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Outline
• Summary of 1st and 2nd Observing 

Runs 

• Characteristics of detected sources 

• Astrophysical Implications  

• Prospects of stochastic background 

• Summary
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LIGO Sensitivity during the  first 
and second observing runs [O1/O2]

• Sensitivity improvement by x3 made a big difference 
• O2 sensitivity is slightly bettern than O1

https://www.advancedligo.mit.edu
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The 1st Observing Run
• September 12, 2015 - January 19, 2016 

• Total coincidence analysis time: 51.5 days 

• Total coincidence analysis time after removing noisy data: 
48.6 days (~38%) 

• Two analysis pipelines: PyCBC and GstLAL 

• PyCBC analysis: 46.1 days 

• GstLAL analysis: 48.3 days
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The 2nd Observing Run

• November 30, 2016 ~ 

• Total coincidence data 
(until May 8): 74 days 

• One more BH Binary 
merger event on Jan. 4, 
2017 (GW170104) was 
discovered.

6

LIGO Collaboration, PRL 118, 221101 (2017)
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GW Events from O1/O2 
• GW150914 

(FAR<6x10-7 yr-1) 

• LVT151012 (Candidate, 
FAR~0.37 yr-1) 

• GW151226 
(FAR<6x10-7 yr-1) 

• GW170104 (<5x10-5 
yr-1
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Significance of the events
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Abbott et al., arXiv:1606.04856v1
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GW170104 
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[Supplement to PRL 118, 221101 (2017)]
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Derived parameters of the events
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PHYSICAL REVIEW X 6, 041015 (2016)
PRL 118, 221101 (2017)
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Surprises
• Black hole binaries are more 

frequent than previously 
thought   
• 12-210 yr-1 Gpc-1 

• Black holes are not spinning 
rapidly 

• Spins may not be aligned 
• Only effective spins are 

measured, but the values 
are small in all cases 

• There is a hint of anti-
alignment for GW170104: 
constraint on formation 
channel?
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How about neutron star merger
• Double pulsar PSR 

J0737-0309 provides better 
constrains on beaming angle
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In our galaxy, ~20/Myr

• ~7 /year within advanced  
detector ranges 

• NS merger require better 
sensitivity than now. 

Kim et al. 2015
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Estimation of masses
• Assuming Keplerian orbit and 

Einstein's quadruple formula 
for GW emission 

• The chirp mass is related with 
frequency and frequency 
derivative 

 where 
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Mc ~ 30 Msun
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Nearest approach before the merger
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R =

"
GM

!2
Kep,max

#1/3

= 347 km

• If the binary was composed of equal mass, 
Mc= 30 Msun corresponds to m1 = m2 ~ 35 Msun. 

• If we assume Keplerian motion of BH, the 
highest freq. before merger 150 Hz corresponds 
to Keplerian freq. of 75 Hz. 

• The orbital separation at that point is 

• Note that the Schwarzschild radius of 70 Msun 
BH is 103 km. 

• Neutron stars can sufficiently compact (~20 
km), but the 30 Msun is well above NS mass

Red: 3 Rs, Blue 1 Rs 

Allen et al., LIGO T1500566-v7 
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Can one star be a neutron star?
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• If the binary was composed of 
unequal masses, the 
compactness ration   R=R/0.5Rs 
decreases as mass ratio increases 
(0.5Rs was used for minimum 
size to allow extremal Kerr BH) 

• In order to keep  R>1.0, q<12.8. 
• Maximum m1= 432 Msun, and 

thus minimum m2~ 11 Msun.  
• More massive than NS mass.
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Allen et al., LIGO T1500566-v7 
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Black Hole Masses: X-ray 
binary versus GW sources

• Most of the known 
black holes from X-ray 
sources have typical 
mass between 5-15 
Msun. 

•  GW sources cover 
much wider mass range 

• GW merger also leaves 
BHs of higher masses 
(up to 62 Msun)

16

0	

1	

2	

3	

4	

5	

6	

7	

5	 7	 9	 11	 13	 15	 17	 19	 21	 23	 25	 27	 29	 31	 33	 35	

N
um

be
r	

Mass	(Msun)	

BH	Mass	Distribu3on	

LVT151012	

GW	sources	

X-ray	Binaries	



ICGAC-XIII/IK15 July 3-7, 201717

Meta

Heger et al. 2000
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What determines the mass 
of the black holes?

• BH mass depends on the 
progenitor star 

• Mass also determines the 
remnant mass 

• Stellar winds depends on 
metallicity  

• Lower metallicity stars 
leave higher mass BHs 

• GW 150914 may have 
formed from stars with 
Z<0.1 Z⦿.

Data provided by Belczynski

GW150914 masses

10% of the Sun

5% of the Sun

1% of the Sun
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Formation channels of black 
hole binaries

• Evolutionary formation channels 
• Evolution of binaries 

composed of two massive 
stars 

• How to get black holes close 
enough to merge within 
Hubble time 

• Dynamical formation Channels 
• Three-body processes, direct 

capture etc 
• How to form binaries 

efficiently from single black 
holes? 

• Primordial Black Hole Binaries

19

Figure credit: de Mink
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Formation of Compact BH (or NS) binaries 
(Sung Chul Yoon, 2015)

Common 
envelope phase is 
necessary for  the 
formation of  
very compact BH 
(or NS) binaries
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Formation Rates of BH 
Binaries

• Gravitational Wave Capture in parabolic 
approximation 

  
• Three-body processes (Goodman & Hut 

1983)
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Which is more efficient?
• Capture versus 3-body processes 

• Globular clusters : 𝜎 < 10 km/s 
• Three-body processes are more efficient [talk by D. Park this 

afternoon] 
• Galactic Nuclei: 𝜎 ~ 100 km/s 

• Direct capture is more efficient 
• However, direct capture gives only small number of events 

(<1 yr
-1

 Gpc
-3

, Hong & Lee 2015)
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Estimation of rates
• Wide range of predictions 

for the evolutionary 
formation models (up to 
1000 yr-1 Gpc-3) 

• Dynamical scenario 
predicts ~ 10 yr-1 Gpc-3 

(Park et al. 2017 and 
Others) 
•  Probably dynamical 

formation could be more 
efficient 

• One channel dominates? 

23

Figure courtesy: Belczynski
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GW background
• Incoherent superposition of merging BH could generate stochastic 

GW background 

• Consider a BBH of class k with parameters 𝛳k merge at a rate Rm(z; 
𝛳k) per unit comoving volume, then ΩGW can be obtained by 

• E(ΩM,ΩΛ,z) captures the dependence of comoving volume on z. 
• Fiducial model based on GW150914: mass, rates, spin, etc. and 
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Detectability

• Expected sensitivity of LIGO and Virgo detectors to the fiducial model 
based on GW150914 mass 
• 33% coincidence for O1 and 50% for all other runs 

• The estimation of ΩGW is quite uncertain, but detection may be possible 
in early 2020 

PRL, 116, 131102 , GW150914 only 
PRL, 118, 121101, entire O1 data analysis

1-σ sensitivity



Summary
• LIGO Detected 3 GW events and one candidate 
• All detections are black hole binaries, no NS binaries 
• NS binary can be detected when LIGO reaches design sensitivity 

of aLIGO.  
• Expected rate is ~7 per year 

• Black holes are typically more massive than those in X-ray 
binaries 
• They could have been formed in low metallicity environment 

• Effective spins are very small.  
• There are several channels for the formation of binaries 

• Spin alignment is a good way to distinguish, but measurement 
of spin is difficult 

• Stochastic background of astrophysical origin could be measured 
in a few years
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