Seminars & Lectures
* TITLE | Understanding two major universal scaling behaviors from the measurements of phase diagrams and magnetic resonance peaks in high temperature superconductivity | ||||||
---|---|---|---|---|---|---|---|
* SPEAKERS | |||||||
|
|||||||
* HOST(Applicant) | |||||||
|
|||||||
* DATE / TIME | 2008-08-06, 11:00 a.m. | ||||||
* PLACE | Science Bldg Ⅲ #201 | ||||||
* ABSTRACT | |||||||
For the last two decades it has been known that there exists the eminent, generic features of the monotonously decreasing pseudogap temperature T¤ and the dome shaped superconducting tem-perature Tc in the phase diagram of high temperature superconductivity. It is remarkable to notice that there exists a universal hyperbolic scaling behavior of T¤=Tc in the comprehensive observed phase diagrams[1], showing that the higher the T¤, the higher the Tc, irrespective of high Tc cuprate samples. Lately, another experimental \'breakthrough\' for essential understanding of superconduct-ing mechanism has been made, namely the inelastic neutron scattering (INS measurements[2{5] ofboth the temperature and doping dependence of magnetic resonance which discloses a linear increase of the magnetic resonance peak energy Eres with increasing hole doping in the underdoped region and the increase of the magnetic resonance peak intensity with decreasing temperature, showing another remarkable universal linear scaling behavior of Eres=Tc irrespective of hole concentration. Earlier we proposed an axact slave-boson theory[6] of the t-J Hamiltonian which provides the bose condensation of the Cooper pairs treated as composites of the spinon (chargeless spin) pairs and the holon (spinless charge) pairs by allowing the spin-charge coupling, thus di®ering from other available slave-boson theories which deal with the single-holon bose condensation[7, 8]. This approach[6] has been successful in reproducing not only the generic features of the dome-shaped Tc and the monotonously decreasing T¤ in the observed phase diagrams[1] but other physical properties [6, 9, 10] such as the boomerang behavior of super°uid weight[11, 12] and the doping and temperature dependence of spectral function[13{15] and optical conductivity[16{18]. Currently there is a lack of self-consistent, inclusive studies which pay attention to both temperature and doping dependent physical properties by making direct reference to computed phase diagrams. For the sake of self-consistency we resort to a computed phase diagram to study the temperature and doping dependence of the magnetic resonance and to reveal the universal linear scaling behavior of Eres=Tc, not to speak of the universal scaling behavior of T¤=Tc. These two important universal scaling behaviors will be explained from the physics of co-existing spin pairing correlations in the pseudogap and superconducting phases. Time permitting, interplay between spin and charge dynamics will be discussed to reveal that the spin-charge separation does not arise in high Tc superconductivity [1] M. Oda, R. Dipasupil, N. Momono, M. Ido, J. Phys. Soc. Jpn. 69, 983 (2000); references there-in; T. Takano, N. Momono, M. Oda, and M. Ido, J. Phys. Soc. Jpn. 67 2622 (1998); references there-in. [2] H. F. Fong, B. Keimer, D. L. Milius and I. A. Aksay, Phys. Rev. Lett. 78, 713 (1997); H. F. Fong, P. Bourges, Y. Sidis, L. P. Regnault, A. Ivanov, D. L. Milius, I. A. Aksay and B. Keimer, Phys. Rev. B 61, 14773 (2000). [3] P. Dai, H. A. Mook, S. M. Hayden, G. Appeli, T. G. Perring, R. D. Hunt and F. Dogan, Science 284, 1344 (1999). [4] H. He, Y. Sidis, P. Bourges, G. D. Gu, A. Ivanov, N. Koshizuka, B. Liang, C. T. Lin, L. P. Regnault, E. Schoenherr and B. Keimer, Phys. Rev. Lett. 86, 1610 (2001); references there-in. [5] S. Pailhes, C. Ulrich, B. Fauque, V. Hinkov, Y. Sidis, A. Ivanov, C. T. Lin, B. Keimer and P. Bourges, Phys. Rev. Lett. 96, 257001 (2006). [6] S. -S. Lee and Sung-Ho Suck Salk, Phys. Rev. B 64, 052501 (2001); S. -S. Lee and Sung-Ho Suck Salk, cond- mat/0304293. [7] M. U. Ubbens and P. A. Lee, Phys. Rev. B 46, 8434 (1992). [8] Y. Suzumura, Y. Hasekawa and H. Fukuyama, J. Phys. Soc. Jpn. 67, 2768 (1988). [9] S.-S. Lee and S.-H. S. Salk, Phys. Rev. B 71, 134518 (2005); S.-S, Lee and S.-H. S. Salk, Phys. Rev. B 66, 054427 (2002); S.-S. Lee and S.-H. S. Salk, Phys. Rev. B bf 64, 052501 (2001); Physica C. 353, 130 (2001). [10] J.-H. Eom and S.-H. S. Salk, Phys. Rev. B 72, 064508 (2005); J.-H. Eom, S.-S. Lee, K.-S. Kim and S.-H. S. Salk, Phys. Rev. B 70, 024522 (2004); S.-S. Lee, J.-H. Eom, K.-S. Kim and S.-H. Suck Salk, Phys. Rev. B 66, 064520 (2002). [11] Y. J. Uemura et al., Nature 364, 605 (1993). [12] C. Bernhard et al., Phys. Rev. B 52, 10488 (1995). [13] A. Ino, et al., Phys. Rev. B 86, 094504 (2002). [14] A. Damascelli, Z. Hussain, Z.-X. Shen, Rev. Mod. Phys. 75, 473 (2003); references therein. [15] H. Ding, T. Yokoya, J. C. Campuzano, T. Takahashi, M. Randeria, M. R. Norman, T. Mochiku, K. Kadowaki, J. Giapintzakis, Nature 382, 51 (1966). [16] J. Orenstein, G. A. Thomas, A. J. Millis, S. L. Cooper, D. H. Rapkine, T. Timusk, L. F. Schneemeyer, and J. V. Waszczak, Phys. Rev. B 42 6342 (1990). [17] S. Uchida, K. Tamasaku, K. Takenaka and Y. Fukuzumi, J. Low. Temp. Phys. 105, 723 (1996). [18] A. V. Puchkov, D. N. Basov and T. Timusk, J. Phys. Cond. Matt., 8, 10049 (1996). |