2

)

(v − a) = kT

which is the celebrated equation of state proposed, on phenomenological grounds, by van der

Waals in 1873.
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7: Mean-Field Theory

19. Van der Waals-Maxwell fluid
20. Curie-Weiss theory of ferromagnetism
21. Equivalent neighbour model

Pierre Curie (1859–1906)
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Gas-LiquidPhase Diagram

• Isotherms in the p-v plane of the van der Waals Maxwell theory of a fluid. There is a

critical point at the critical pressure p = pc and critical specific volume v = vc and a 2-phase

coexistence region (gas at specific volume vg coexists with liquid at specific volume vℓ).
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Maxwell Double Tangent Construction

• There is a well known problem with the van der Waals equation of state. If the isotherms

are plotted for P as a function of v it is found that there are wiggles at low temperatures

where

∂v

∂P
> 0

• This asserts that the gas actually expands as you labour to compress it and violates

thermodynamic stability!

• The remedy for this situation was provided by Maxwell who proposed the double tangent

formula

ψ(v) =
Convex

Envelope

[

ψhc(v)−
α

2v

]

for fixed T .

• The van der Waal’s gas, modified by the Maxwell construction, is called the van der Waal’s

– Maxwell theory.



• Schematic representation of the van

der Waals wiggle in a low temperature

isotherm of P = −∂ψ∂v plotted against v.

• The wiggle is removed by placing a flat

segment into the isotherm according to an

equal area rule as illustrated.

• Also shown is the corresponding kink

in the free energy isotherm with the

equivalent Maxwell double tangent (convex

envelope) construction.

P

Ã

A = B

vL v

v

vG

A
B

vL vG
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Maxwell Equal Area Construction

• The double tangent construction is equivalent to placing horizontal segments in the

isotherms according to an equal area rule. Such flat regions are found experimentally in

isotherms at low temperatures throughout the gas-liquid coexistence region.

• The Maxwell construction means that the free energy is no longer analytic and thus leads

to a phase transition.

• The van der Waals-Maxwell theory can in fact be obtained rigorously by taking a limit of

infinitely weak long-range potentials after the thermodynamic limit.
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Validity of van der Waals–Maxwell Theory

Theorem 5 (Lebowitz and Penrose 1966)

The van der Waals–Maxwell theory can be obtained rigorously in d dimensions by considering

a gas of hard-sphere particles with attractive pair potential of the form

φ(r) = −γd exp(−γ|r|)

by taking the limit γ → 0+ after the thermodynamic limit. In particular, α is given by

α = −
∫

φ(r)dr

and is independent of γ.

Chronology:

• Kac, Uhlenbeck and Hemmer (1963–4) d = 1

• van Kampen (1964) heuristic argument in general d

• Lebowitz and Penrose (1966) rigorous result for general d
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Curie-Weiss Ferromagnet

• In 1895, Pierre Curie submitted his doctoral thesis describing his experimental findings on

the phase transition of ferromagnetic materials such as iron. The critical temperature at

which this phase transition occurs is called the Curie point.

• The classical theory of ferromagnetism was proposed by Weiss in 1907. This

phenomenological theory, now called the Curie-Weiss theory, is based on the paramagnet

H = −heff
N
∑

i=1

σi

and assumes that, in a ferromagnet, the effective field heff consists of an internal field in

addition to the external field h.

• On the average the internal field, due to the cooperative alignment of the spins, is

proportional to the magnetization m so that the local effective field seen by a spin is

heff = Jm+ h

where the constant of proportionality J is called the mean-field parameter.

• Evaluating the magnetization then leads to the transcendental equation of state

m = tanh(βheff) = tanh(Km+B), K = βJ, B = βh
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Graphical Solution

• The self-consistency equation is used to determine m = m(h, T). Since the equation cannot

be solved analytically it is solved graphically in the form

Jm+ h

kT
= tanh−1m

Given h and T , this equation can admit one, two or three solutions for the magnetization m.

• If the slope of the straight line is less than the critical value

J

kTc
= 1

there is just one solution.

• In general there can be more than one solution. But, if we assume that m and h have

the same sign as is physically reasonable, then for h > 0 the equation of state determines m

uniquely. This assumption is analogous to the Maxwell construction for the van der Waals

fluid.
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tanh−1 x

J
kT x+ h

kT x
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• Graphical solution of the self-

consistency equation.

• Magnetic isotherms for the Curie-Weiss theory.
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Sponaneous Magnetization

• The spontaneous magnetization m0, defined by

m0(T) = lim
h→0+

m(h, T)

is given by

m0(T) =











0, T ≥ Tc = J/k

x, T < Tc = J/k

where x is the positive solution of

x= tanh
Jx

kT

• The Curie-Weiss theory gives a topologically

correct phase diagram.

• It predicts spontaneous magnetization and an

order-disorder phase transition in zero field from

a magnetized phase (T < Tc, m > 0) to a

paramagnetic (nonmagnetized) phase (T > Tc,

m = 0) as the temperature is raised through the

critical value Tc = J/k called the Curie point.

h

m > 0

Tc T

m < 0
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Equivalent Neighbour Ising Model

• The results of the Curie-Weiss theory can be obtained using the canonical ensemble by

starting with the equivalent neighbour Hamiltonian

H = − J

N

∑

1≤i<j≤N
σiσj − h

N
∑

i=1

σi, J > 0

The sites labelled 1,2, . . . , N are all equivalent. They sit on the sites of a complete graph —

no lattice structure is assumed or needed.

• As for the Tonks–van der Waals gas, the interactions are unphysical because they are

independent of separation and depend on the size of the system N . (The factor of N is

needed to ensure the energy is extensive and that the thermodynamic limit of the free energy

exists.)
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Partition Function

• To calculate the partition function we begin by writing

H = 1
2J − J

2N

( N
∑

i=1

σi

)2
− h

N
∑

i=1

σi

so that

ZN = e−
1
2K

∑

σ
exp

[

K

2N

( N
∑

i=1

σi

)2
+B

N
∑

i=1

σi

]

where K = βJ and B = βh.

• Next we use the identity

exp(12αS
2) =

√

α

2π

∫ ∞

−∞
dx exp(−1

2αx
2 + αxS)

with

α = NK and S =
1

N

N
∑

i=1

σi
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Integral Formula

• The partition function is therefore

ZN ∼
∑

σ

∫ ∞

−∞
dx exp

[

− 1
2NKx

2+(Kx+B)
N
∑

i=1

σi

]

∼
∫ ∞

−∞
dx e

−1
2NKx

2
[2 cosh(Kx+B)]N

∼
∫ ∞

−∞
dx exp [Nf(x)]

where

f(x) = −1
2Kx

2 + log2 cosh(Kx+B)

and we have omitted the constant

AN =

√

NK

2π
e−K/2

• The limiting free energy per spin is thus

− βψ = lim
N→∞

1

N
logZN = lim

N→∞
1

N
log

∫ ∞

−∞
exp[Nf(x)] dx

This follows since

lim
N→∞

1

N
logAN = lim

N→∞
1

N
log





√

NK

2π
e−K/2



 = 0
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Laplace’s Method

• For large N , the integral for ZN is dominated by the maximum value of the integrand so

ψ can be obtained by Laplace’s method giving

− βψ = max
x

[

−1
2Kx

2 + log2 cosh(Kx+B)
]

= f(x∗(B), B)

where the maximum occurs at x = x∗(B) and

f(x∗(B), B) = −1
2Kx

∗2 + log2cosh(Kx∗ +B)

• Differentiating with respect to x, we see that x = x∗(B) must satisfy

x = tanh(Kx+B)

This is precisely the Curie-Weiss equation of state with x identified with the magnetization

m =
∂

∂B
(−βψ) = tanh(Kx∗ +B) = x∗

Since ∂f
∂x∗ = 0, the derivative is given by

∂

∂B
(−βψ) =

d

dB

[

f(x∗(B), B)
]

=
∂f

∂x∗
dx∗

dB
+

(

∂f

∂B

)

x∗
=

(

∂f

∂B

)

x∗
= tanh(Kx∗ +B)

• Furthermore, for the maximizing solution m = x∗ and h are always of the same sign as

was previously assumed. The equivalent neighbour Ising model therefore undergoes a phase

transition at the critical point h = 0, T = Tc = J/k.
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Validity of Curie–Weiss Theory

Theorem 6 (Siegert and Vezzetti 1968)

The Curie-Weiss theory can be obtained rigorously in d dimensions by considering a

ferromagnetic Ising model with pair interactions

Jij = J(|i− j|) = γd exp(−γ|i− j|)

by taking the limit γ → 0+ after the thermodynamic limit. The mean-field parameter J is

given by

J =
∑

j

J(|i− j|)

and is independent of γ.

Theorem 7 (Pearce and Thompson 1978)

The Curie-Weiss theory can be obtained rigorously from a ferromagnetic Ising model with

nearest-neighbour interactions of strength

J

2d

on a d-dimensional hypercubic lattice by taking the limit d → ∞ after the thermodynamic

limit.
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Mean-Field Theory

• Mean-field theory is first approximation used in studying new models.

• Mean-field theory usually gives a qualitatively correct phase diagram but gives poor results

near critical points.

• Other approaches to mean-field theory are the variational method (Bogoluibov inequality)

and the Landau expansion (functional integral).

• Mean-field theory gives upper bounds on magnetization and critical temperatures.

• Validity of mean-field theory is reviewed by Thompson (Prog. Theor. Phys. 1993).
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Overview and References

Overview:

• The goal of statistical mechanics is to describe the behaviour of bulk matter starting from

a physical description of the interactions between its microscopic constituents.

• The third part of this course introduces critical exponents and the concepts of scaling and

universality in the theory of critical phenomena. These concepts are placed into the framework

of the Renomalization Group and illustrated by applying the Migdal-Kadanoff bond moving

approximation to the Ising model. The course concludes with applications to random walks

and percolation.

References:

• C.J. Thompson, Classical Equilibrium Statistical Mechanics, Oxford Science Publications

(1988).

• J. M. Yeomans, Statistical Mechanics of Phase Transitions, Clarendon Press, Oxford, 1992.

• K. Huang, Statistical Mechanics, 2nd edition, Wiley, New York, 1987.

• R. J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press, London,

1982.

• H.B. Callen, Thermodynamics, Wiley, New York, 1960.

• H.E. Stanley, Introduction to Phase Transitions and Critical Phenomena, Oxford University

Press, 1971.

• C. Domb and M. S. Green/C. Domb and J. L. Lebowitz, Phase Transitions and Critical

Phenomena, Vols. 1–14, Academic Press, London, 1972–1994.
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Lecture Outline

Topic 8. Critical Exponents and Scaling

22. Critical exponents

23. Mean-field critical exponents

24. Universality and scaling

Topic 9. Renormalization Group

25. Renormalization group flows

26. Linearization around fixed points

27. Migdal-Kadanoff bond moving approximation

Topic 10. Simple and Random Walks

28. One-dimensional random walk

29. Walks on graphs and hypercubic lattices

30. Return probability and Polya’s theorem

Topic 11. Percolation

31. Bond and site percolation

32. Percolation in one dimension

33. Percolation on Bethe lattice

0-3
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22. Critical exponents
23. Mean-field critical exponents
24. Universality and scaling
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Critical Exponents

• The behaviour of thermodynamic functions in the vicinity of a critical point is characterized

by critical exponents. These describe the power law behaviour asymptotically close to the

critical point.

• Assuming f(x) > 0, we write

f(x) ∼ xǫ as x→ 0+

whenever the limit

ǫ = lim
x→0+

log f(x)

logx

exists. This limit defines the critical exponent ǫ of the function f(x) at the critical point

x = 0. Similarly, we define one-sided limits for x→ 0− and two-sided limits for x→ 0.

• In statistical mechanics there has been a proliferation of critical exponents which now

exhaust the Greek alphabet!
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Definition of Critical Exponents

Magnetic Critical Exponents

Exponent Definition

α C0 ∼ |t|−α, t → 0

β m0 ∼ |t|β, t→ 0−
γ χ0 ∼ |t|−γ, t→ 0

δ h ∼ sgn(m)|m|δ, h→ 0, T = Tc

Fluid Critical Exponents

Exponent Definition

α CV ∼ |t|−α, t→ 0

β ρL − ρG ∼ |t|β, t→ 0−
γ KT ∼ |t|−γ, t→ 0

δ P − Pc ∼ sgn(ρ− ρc)|ρ− ρc|δ,
|ρ− ρc| → 0, T = Tc

t =
T − Tc

Tc

m = −∂ψ
∂h
, m0 = −∂ψ

∂h

∣

∣

∣

∣

h=0

C0 = −T ∂
2ψ

∂T2

∣

∣

∣

∣

h=0

= zero-field specific heat

χ0 = −∂
2ψ

∂h2

∣

∣

∣

∣

h=0

= zero-field susceptibility

ρL,G = liquid, gas density

CV = −T ∂
2ψ

∂T2

∣

∣

∣

∣

V=const

= constant volume specific heat

KT = isothermal compressibility

K−1
T = −V ∂P

∂V

∣

∣

∣

∣

T=const
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Mean-field Critical Exponents

Let us obtain the critical exponents of the Curie-Weiss ferromagnet:

α = 0disc

• The non-analytic zero-field free energy is

− ψ

kT
=















log 2, T ≥ Tc

−Jm
2
0

2kT
+ log2 cosh

(

Jm0

kT

)

, T < Tc

with

m0 = tanhKm0

• Hence

U = −T2 d

dT

(

ψ

T

)

=











0, T ≥ Tc

−1
2Jm

2
0, T < Tc

and

C0 =
dU

dT
=















0, T ≥ Tc

−1
2J

dm2
0

dT
, T < Tc

Since
dm2

0

dT

∣

∣

∣

∣

T→Tc−
= −3k

J
, C0

∣

∣

∣

T→Tc−
=

3

2
k and this yields a jump discontinuity in C0 so α = 0disc.
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β = 1/2

• If we set h = 0 then m0 is small near the critical point T = Tc = J/k so we can Taylor

expand the equation of state

Jm0

kT
=
Tc

T
m0 = tanh−1m0 = m0 + 1

3m
3
0 + . . .

• This gives

m2
0 ∼ 3

(

Tc

T
− 1

)

= 3
Tc

T

(

1− T

Tc

)

and hence as T → Tc−

m0 ∼
(

1− T

Tc

)β

with β = 1/2

• Note that

dm2
0

dT

∣

∣

∣

∣

T→Tc−
= − 3

Tc
= −3k

J
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γ = 1

• The zero-field susceptibility is

χ0 = β
dm

dB

∣

∣

∣

∣

B=0

But differentiating m = tanh(Km+B) implicitly with respect to B gives

dm

dB
=

1−m2

1−K(1−m2)

and so

χ0 =
β(1−m2

0)

1−K(1−m2
0)

• It follows that as T → Tc

χ0 ∼
∣

∣

∣

∣

1− T

Tc

∣

∣

∣

∣

−γ
with γ = 1
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δ = 3

• Finally, if we set T = Tc = J/k then m is small for small h so we can Taylor expand the

equation of state along the critical isotherm

J

kTc
m+

h

kTc
= m+

h

J
= tanh−1m ∼ m+ 1

3m
3 + . . .

Hence we conclude that as h→ 0

m ∼ h1/δ with δ = 3
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Summary

• In summary, the critical exponents of the Curie-Weiss ferromagnet are

α = 0disc, β = 1/2, γ = 1, δ = 3

• These are the classical values. Analysis shows that the van der Waals–Maxwell fluid has

precisely the same classical values for the critical exponents.

• Typical experimental values for these exponents are

α ≈ 0.1, β ≈ 0.33, γ ≈ 1.2, δ ≈ 4.2

for both fluid and magnetic systems in three dimensions. Clearly the classical critical

exponents are wrong!
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Some Critical Exponents

Model α β γ δ Symmetry

Mean-Field 0disc 1/2 1 3 Z2

2-d Ising 0log 1/8 7/4 15 Z2

3-d Ising 0.10 0.33 1.24 4.8 Z2

d ≥ 4 Ising 0 1/2 1 3 Z2

2-d 3-State Potts 1/3 1/9 13/9 14 S3

Hard Hexagons 1/3 1/9 13/9 14 S3

2-d 4-state Potts 2/3 1/12 7/6 15 S4

2-d Percolation −2/3 5/36 43/18 91/5 S1

• Clearly, the mean-field critical exponents are not generally valid.

• These systems represent different symmetry classes, such as, Z2, S3 and S4. Clearly, the

critical exponents depend on the type of symmetry. Within a symmetry class, for example

3-state Potts and hard hexagons which share an S3 symmetry, the critical exponents are the

same.

• Observe that

α+2β+ γ = 2, γ = β(δ − 1)
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Universality and Scaling

• The critical exponents appear to be insensitive to the microscopic details of the system.

This empirical fact is embodied in the following:

Universality Hypothesis

For short-range interactions, the critical exponents depend only on the spatial dimension d

and the symmetries of the Hamiltonian H.

• Another important hypothesis in the modern theory of critical phenomena is the scaling

hypothesis. For a simple magnetic system, this takes the following form:

Scaling Hypothesis

There exist two exponents y1 and y2 such that, asymptotically close to the critical point, the

free energy can be written as

ψ = ψanal+ ψsing

where ψanal is analytic and the singular part ψsing satisfies

ψsing(λ
y1t, λy2h) = λψsing(t, h)

for all values of the scaling parameter λ, that is, ψsing is a generalized homogeneous function

of t = T−Tc
Tc

and h. The exponents y1 = yt, y2 = yh are called scaling or Renormalization

Group (RG) exponents.
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Scaling Relations

• The Curie-Weiss ferromagnet satisfies the scaling hypothesis. In fact, we will show later

that the singular part of the mean-field free energy is

ψsing(t, h) = min
s

{

−h
J
s+ 1

2ts
2 + 1

12s
4
}

This is a generalized homogeneous function with exponents y1 = yt = 1/2 and y2 = yh = 3/4.

• More generally, by differentiating the homogeneous relation satisfied by ψsing, it is possible

to obtain the exponents α, β, γ, δ in terms of y1 = yt and y2 = yh. In this sense, the only

relevant fields are the temperature T and the magnetic field h. Hence only two of the four

critical exponents are independent. Explicitly, we will show that the exponents α, β, γ, δ

satisfy the two scaling relations

α+2β+ γ = 2, γ = β(δ − 1)

These scaling relations are satisfied by the classical values of the critical exponents.
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RG Exponents Determine Critical Exponents

• Differentiating the homogeneous relation

ψsing(λ
y1t, λy2h) = λψsing(t, h)

for a magnet, we find:

α = 2− 1
y1

C0 =
∂2

∂t2
ψsing ∼ |t|−α, h = 0

λ2y1C0(λ
y1t) ∼ λC0(t), set λ =

1

|t|1/y1

C0(t) ∼ λ2y1−1C0(±1) ∼ |t|−(2−1/y1)

β = 1
y1

− y2
y1

m0 =
∂

∂h
ψsing

∣

∣

∣

∣

h=0
∼ |t|β, h = 0

λy2m0(λ
y1t) ∼ λm0(t), set λ =

1

|t|1/y1

m0(t) ∼ λy2−1m0(±1) ∼ |t|−(y2−1)/y1
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γ = 2y2
y1

− 1
y1

χ0 =
∂2

∂h2
ψsing

∣

∣

∣

∣

h=0
∼ |t|−γ, h = 0

λ2y2χ0(λ
y1t) ∼ λχ0(t), set λ =

1

|t|1/y1

χ0(t) ∼ λ2y2−1χ0(±1) ∼ |t|−(2y2−1)/y1

δ = y2
1−y2

m

∣

∣

∣

∣

t=0
=

∂

∂h
ψsing

∣

∣

∣

∣

t=0
∼ |h|1/δ, t = 0

λy2m(λy2h) ∼ λm(h), set λ =
1

|h|1/y2

m(h) ∼ λy2−1m(±1) ∼ |h|−(y2−1)/y2

• Thus we verify that

α+2β+ γ = 2− 1

y1
+2

(

1

y1
− y2
y1

)

+
2y2
y1

− 1

y1
= 2

β(δ − 1) =

(

1− y2
y1

)(

y2
1− y2

− 1

)

=
2y2 − 1

y1
= γ
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Curie-Weiss Singular Free Energy

• For the Curie-Weiss ferromagnet

ψsing(t, h) = min
s

{−h
J
s+ 1

2ts
2 + 1

12s
4}

• Expand the free energy keeping only terms linear in

t =
T − Tc

Tc
=

T

Tc
− 1

and h using J/kTc = 1 and

K =
J

kT
=
Tc

T
=

1

1+ t
, B =

h

kT
=
h

J

1

1+ t

• After replacing x 7→ (x−B)/K, using a Taylor expansion and keeping terms linear in h and t,
we find that

βψ(t, h) = min
−∞<x<∞

{

1
2Kx

2 − log2 cosh(Kx+B)

}

= min
−∞<x<∞

{

1

2K
(x−B)2 − log2 cosh x

}

= min
−∞<x<∞

{

1
2(1 + t)

[

x− h

J(1 + t)

]2
− log 2 cosh x

}

= min
−∞<x<∞

{

1
2(1 + t)x2 − xh

J
−
(

x2

2
− x4

12
+ · · ·

)}

∼ min
−∞<x<∞

{

− xh

J
+ 1

2tx
2 +

1

12
x4
}

= ψsing(t, h)

where

β−1 = kT = (1+ t)J ∼ J, t→ 0

1-13



Free Energy Minima

-2 -1.5 -1 -0.5 0.5 1 1.5 2
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f(x)

t > 0 t < 0

x

• The Curie-Weiss free energy function f(x) = 1
2tx

2 + x4/12 + · · · for h = 0 and t > 0 or

t < 0. For t > 0 there is a single minimum at x = 0. For t < 0 there are two minima at

x = ±x0 corresponding to the existence of a non-zero spontaneous magnetization.

1-14



Curie-Weiss Homogeneous Function

• The Curie-Weiss singular free energy ψsing(t, h) is a generalized homogeneous function with

exponents x = 1/2 and y = 3/4. After replacing x 7→ λ1/4x we find

ψsing(λ
1/2t, λ3/4h)

= min
−∞<x<∞

{

− λ3/4x
h

J
+ 1

2λ
1/2tx2 + 1

12x
4
}

= λ min
−∞<x<∞

{

− x
h

J
+ 1

2tx
2 + 1

12x
4
}

= λψsing(t, h)

with

ψsing(t, h) = ψ(t, h)− ψanal(t, h)
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Correlation Length and Hyperscaling

• The pair or two-point correlation function

G(i− j) = 〈σiσj〉 − 〈σi〉〈σj〉 =
〈

(σi − 〈σi〉)(σj − 〈σj〉)
〉

measures the correlation between the deviations of σi and σj from their mean values. In the

completely ordered (σj = 1 for all j) and completely random (σj = ±1 with equal probability

for all j) states, this correlation vanishes.

• As i and j become separated by large distances σi and σj become statistically independent

lim
|i−j|→∞

[

〈σiσj〉 − 〈σi〉〈σj〉
]

= 0

• Away from criticality, the approach to this limit is exponentially fast

G(i− j) = 〈σiσj〉 − 〈σi〉〈σj〉 ∼ exp

(

− |i− j|
ξ(t)

)

, |i− j| → ∞, t =
T − Tc

Tc
6= 0

where the correlation length ξ(t) measures the distance over which the spins are correlated.

• At criticality, the spins are effectively correlated at all distances and the correlation length

diverges. More specifically, we can define a correlation length critical exponent ν

ξ ∼ |t|−ν, t→ 0

The new critical exponent ν is not independent and satisfies the hyperscaling relation

2− α = dν, d = lattice dimensionality

For the two-dimensional Ising model, d = 2, α = 0log and ν = 1.
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Decay of Critical Pair Correlations

• More generally, the long-distance behaviour of the pair correlations is given by

G(r) ∼ A(d)r2−d−η exp
(

− r

ξ(t)

)

, r = |i− j| → ∞

where the amplitude A(d) depends on the lattice dimensionality.

• At the critical point (t = 0, ξ = ∞), the pair correlations no longer decay exponentially.

Instead, the correlations decay with a power-law behaviour

〈σiσj〉 − 〈σi〉〈σj〉 ∼ |i− j|2−d−η, 2− d− η < 0

• Again, the new critical exponent η is not independent and satisfies the scaling law

2− η

d
=

δ − 1

δ+1
, δ =

d+2− η

d− 2 + η

For the two-dimensional Ising model, d = 2, δ = 15 and η = 1/4.

• Statistical systems with relatively short correlation lengths can be well studied by

perturbation or approximate methods such as mean-field theory. In constrast, systems close

to critical points with a very large correlation length, are generally extremely difficult to study.
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Renormalization Group

• The renormalization group approach to critical phenomena has its origins in the work of

Wilson, Kadanoff and others in the mid 1970s. Although the RG methods have never been

made rigorous, the renormalization group has proved invaluable as a language and heuristic

framework to understand the implications of scaling and universality.

• The basic idea of the Renormalization Group (RG) is to reduce the correlation length

ξ 7→ ξ/b by a scale factor b > 1, and to simultaneously reduce the number of degrees of

freedom from N to N ′ = N/bd, by applying a transformation that preserves the dimensionality

and symmetries of the system (and hence the critical exponents)

ξ′ = ξ/b, L′ = L/b, N ′ = N/bd, b > 1

• The rescaling factor b applies to all lengths L 7→ L/b. In principle, by successive

applications of the transformation, one moves away from the critical point to a regime

where the correlation length is small and the problem becomes manageable by perturbation

or approximate methods.
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Renormalization Group Transformations

• To specify an RG transformation, consider a general Ising Hamiltonian

H = −
∑

A⊂Λ

JAσA

where Λ is the lattice with N = |Λ| sites. This Hamiltonian is characterized by the set of

interactions or couplings

K = {KA = βJA : A ⊂ Λ}

which we consider as a vector in a suitable vector space of interactions.

• Formally, a renormalization group transformation Rb is a nonlinear operator given by

K ′ = Rb(K), b > 1

or

K ′
A = fA(b;K), fA = {smooth functions}
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Semi-Group Property

• An RG transformation is assumed to satisfy the semigroup property

Rb ◦ Rb′ = Rbb′ = Rb′ ◦ Rb, b, b′ > 1

under composition and the scaling properties

ξ(K ′) = b−1ξ(K), Z(K ′) = Z(K), ψ(K′) = bdψ(K)

• The RG transformations Rb under different rescaling factors b do not form a group since

there is no inverse transformation (we restrict to b > 1).

• Note that the partition function remains fixed and that for a transformation relating

d-dimensional hypercubic lattices of side L,L′ respectively

1

N ′ =
1

(L′)d
=

(

b

L

)d
=

bd

Ld
=
bd

N
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Renormalization Group Flows and Fixed Points

• Let us assume that there exists a renormalization group transformation Rb. Let us start

with a particular system specified by K0 and iterate the transformation to obtain a sequence

of vectors

Kℓ+1 = Rb(Kℓ), ℓ = 0,1,2, . . .

such that

ξ(Kℓ+1) = b−1ξ(Kℓ) = b−2ξ(Kℓ−1) = · · · = b−(ℓ+1)ξ(K0)

• Suppose now that Kℓ approaches a finite limit K∗ as ℓ → ∞, then K∗ is a fixed point of

Rb, that is,

K∗ = lim
ℓ→∞

Kℓ+1 = lim
ℓ→∞

Rb(Kℓ) = Rb

(

lim
ℓ→∞

Kℓ

)

= Rb(K
∗)

• It follows that either

lim
ℓ→∞

ξ(Kℓ) = ξ(K∗) = 0

or

ξ(K0) = lim
ℓ→∞

bℓξ(Kℓ) = ∞, b > 1, ξ(K∗) > 0

• This says that we either converge to a trivial fixed point with ξ(K∗) = 0 or ξ(K0) = ∞,

that is, the initial system was at a critical point and we converge to a non-trivial (critical)

fixed point.
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Basins of Attraction and Universality Classes

• The critical exponents of a system can be determined by the behaviour of Rb in the

neighbourhood of the non-trivial fixed point that the system approaches.

• Each such fixed point will have a domain or basin of attraction, or collection of physical

systems, that iterate to it under the renormalization group flow. These domains of attraction

constitute the various observed universality classes of critical behaviour.

• If K∗ is non-zero and finite, it corresponds to a system at a finite temperature and thus

ξ(K∗) > 0 is non-zero (finite for an off-critical system or infinite for a critical system). Hence

a trivial fixed point (which has ξ(K∗) = 0) can only occur at K∗ = 0 (T = ∞) or ‖K∗‖ = ∞
(T = 0).

• It follows that a non-trivial fixed point must be unstable — since points near a non-trivial

fixed point with ξ <∞ must ultimately iterate to a trivial fixed point on the boundary of the

thermodynamic space (T = 0 or T = ∞).
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Linearization Around a Fixed Point

• Neglecting further neighbour interactions, an RG flow can be visualized by projecting onto

a 2-d space spanned by the nearest and next-nearest neighbour interactions K1, K2:

bbb K∗

K0,c

K2

K1

T = 0
fixed point

T = ∞
fixed point

• Suppose K0,c is an initial critical system that converges to the non-trivial fixed point K∗.
Then if we start with K0 sufficiently close to K0,c, we would expect Kℓ for some large ℓ to

closely approach K∗ before diverging away to a trivial fixed point.

• Linearizing at the non-trivial fixed point, we write

Kℓ = K∗ + kℓ, kℓ small for ℓ ≈ L
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Linearized RG Equations

• The linearized RG equations are given by the Jacobi matrix

kℓ+1 ≈ Lb kℓ, Lb =
[

∂K ′
A

∂KB

∣

∣

∣

∣

K∗

]

= Lb(A,B) = matrix, A,B ⊂ Λ

• Assuming that the matrix Lb has a complete set of orthonormal eigenvectors φi with

eigenvalues Λi = Λi(b), i = 1,2, . . . leads to the eigenvalue equations

Lbφi = Λiφi

• The semigroup property LbLb′ = Lbb′ = Lb′Lb under matrix multiplication gives

Λi(b)Λi(b
′) = Λi(bb

′) ⇒ Λi(b) = byi, yi = RG exponents

• Using the complete set of basis vectors φi, we can decompose

kL =
∑

i

uiφi

where the coordinates ui are called scaling fields and where, by linearization, K∗ is the origin

with coordinates ui = 0. Thus

kL+n = LnbkL = Lnb (
∑

i

uiφi) =
∑

i

uiLnbφi =
∑

i

uiΛ
n
i φi =

∑

i

ui b
nyiφi

Lnb : ui 7→ bnyiui
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Relevant and Irrelevant Scaling Fields

• If |Λi| > 1 (yi > 0), the effect of the scaling field ui will grow under further iteration and so

is designated relevant. Otherwise, if |Λi| < 1 (yi < 0), the scaling field will have little effect

after further iteration and so is designated irrelevant. The case |Λi| = 1 (yi = 0) is marginal.

• In terms of the scaling fields ui, we see that the free energy and correlation length are

generalized homogeneous functions

ξ(u1, u2, . . .) = bn ξ(bny1u1, b
ny2u2, . . .)

ψ(u1, u2, . . .) = b−dnψ(bny1u1, bny2u2, . . .)

where Λi = byi and bn > 1 is arbitrary.

• At criticality, Kℓ → K∗ and hence kℓ → 0 as ℓ→ ∞. Accordingly, bnyiui → 0 as n → ∞ if ui
is irrelevant and ui = 0 at criticality if ui is relevant.

• For simple Ising magnetic systems there are just two relevant scaling fields

u1 ∼ t, u2 ∼ h, t, h→ 0

where we assume that u1 = u1(t) and u2 = u2(h) are analytic and un with n > 2 are irrelevant

so that y1 = yt, y2 = yh > 0 and yi < 0 for i > 2.
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Hyperscaling

• Setting u1 = t and u2 = h = 0 into the generalized homogeneous relation for the correlation

length ξ gives

ξ(t, 0) = bn ξ(bny1t,0)

where here and in the sequel we omit irrelevant fields.

Choosing bn = |t|−1/y1 gives

ξ(t,0) = |t|−1/y1ξ(±1,0) ∼ |t|−ν, ν =
1

y1

• Similarly, setting h = 0 and u2 = 0 gives

ψ0(t) = ψ(t,0) = b−dnψ(bny1t,0) = b−dnψ0(b
ny1t)

and

ψ′′
0(t) = bn(2y1−d)ψ′′

0(b
ny1t)

Choosing bn = |t|−1/y1 gives

C0 ∼ ψ′′
0(t) = |t|−(2−d/y1)ψ′′

0(±1) ∼ |t|−α

with the hyperscaling relation

2− α =
d

y1
= dν, y1 = yt
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Gap Exponent and Universal Scaling Forms

• Similarly, setting u1 = t and u2 = h into the generalized homogeneous relation for the free

energy ψ gives

ψ(t, h) = b−dnψ(bny1t, bny2h) =
1

λ
ψ(λy1/dt, λy2/dh), λ = bdn

so

m(t, h) =
∂ψ

∂h
(t, h) = bn(y2−d)

∂ψ

∂h
(bny1t, bny2h)

• Setting h = 0 and choosing bn = (−t)−1/y1 with t < 0 so that T < Tc gives

m0(t) ∼ ∂ψ

∂h
(t,0) = (−t)(d−y2)/y1 ∂ψ

∂h
(−1,0) ∼ (−t)β, β =

d− y2
y1

=
1− y2

d
y1
d

where
∂ψ

∂h
(t,0) ≡ 0 for t > 0, that is, T > Tc.

• Note also that by setting bn = |t|−1/y1 we obtain universal scaling forms asymptotically

close to the critical point

ψ(t, h) = |t|d/y1ψ
(

± 1,
h

|t|y2/y1

)

= |t|2−αF±
(

h

|t|∆
)

m(t, h) = (−t)βM−
(

h

|t|∆
)

where ∆ = y2/y1 = yh/yt is called the gap exponent and the scaling functions F±,M− are

functions of a single variable.
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Migdal-Kadanoff Bond Moving Approximation

• An approximate renormalization group transformation can be implemented by Migdal-

Kadanoff bond moving. Consider the square lattice Ising model with nearest-neighbour

interactions along the bonds of the lattice with periodic boundary conditions. The Migdal-

Kadanoff bond moving approximation for b = d = 2 on the square lattice is implemented

graphically:

K

K

7→

K

2K

7→

2K

2K

7→

K ′
K ′

• The algorithm is as follows:

(i) Group the faces into blocks of 2× 2 faces.

(ii) Within each 2× 2 block, move the internal bonds by parallel translation to the perimeter

of the block. This rescales the original lattice to a square lattice with rescaling factor b = 2.

(iii) In this way, the original bonds are replaced with double bonds with an extra spin in the

center of each double bond.

(iv) Decimate (sum out) the extra spins so that the interaction 2K is replaced by K ′.
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Migdal-Kadanoff Decimation and RG Equation

• The extra spins at the centers of the double bonds can be decimated (summed out) using

the identity

σ1 σ2

K ′
=

σ1 σ σ2

2K 2K

AeK
′σ1σ2 =

∑

σ=±1

e2Kσ(σ1+σ2) = 2cosh[2K(σ1 + σ2)] = 2cosh[2K(1 + σ1σ2)]

which is equivalent to the equations

AeK
′
= 2cosh4K, Ae−K

′
= 2

• It follows that

e2K
′
= cosh4K = 1

2(e
4K + e−4K)

and

tanhK ′ =
e2K

′ − 1

e2K
′
+1

=
e4K + e−4K − 2

e4K + e−4K +2
=

(e2K − e−2K)2

(e2K + e−2K)2
= tanh2 2K

• The transcendental Migdal-Kadanoff RG equation is thus

K ′ = arctanh(tanh2 2K)
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Graphical Solution of Migdal-Kadanoff RG Equation

• The Migdal-Kadanoff RG equation K ′ = arctanh(tanh2 2K) can be solved graphically and

numerically. There is an unstable fixed point at K∗ = 0.3047. This is to be compared with

the exact critical point given by

K∗ = 1
2 log(1 +

√
2) = 0.4407

• Starting near K = K∗ and iterating graphically gives:

0 K∗ K

K ′ = arctanh(tanh2 2K)
K ′ = K

2-13



Migdal Kadanoff Linearization with Arbitrary b and d = 2

• For arbitrary b > 1 and d = 2, the RG equation is

tanhK ′ = tanhb(bK), tanhK∗ = tanhb(bK∗)

• Linearizing gives Lb =
dK ′

dK

∣

∣

∣

∣

K∗
with

sech2K ′ dK
′

dK
= b2 tanhb−1(bK) sech2(bK)

so that

Lb =
b2 tanhK∗ sech2(bK∗)
sech2K∗ tanh(bK∗)

=
b2 sinh 2K∗

sinh 2bK∗ = Λ1 = by1

since
tanhK∗

sech2K∗ = sinhK∗ coshK∗ = 1
2 sinh 2K∗

• For arbitrary b > 1 and d, the RG equation becomes

tanhK ′ = tanhb(bd−1K), tanhK∗ = tanhb(bd−1K∗)

• Given b and d, the solution is obtained by solving for K∗, Λ1 and y1 in that order. The

correlation exponent ν is then given by hyperscaling

ν =
2− α

d
=

1

y1
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Migdal Kadanoff Results for d = 2

• For b = 2, we find

K∗ = 0.3047, Λ1 = 1.679, y1 = 0.7472, ν = 1.338

compared with the exact results

K∗ = Kc = 0.4407, y1 = 1, ν = 1

• The renormalization group flow equations make sense for b > 1 non-integer. If we consider

the limit b→ 1+, we find

K∗ = Kc = 0.4407, y1 = 0.754, ν = 1.32

These values are better than the b = 2 values and are reasonable estimates given the crudeness

of the approximation.
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Migdal-Kadanoff in a Magnetic Field

• It is also possible to include a magnetic field into the Migdal-Kadanoff RG flow equations.

We just need to attach a weight B/4 to each site at the ends of the bonds that we move.

• On the square lattice, this leads to the modified decimation

σ1 σ2

K ′B′
4

B′
4

=
σ1 σ σ2

2K 2K2B
4

2B
4B

AeK
′σ1σ2+B′(σ1+σ2)/4 =

∑

σ=±1

e2Kσ(σ1+σ2)+Bσ+B(σ1+σ2)/2

= eB(σ1+σ2)/2 2 cosh[2K(σ1 + σ2) +B]

or equivalently

AeK
′+B′/2 = 2cosh(4K +B) eB, AeK

′−B′/2 = 2cosh(4K −B) e−B, Ae−K
′
= 2coshB

• Hence

e4K
′

=
cosh(4K +B) cosh(4K −B)

cosh2B
= cosh2 4K +O(B2)

eB
′

= e2B
cosh(4K +B)

cosh(4K −B)
= 1+ (2+ 2tanh4K)B+O(B2)

which on linearization yields

∂K ′

∂K
=

4sinh2K∗

sinh 4K∗ =
2

cosh2K∗ = Λ1,
∂K ′

∂B
= 0,

∂B′

∂B

∣

∣

∣

∣

(K∗,0)
= 2+ 2tanh4K∗ = Λ2
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Linearized Migdal-Kadanoff in a Magnetic Field

• In a magnetic field, there is an unstable fixed point at (K,B) = (K∗,0) with K∗ as before.

• We find

Lb =




∂K′
∂K

∂B′
∂K

∂K′
∂B

∂B′
∂B





∣

∣

∣

∣

∣

∣

(K∗,0)

=

(

Λ1 ∗
0 Λ2

)

and with b= 2

Λ1 = by1 = 1.679, y1 = 0.754

as before and

Λ2 = by2 = 3.679, y2 = 1.879, β =
d− y2
y1

= 0.162

whereas the exact values are

y2 =
15

8
= 1.875, β =

1

8
= 0.125, ∆ =

y2
y1

=
15

8

• It has not been shown that an RG transformation with all the required properties actually

exists. In fact the usual (real-space) transformations seem to exhibit unwanted peculiarities

(Griffiths and Pearce 1978). In practice, there is no way of estimating the accuracy of an

approximate transformation and no systematic way to improve the results. In fact, attempts

in this direction usually end up giving worse results.

2-17



10: Simple and Random Walks

28. One-dimensional random walk
29. Walks on graphs and hypercubic lattices
30. Return probability and Polya’s theorem

George Polya (1887–1985)
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Simple One-Dimensional Walk

• Consider simple walks on an infinite one-dimensional lattice starting at the origin 0:

−3 −2 −1 0 1 2 3

• These walks can be enumerated symbolically. At each step, there is either a step to the

right represented by z or a step to the left represented by z−1 where z is a formal parameter.

The set of 1-step walks can be represented by the Laurent polynomial

z+ z−1

Similarly, the set of four 2-step walks is enumerated as

zz+ zz−1 + z−1z+ z−1z−1 = (z+ z−1)2 = z2 +2+ z−2

• More generally, the set of 2n n-step walks can be expanded as the generating function

(z+ z−1)n =
n
∑

k=−n mod 2

wn(k)z
k

where

wn(k) =

(

n
1
2(n− k)

)

= {number of distinct n-step walks from the origin 0 to k}

• In accord with the binomial expansion, setting z = 1 counts the total number of n step

walks

2n = (1+ 1)n =
n
∑

k=−n
k=n mod 2

(

n
1
2(n− k)

)
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Generating Function for All Walks

• The generating function can be inverted to find wn(k), the number of distinct n-step walks

from 0 to k.

• Write z = eiφ and observe that

1

2π

∫ 2π

0
dφ eikφ = δ(k,0) =







1, k = 0

0, otherwise
k ∈ Z

• Acting on the left and right hand sides of the generating function for (z + z−1)n with
∫ 2π

0
dφ e−ikφ and using z+ z−1 = 2cosφ and the above identity gives

wn(k) =
1

2π

∫ 2π

0
dφ e−ikφ(2 cosφ)n

• It follows that the generating function for all walks (of arbitrary length) from 0 to k is

Γ(k; z) =
∞
∑

n=0

wn(k)z
n =

1

2π

∫ 2π

0
dφ

e−ikφ

1− 2z cosφ

where we used the geometric series which is valid provided 2|z| < 1.
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Simple Walks on Finite Graphs

• A one-dimensional chain and other lattices are particular examples of graphs. It is possible

to enumerate walks on arbitrary graphs. Consider a walk on an oriented (or non-oriented)

finite graph G specified by an adjacency matrix A with entriesAij

G =

1 2

34

Aij = {# 1-step paths from i to j} A =







0 1 0 1
1 0 1 1
0 1 0 0
0 1 0 0







• From the definition of matrix product, it follows that

(An)ij = {number of distinct n-step paths from i to j}

• Assume that A is diagonalizable which is the case if A is real symmetric or A has distinct

eigenvalues. The generating function of all walks (in an arbitrary number of steps) from i to

j on the graph G, for maxk |zλk| < 1, is then

Γ(i → j; z) =
∞
∑

n=0

wn(i → j)zn =
∞
∑

n=0

(An)ijz
n = [(I − zA)−1]ij =

cofactorji(I − zA)

det(I − zA)

• Suppose further that the graph is regular in the sense that all N nodes of the graph are

equivalent. Then the generating function for all returning walks (of an arbitrary number of

steps) from a particular node of the graph i back to i is

Γ(i → i; z) =
1

N

N
∑

i=1

[(I − zA)−1]ii =
1

N
Tr(I − zA)−1 =

1

N

N
∑

k=1

(1− zλk)
−1

where λk, k = 1,2, . . . , N are the eigenvalues of the adjacency matrix A of G.
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Simple Walks on a Periodic Chain

• For a (regular) finite periodic chain, the adjacency matrix A is cyclic and symmetric

G = 1

2
3

N

A =















0 1 0 · · · 0 1
1 0 1 · · · 0 0
0 1 0 · · · 0 0
... ... ... . . . ... ...
0 0 0 · · · 0 1
1 0 0 · · · 1 0















= N ×N matrix

• The eigenvalue equations are cyclic finite difference equations

Ax = λx, xk−1 + xk+1 = λxk, xk+N ≡ xk, k = 1,2, . . . , N

To solve this, try xk = xk. Then

λ = x+ x−1, xN = xN = λx1 − x2 = x(x+ x−1)− x2 = 1

in accord with cyclicity xk+N = xk+N = xkxN = xk = xk. Choosing x= e2πi/N gives

xk = e2πik/N , λk = 2cos
2πk

N
, k = 1,2, . . . , N

• The generating function for all returning walks (of an arbitrary number of steps) from i

to i on a periodic chain is thus

Γ(i → i; z) =
1

N

N
∑

k=1

1

1− 2z cos 2πk
N

→ 1

2π

∫ 2π

0

dφ

1− 2z cosφ
, N → ∞

and we recover the previous result for an infinite one-dimensional chain.
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Random Walks on Hypercubic Lattices

• Simple walks on a one-dimensional lattice are straightforwardly generalized to d-dimensional

hypercubic lattices. The nodes of a hypercubic lattice are given by lattice (integer) vectors

k = (k1, k2, . . . , kd) ∈ Z
d

• On a hypercubic lattice, the generating function for all walks (of arbitrary length) from 0

to k is

Γ(k; z) =

(

1

2π

)d ∫ 2π

0
dφ1 · · ·

∫ 2π

0
dφd

e−ik·φ

1− 2z
∑d
n=1 cosφn

where φ = (φ1, φ2, . . . , φd).

• Consider a random walk on a hypercubic lattice, such that, each step of the walk has

probability p. Then the probability that an n-step walk starting at the origin 0 will lead to k

is given by

pn(k) = wn(k)p
n

and the generating function for these probabilities is

P(k; z) =
∞
∑

n=0

pn(k)z
n =

∞
∑

n=0

wn(k)p
nzn = Γ(k; pz)

• In this way, all such formulas for random walks are obtained from the corresponding

formulas for simple walks by replacing z with pz.
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Probability of First Return

• The probability that an n-step walk returns to the origin after exactly n steps is

pn = pn(0) = {probability that a walk returns to the origin after n steps}

However, this may not be the first time that the walk has returned to the origin. Let

fn = {probability that a walk returns to the origin for the first time after n steps}

Then fn and pn are related by the recursion

pn = f1pn−1 + f2pn−2 + · · ·+ fnp0

• Acting on this by
∞
∑

n=1

zn and using the Cauchy product gives the relation

P(z)− 1 = F(z)P(z)

between the generating functions

P(z) = P(0; z) =
∞
∑

n=0

pnz
n, F(z) =

∞
∑

n=1

fnz
n

• It follows that

F(z) = 1− 1

P(z)

and the probability R of returning to the origin is given by

R =
∞
∑

n=1

fn = F(1) = 1− 1

P(1)
=







1, P(1) = ∞
< 1, P(1) <∞
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Polya’s Theorem

• If the steps of a random walk on a d-dimensional hypercubic lattice are equally probable

p =
1

2d
, P(z) = P(0; z) =

(

1

2π

)d ∫ 2π

0
dφ1 · · ·

∫ 2π

0
dφd

[

1− z

d

d
∑

n=1

cosφn

]−1

• The integrand of P(z) with z = 1 only diverges in the limit

r = φ = (φ1, φ2, . . . , φd) → 0, z = 1

1− 1

d

d
∑

n=1

cosφn ≈ 1− 1

d

d
∑

n=1

(1− 1
2φ

2
n) ≈ 1

2d

d
∑

n=1

φ2n =
r2

2d

Setting r = |r| and using dV ∼ rd−1dr, the behaviour of the integral for P(1) is given by

∫

dφ [. . .]−1 ∼
∫

|r|≤ǫ
dV

r2
∼
∫ ǫ

0

rd−1

r2
dr =























∫ ǫ

0
rd−3dr =

[

rd−2

d− 2

]ǫ

0
=







∞, d = 1

<∞, d ≥ 3
∫ ǫ

0

dr

r
=
[

log r
]ǫ

0
= ∞, d = 2

Theorem 1 (Polya’s Theorem) The probability of return to the origin for a random walk

on a d-dimensional hypercubic lattice is

R =







1, d = 1,2

< 1, d ≥ 3

The walk is called recurrent if d = 1,2 (the walk returns to the origin with probability 1).

For d ≥ 3, the walk is transient (not guaranteed to return to the origin).
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Mean-Square Displacement

• Consider a random walk on an infinite one-dimensional chain. For a given walk, let

Rn = {displacement after n steps}

Since wn(k) = wn(−k), the mean displacement over all n-step walks vanishes

〈Rn〉 =
n
∑

k=−n
k pn(k) =

n
∑

k=−n
k wn(k) p

n = 0

• To measure the average extent of the walk we use the mean square displacement

〈R2
n〉 =

n
∑

k=−n
k2 pn(k) = − ∂2

∂φ2

[

p̂n(φ)

]

φ=0
, p̂n(φ) =

n
∑

k=−n
eikφpn(k)

• Here p̂n(φ) is the coefficient of zn in the Fourier transform

P̂(φ) =
∞
∑

n=0

zn p̂n(φ) =
∞
∑

n=0

zn
n
∑

k=−n
eikφpn(k) =

∞
∑

n=0

(pz)n
n
∑

k=−n
wn(k)e

ikφ

=
∞
∑

n=0

(pz)n(eiφ+ e−iφ)n =
1

1− 2pz cosφ
, |z| < 1

2p

since, with z replaced by eiφ,

(eiφ+ e−iφ)n =
n
∑

k=−n
wn(k)e

ikφ
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Lattice Structure Factor

• It follows that

〈R2
n〉 = coeff

zn

{

− ∂2

∂φ2

[

1

1− 2pz cosφ

]

φ=0

}

= coeff
zn

{

− ∂2

∂φ2

[

(2pz)n cosn φ

]

φ=0

}

= (2p)n
{

− ∂2

∂φ2

[

1− 1
2nφ

2 + · · ·
]

φ=0

}

= n(2p)n

• In particular, for equally probable steps, p = 1
2 and the root mean square displacement is

√

〈R2
n〉 =

√
n

in accord with the central limit theorem.

• More generally, the mean square displacement is given by

〈R2
n〉 = −n ∂2

∂φ2

[

λ(φ)
]

φ=0
=
∑

k

k2p1(k)

where

λ(φ) =
∑

k

eik·φp1(k) = {lattice structure factor}

For a simple one-dimensional walk with p1(k) = 1
2,

λ(φ) = 1
2(e

iφ+ e−iφ) = cosφ

For a walk on a square lattice

λ(φ) = 1
2(cosφ1 + cosφ2)

3-9



11: Percolation
31. Bond and site percolation
32. Percolation in one dimension
33. Percolation on Bethe lattice

John Michael Hammersley (1920–2004) Renfrey Burnard Potts (1925–2005)
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Bond and Site Percolation

• Percolation theory deals with the statistical behaviour of connected clusters in a random

graph. Consider an infinite square lattice and suppose 0 ≤ p ≤ 1.

• In site percolation (left), the sites (vertices of the lattice) are occupied randomly (and

independently) with probability p. In this case, two occupied sites at opposite ends of the

same bond of the lattice are considered to be in the same (connected) cluster, that is, the

clusters consist of all sites mutually connected through bonds of the square lattice.

• In bond percolation (right), the bonds (edges of the lattices) are occupied randomly (and

independently) with probability p. Two occupied bonds incident to the same site of the

lattice are considered to be in the same (connected) cluster, that is, the clusters consist of

the connected occupied bonds and the sites at their endpoints.

• Bond and site percolation on the same lattice are generally distinct statistical systems.
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Percolation Threshold

• In both site and bond percolation, for small values of p, only small clusters are formed. As

p increases, the size of the clusters grow. At a critical probability pc (percolation threshold),

there appears an infinite cluster. As p increases further, the clusters continue to grow until

the whole lattice is filled with a single cluster.

• Mathematically, the percolation threshold is defined by

pc = inf

{

p : Pr{bond/site j belongs to an infinite cluster} > 0

}

= sup

{

p : {mean size of the cluster containing j} < ∞
}

• The probability of a site j belonging to an infinite cluster is zero in the low density phase

(p ≤ pc). In this phase, the mean cluster size is finite. In the high-density phase (p > pc), the

probability of a site j belonging to an infinite cluster is strictly positive and the mean cluster

size is infinite. Note that, at the critical percolation threshold (p = pc), there is no infinite

cluster for d ≥ 2.

• The percolation thresholds on the square/triangular lattices are

psqc =







1
2, bond

0.592746 . . . , site
ptric =







0.347296355 . . . = 2sin π
18?, bond

1
2, site

• Critical bond percolation on the square lattice and critical site percolation on the triangular

lattice can be solved exactly! This is the subject of current research.
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Percolation in One-Dimension

• Consider percolation on an infinite one-dimensional lattice with the origin at 0:

−3 −2 −1 0 1 2 3

On this one-dimensional lattice, bond and site percolation are equivalent so let us use the

terminology of site percolation.

• Select a site, say the origin 0. The probability that this site belongs to a cluster of exactly

n sites is

P0(p) = 1− p, Pn(p) = n(1− p)2pn, n ≥ 1

since a linear cluster of n ≥ 1 occupied sites must terminate with empty sites at each end.

The factor n arises since the origin can occur at any position 1 to n along the linear cluster.

• The probability that the origin 0 belongs to an infinite cluster (the percolation probability)

vanishes in one dimension

P∞(p) = 1−
∞
∑

n=0

Pn(p) = p− (1− p)2p
d

dp

( ∞
∑

n=0

pn
)

= p− (1− p)2p
d

dp

(

1

(1− p)

))

= p− p = 0, p < 1

Hence pc = 1 and there is no high-density phase.
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Mean Size of Finite Clusters

• Since
∞
∑

n=0

Pn(p) = 1, the mean size of finite size clusters containing the origin is

〈n〉 =
∞
∑

n=0

nPn(p) = (1− p)2
∞
∑

n=0

n2pn = (1− p)2p
d

dp

(

p
d

dp

∞
∑

n=0

pn
)

= (1− p)2p
d

dp

(

p
d

dp

1

1− p

)

= (1− p)2p
d

dp

(

p

(1− p)2

)

=
p(1 + p)

1− p
< ∞, p < 1

• Percolation in one dimension is similar to a phase transition at zero temperature. There

is only one phase and consequently no phase transition at p < 1 = pc. There is only a phase

transition in the limit p→ pc = 1.

• We can define critical exponents for this one-sided phase transition. In particular, the

critical exponent γ associated with the divergence of the mean cluster size is given by

〈n〉 ∼ (pc − p)−γ, p→ pc−, γ = 1
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Bethe Lattice

• Bethe lattice with coordination

number z = 3. The central (root)

site is labelled 0. The consecutive

surrounding shells are labelled by

k = 1,2,3.

• The Bethe lattice is a connected

cycle-free graph (tree) where each

node is connected to z neighbours

where z is the coordination number.

The sites are all equivalent.

• Choosing a central (root) site,

all the other sites are arranged in

consecutive shells with Nk sites in

shell k

Nk = z(z − 1)k−1, k = 1,2, . . .
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Site Percolation on Bethe Lattice

• Due to the special properties of the Bethe lattice or Cayley tree, statistical systems on this

lattice are often exactly solvable and these solutions are related to the Bethe approximation.

For z = 2, the Bethe lattice reduces to the one-dimensional chain. For this reason, we are

primarily interested in z ≥ 3.

• We will obtain a mean-field theory of percolation, which exhibits a phase transition for

pc < 1, by solving site percolation on the Bethe lattice. The Bethe lattice is not a sensible

physical lattice since a finite fraction of the number of sites sits on the boundary (outer

shell). In this sense, the lattice has similar properties to the complete graph of the equivalent

neighbour model.

• On the Bethe lattice, a cluster of n occupied sites is bounded by n(z−2)+2 vacant sites.

This is established first for linear clusters and extended to branched clusters by joining linear

clusters. Hence the probability that the origin 0 belongs to a cluster of n sites is

P0(p) = 1− p, Pn(p) = cnp
n(1− p)n(z−2)+2, n ≥ 1

where cn is the number of possible n-site clusters that contain the origin 0.

• Hence, for p ≤ pc, when there are no infinite clusters

1− p+
∞
∑

n=1

Pn(p) = 1, P∞(p) = 0

This states that, in this case, either the origin is not occupied or it belongs to a finite cluster.
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Mean Size of Finite Clusters for p < pc

• For p < pc
∞
∑

n=1

cn[p(1− p)z−2]n =
p

(1− p)2

Differentiating with respect to p gives

{ ∞
∑

n=1

n cn[p(1− p)z−2]n
}

1

p(1− p)z−2

d

dp

[

p(1− p)z−2
]

=
d

dp

[

p

(1− p)2

]

• Taking the ratio of the last relations yields

〈n〉
(1− p)2

[

1

p
− z − 2

1− p

]

=

[

1

(1− p)2
+

2p

(1− p)3

]

so that the mean size of finite clusters is

〈n〉 =
p(1 + p)

1− (z − 1)p
, p < pc =

1

z − 1

• As in one dimension, the critical exponent γ associated with the divergence of the mean

cluster size is given by

〈n〉 ∼ (pc − p)−γ, p→ pc−, γ = 1

• If z = 2, the critical probability is pc = 1 and these results agree with those of the one-

dimensional lattice.
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Percolation Mean-Field Equation

• We want to calculate the percolation probability, that is, the probability P∞(p) that the

origin 0 belongs to an infinite cluster.

• Let Q(p) ≥ 0 be the probability that a given branch growing from an occupied site j fails

to extend to infinity. Then the mean-field equation for Q(p) is

= +

Q(p) = (1− p) + pQ(p)z−1 ≤ 1

• Since this has the trivial solution Q(p) = 1, it factorizes as
(

Q(p)− 1
)(

pQ(p)z−2 + pQ(p)z−3 + · · ·+ pQ(p) + p− 1
)

= 0

• For a solution Q(p) 6= 1, that is, Q(p) < 1 we must have

p
z−2
∑

j=0

Q(p)j = 1

If Q(p) < 1, we see that LHS < p(z − 1) ≤ 1 = RHS for p ≤ pc = 1
z−1. It follows that there

are no solutions with Q(p) < 1, in this range, and so the unique solution is Q(p) = 1. If

p > pc =
1
z−1, then there is a unique solution, with 0 ≤ Q(p) < 1, such that Q(p) → 0 as p→ 1

and Q(p) → 1 as p→ pc =
1
z−1. This is the physically relevant solution for 1

z−1 = pc < p ≤ 1.
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Bethe Percolation Probability for z = 2,3

• Given the solution Q(p) of the mean-field equation, the required percolation probability is

P∞(p) = 1− (1− p)− pQ(p)z = p[1−Q(p)z], z leaves

• For z = 2, we have pc = 1 and only the trivial solution Q(p) = 1 giving P∞(p) = 0 in accord

with the one-dimensional solution. For z ≥ 3, the mean-field equation admits a non-trivial

high-density solution for 1
z−1 = pc < p ≤ 1.

• For z = 3,
Q(p) =







1−p
p , p ≥ 1

2

1, p ≤ 1
2

which implies P∞(p) = 0 for p ≤ pc =
1
2 and for p > pc =

1
2

P∞(p) = p

[

1− (1− p)3

p3

]

=
(2p− 1)(p2 − p+1)

p2
∼ 6(p− 1

2)
β, p→ 1

2+, β = 1

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

p

P∞(p) • Percolation probability on the Bethe lattice

with coordination number z = 3.

• The critical point is at pc = 1
2. For p > 1

2
there is a positive probability of finding an

infinite (percolating) cluster.
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Bethe Critical Exponent β for z ≥ 3

• More generally, for p > pc, Q(p) and P∞(p) are differentiable functions of p. So

differentiating the equation

z−2
∑

j=0

Q(p)j =
1

p

and using the fact that Q(p) → 1 as p→ pc+ gives

Q′(p) =
−1

p2
∑z−2
j=1 jQ(p)j−1

→ − 2(z − 1)2

(z − 1)(z − 2)
= −2(z − 1)

(z − 2)
, p→ pc+

• Since P∞(pc) = 0, it follows that

P ′
∞(p) = 1−Q(p)z − pzQ(p)z−1Q′(p) → − z

z − 1

[

−2(z − 1)

(z − 2)

]

=
2z

z − 2
, p → pc+

• Expanding P∞(p) in a Taylor series out to linear order for z ≥ 3 gives

P∞(p) ∼ (p− pc)
β, β = 1

where the associated critical exponent β is a second independent critical exponent.
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Percolation and the Potts Model

• Percolation is related to the q → 1 limit of the q-state Potts model with Hamiltonian

H = −J
∑

〈i,j〉
δ(σi, σj), σj = 1,2, . . . , q

Formally,

Percolation = lim
q→1

{q-state Potts model}

• Mathematically, this requires a suitable analytic continuation of the q-state Potts model to

arbitrary (non-integer) values of q. This can be done using the (stochastic) Fortuin-Kasteleyn

interpretation of the q-state Potts model.

• This identification enables a correspondence of thermodynamic functions and associated

critical exponents:

Thermodynamic Function Potts Percolation Exponent

deviation from criticality T p

free energy ψ(T) ψ(p) 2− α

order parameter
〈

δ(σj,1)− 1
q

〉

P∞(p) β

susceptibility χ0(T) 〈n〉 γ

ψ(p) =
∞
∑

n=1

1

n
Pn(p) = {mean number of clusters per lattice site}
〈n〉 = {mean size of finite clusters}
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Percolation Critical Exponents

• From scaling principles, the critical exponents should satisfy the relations

α+2β+ γ = 2, γ = β(δ − 1)

• The two-dimensional site percolation problem has not been solved exactly. However, bond

percolation in two dimensions (which is believed to be in the same universality class as site

percolation) is exactly solvable at the critical point p = pc =
1
2.

• The values for the critical exponents of percolation in various dimensions are:

d α β γ

d = 1 1 0 1

d = 2 −2/3 5/36 43/18

d = 3 ≈ −0.6 ≈ 0.4 ≈ 1.8

d = ∞ −1 1 1

• The d = ∞ values correspond to the mean-field Bethe lattice values. These values hold

for d ≥ 6. So the upper critical dimension for percolation is d = 6 for percolation compared

to d = 4 for the Ising ferromagnet.

• Critical bond percolation on the square lattice is exactly solvable. Details can be found

in A. Morin-Duchesne, A. Klümper, P.A. Pearce, Conformal partition functions of critical

percolation from D3 Thermodynamic Bethe Ansatz equations, arXiv2017.
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