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According to GR: Singularity exists inside a black hole.

Theorems on singularities: Penrose and Hawkin

There exists a curvature singularity inside

a stationary BH in the Einste

g

in gravity 

This theory i

.



Expectations: When curvature becomes high (e.g. reaches 

the Planckian value) the classical GR should be modified.

Singularities of GR wou

s UV inc

ld be re

o

s

mplete.

olved.
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(i) Vacuum polarization and particle creation

     Effective action (higher derivatives and 

     non-locality);

(ii) Modified fundamental gravity (higher derivatives,

 

        Modified gravity: Options:



    ( ) theory, etc.);

(iii) Non-local modification (Ghost-free gravity);

(iv) Gravity as an emergent phenomenon 

       (strings, loops, etc.)

f R
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(i) There exists the critical energy scale parameter   . The corresponding 

     fundamental  length is = ;
c

(ii) In the domain where  the metr

    

c

   

i

              







Phenomenological description
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2

 obeys the Einstein equations 

      with small corrections;

(iii) In the domain where  the Einstein equations should be modified;

(iv) Limiting curvature condition: | | .  is a universal consta
C

C



 

[Markov, JETP Let

nt, defined 

     

t. 36, 265 (1982)

 by the theory and independent of 

                                

the pa

      

rameters of the solut

    Remark on inflati

ion.

     

on th

] 

eory.
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`Quasi-local definition’ of BH: 
Apparent  horizon

A compact smooth surface  is called a trapped 

surface if  both, in- and out-going  null surfaces, 

orthogonal to ,  are non-expanding .

A trapped region is a region inside .

A boundary of all trapped r

B

B

B

egions is called

an apparent horizon.



      Trapped surface + N

Null energy condition: 

EC

     =Event horizo

0

n existence

T l l 
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In a ST obeying the null-energy condition  the 
apparent horizon lies inside (or coincides with) 

the true event horizon.

In classical physics in order to prove the existence 
of a BH (in an exact mathematical sense) it is not 

necessary to wait infinite time, but it is  sufficient 
to check the existence of the trapped surface `now’.



In quantum physics the energy conditions could 
be violated.  An example is an evaporating black 
hole (negative energy flux through the horizon 
reduces its mass). 

It is possible, in principle, that the apparent 
horizon exists, but there is no event horizon. 

We shall focus on this option.
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( , )| 1.  Apparent horizon: 0.

Red-shift function: (v,r).  In a sta
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     General form of SS metric in 
          advanced time coordi
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ST is regular at 0,  if curvature 

invariants are finite there:

1 ( ) ...  ,   

= ( )

We use normalization: ( , )| 1,  

then the rate of  the proper time at the 

center, , an

[1 ( ) ...].

r

r

f f v r

v v r
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d the rate of the Killing time 

at infinity, ,  are connected . as: ( )v d v dv 



(i) An apparent horizon in a regular metric cannot cross 0.

(ii) It has two branches: outer- and inner-horizons.

(iii) Non-singular BH model with a cl
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Other publications on regular BH 
models  with closed apparent horizons



Remark: All stationary BH solutions in General Relativity

can be written in the form, where the metric coefficients

are rational functions of the coord

We 

inates.

ricsStatic SS non-singular black-hole met
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Example 1: Bardeen regular black hole [1968]

2 2
1 1 ... .   . 

( ) | | | |

Neither this metric nor its  modification ( )  

satisfies the limiting curvature condition.
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Metrics with 

2 2
E

2 cannot be consistent metrics of

a non-singular black hole. [V.F. PR D94,104056 (201

xample 2:   Metric with 1 1 ...
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(n=3): Hayward metric [2007]:

2
      1 , ( 1).
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Non-singular evaporating black hole: ( ).
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Non-singular model of black hole
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Non-singular model of an 
evaporating black hole 
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A model of a black hole with a closed apparent 
horizon is one of the options that were discussed 

in the connection with the information loss paradox.



Aharonov, Casher, Nussinov [1987];Carlitz, Willey [1987];
Preskill [1992]

4

"The final stage of the evaporation process 

must take a very long time,"  .evT M

Self-consistency problem 

[Bolashenko and V.F. (1986)]



We consider a quantum massless scalar fields, 

propagating in the background of a non-singular

black hole. We use 2D approximation. The corresponding

expectation value o

                   Quantum effects

[Christensen and Fulling, PD, D15, 20

f the stress-energy tensor can be

easily obtained from the known conformal anomaly.

It can also be derived from Polyakov effective action.

88 (1977)].

[V.F. and Vilkovisky, in Quantum Gravity, p.267 (1984)]
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Radial null rays provide us with  maps:

: ( ) and ( )u u u u u u 

        



The gain function 𝛽 describes amplification 
of the particles energy, i.e., the ratio of the 
final energy of a photon to its initial energy.

To compute the energy fluxes E and the gain 

function  𝛽 =
𝑑𝑢−

𝑑𝑢+
= 𝑒𝑃, one needs to know the 

map ሻ𝑢−(𝑢+ .

0

1 1
exp , ( ).
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We assume that a regular metric 

describes the black hole, which is created as a result 
of a spherical collapse of null shell of mass M at the 
moment 𝑣 = 0, and which disappears after some finite 
time q after the collapse of the second shell  -M.

𝑑𝑠2 = − 𝛼2𝑓 𝑑𝑣2 + 2𝛼 𝑑𝑣𝑑𝑟 + 𝑟2 𝑑𝜔2

𝑓 = 𝛼 = 1 for 𝑣 < 0 and 𝑣 > q

Consider an incoming radial null ray described by the 
equation 𝑣 = const . It propagates from the past null 
infinity 𝐼− and reaches the center 𝑟 = 0 . After 
passing the center, it becomes an outgoing radial null 
ray.
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Between the shells – (modified) Hayward metric.



r 0

r 0
+J

J

flat metric

flat metric

nonsingular black hole
𝑢− = 𝑣 − 2𝑟

𝑢+ = 𝑣 − 2𝑟
We choose the retarded null time 
parameter 𝑢− so that at 𝑟=0  one has 
𝑢− = 𝑣 . In the initial flat domain, where 
𝑣 < 0

However, in a general case, for  𝑣 > 0
this relation between 𝑢− and 𝑣 is not 
valid. In particular, in the final flat 
domain, where 𝑣 > 𝑞 , the null coordinate 
𝑢+ = 𝑣 − 2𝑟 differs from 𝑢− , and one 
has relations 

𝑢− = 𝑣 − 2𝑟

ሻ𝑢+ = 𝑢+ 𝑢− , 𝑢− = 𝑢−(𝑢+
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Scheme of calculations:
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Useful parametrization of the Hayward metric: ( , ) ( , ). 

We denote ,  and use  as a scale parameter: 
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𝛼 = 1

𝑑𝑠2 = −𝛼2𝑓𝑑𝑣2 + 2𝛼 𝑑𝑣𝑑𝑟

Standard model

𝑝 = 8, 𝑞 = 30
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𝑓 = 1 −
2𝑀𝑟2

𝑟3 + 2𝑀𝓁2 + 𝓁3



Modified model

𝑝 = 8, 𝑞 = 30,

𝛼 =
𝑟𝑛 + 1

𝑟𝑛 + 1 + 𝑝𝑘
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(i)  black hole formation; 

(ii) Hawking radiation;

(iii) signal from the second shell; 

(iv) radiation from the black hole interior; 

(v)  ourb

:

Sequence of events (as seen by 

       an external observer)

0

urst of radiation from the inner 

      domain (near inner horizon);

(vi) Mass inflation; ;

(vii) Total emitted energy is always positive,

        its density can be negative during short time.

 



The Hawking result for the quantum energy flux from a black hole is correctly 
reproduced, when the mass parameter p and the lifetime of the blackhole  q 
are large. The shape of the curve is almost the same for both standard and 
modified models. Duration of the almost constant tail of quantum radiation is 
approximately equal to  q  (lifetime of the black hole).

E𝐻𝑎𝑤𝑘 =
𝜅1

2

48𝜋
=

1

192 𝜋 𝑝2

r

/ HawkE E

HawkE

Outer horizon 1( 8)r 

/ 2q

1000q 

Beginning of Hawking radiation



04, 30, 1p q   
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04, 30,p q p  

3 3, exp( )q p E p
3 3,q p E p

"Mass inflation" is cured, however "gravity acceleration"

      mechanism still works. Self-consistency problem.



(i) Properly reproduced Hawking radiation from the outer

     horizon (for );

(ii) For =1 -- huge outburst of the quantum radiation from 

      the inner horizon

                        

q M



Main results: 

: E exp(q) exp( v/ ) . This radiation 

      comes from the inner horizon during time interval

       exp(-q) exp(- v/ );

(iii) Mass inflation mechanism (Israel, Poisson [1990]);

(iv) For a special c

u

 

 

0hoice of  ( 1) outburst of the energy 

       can be reduced to the power law;

(v)  Self-consistency problem [Bolashenko and V.Fr . (1986)].emains 

 



“Realistic” non-singular model of 
an evaporating black hole



3,   =1M 
3

03,   M M 
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E E

p



(i) Non-singular models of evaporating BHs

(ii) Quantum radiation from BH interior

      2D approximation (its validity?);

(iii)  "Bracket" formalism;

(iv)  Sandwich model [2 

       Summary and Discussion

shells, 2 parameres]

        vs. a "realistic" non-singular models

(v)   Two mechanisms of energy amplification:

       "Gravity accelerator" vs "Mass inflation";

(vi)  Properly chosen red-shift factor helps to cure

       the mass inflation problem;

(vii)  Information loss and self-consistency problems;

(viii) Back-reaction of created radiation?!
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[Bianchi, DeLorenzo, Smerlak, JHEP, 06, 1280 (2015)]
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+Observables on I  in terms of "brackets".

S v P

du
P u u

du

[M.Reuter, CQG, 6, 1149 (1989)]

1
Energy flux:  ,  - Schwarz derivative,  
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