# What have we learned from the detection of gravitational waves?

Hyung Mok Lee Seoul National University

# Outline

- Summary of 1st and 2nd Observing Runs
- Characteristics of detected sources
- Astrophysical Implications
- Prospects of stochastic background
- Summary







#### LIGO Sensitivity during the first and second observing runs [O1/O2]



- Sensitivity improvement by x3 made a big difference
- O2 sensitivity is slightly bettern than O1

# The 1st Observing Run

- September 12, 2015 January 19, 2016
- Total coincidence analysis time: 51.5 days
- Total coincidence analysis time after removing noisy data: 48.6 days (~38%)
- Two analysis pipelines: PyCBC and GstLAL
  - PyCBC analysis: 46.1 days
  - GstLAL analysis: 48.3 days

# The 2nd Observing Run

- November 30, 2016 ~
- Total coincidence data (until May 8): 74 days
- One more BH Binary merger event on Jan. 4, 2017 (GW170104) was discovered.



LIGO Collaboration, PRL 118, 221101 (2017)

# GW Events from O1/O2

- GW150914 (FAR<6x10<sup>-7</sup> yr<sup>-1</sup>)
- LVT151012 (Candidate, FAR~0.37 yr<sup>-1</sup>)
- GW151226 (FAR<6x10<sup>-7</sup> yr<sup>-1</sup>)
- GW170104 (<5x10<sup>-5</sup> yr<sup>-1</sup>



# Significance of the events

Abbott et al., arXiv:1606.04856v1



# GW170104



[Supplement to PRL 118, 221101 (2017)]

### Derived parameters of the events

PHYSICAL REVIEW X 6, 041015 (2016) PRL 118, 221101 (2017)

| Event                         | GW150914                       | GW151226                        | GW170104                        | LVT151012                    |
|-------------------------------|--------------------------------|---------------------------------|---------------------------------|------------------------------|
| S/N Ratio                     | 23.7                           | 13.0                            | 13.0                            | 9.7                          |
| $FAR/yr^{-1}$                 | $< 6.0 	imes 10^{-7}$          | $< 6.0 	imes 10^{-7}$           | $< 5.0 	imes 10^{-5}$           | 0.37                         |
| $m_1 (M_{\odot})$             | $36.2^{+5.2}_{-3.8}$           | $14.2^{+8.3}_{-3.7}$            | $31.2^{+8.4}_{-6.0}$            | $23^{+18}_{-6}$              |
| $m_2~({ m M}_\odot)$          | $29.1^{+3.7}_{-4.4}$           | $7.5^{+2.3}_{-2.3}$             | $19.4^{+5.3}_{-5.9}$            | $13^{+4}_{-5}$               |
| Total Mass $(M_{\odot})$      | 65.3                           | 21.8                            | 50.7                            | 37                           |
| Final BH Mass $(M_{\odot})$   | 62.3                           | 20.8                            | 48.7                            | 35                           |
| Lum. Dist $D_L$ (Mpc)         | $420^{+150}_{-180}$            | $440^{+180}_{-190}$             | $880^{+450}_{-390}$             | $1000\substack{+500\\-500}$  |
| Source Redshift               | 0.09                           | 0.09                            | 0.18                            | 0.20                         |
| Effective Spin $(\chi_{eff})$ | $-0.06\substack{+0.14\\-0.14}$ | $0.21\substack{+0.20 \\ -0.10}$ | $-0.12\substack{+0.30 \\ -390}$ | $0.0\substack{+0.3 \\ -0.4}$ |

# Surprises

- Black hole binaries are more frequent than previously thought
  - $12-210 \text{ yr}^{-1} \text{ Gpc}^{-1}$
- Black holes are not spinning rapidly
- Spins may not be aligned
  - Only effective spins are measured, but the values are small in all cases
  - There is a hint of antialignment for GW170104: constraint on formation channel?



#### How about neutron star merger



# Estimation of masses

• Assuming Keplerian orbit and Einstein's quadruple formula for GW emission

$$\frac{d}{dt}E_{GW} = \frac{1}{5}\frac{G}{c^5}\sum_{i,j=1}^3 \frac{d^3}{dt^3}Q_{ij}\frac{d^3}{dt^3}Q_{ij}$$

• The chirp mass is related with frequency and frequency derivative

$$M_c = \frac{c^3}{G} \left[ (5/96)^3 \pi^{-8} f^{-11} \dot{f}^3 \right]^{1/5}$$

where 
$$M_c = \frac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}}$$



Allen et al., LIGO T1500566-v7

#### Nearest approach before the merger

- If the binary was composed of equal mass, Mc= 30 M<sub>sun</sub> corresponds to  $m_1 = m_2 \sim 35$  M<sub>sun</sub>.
- If we assume Keplerian motion of BH, the highest freq. before merger 150 Hz corresponds to Keplerian freq. of 75 Hz.
- The orbital separation at that point is

$$R = \left[\frac{GM}{\omega_{Kep,max}^2}\right]^{1/3} = 347 \text{ km}$$

- Note that the Schwarzschild radius of 70  $\rm M_{sun}$  BH is 103 km.
- Neutron stars can sufficiently compact (~20 km), but the 30  $M_{sun}$  is well above NS mass



Red: 3 R<sub>s</sub>, Blue 1 R<sub>s</sub> Allen et al., LIGO T1500566-v7

#### Can one star be a neutron star?

- If the binary was composed of unequal masses, the compactness ration  $\mathcal{R}=R/0.5R_s$ decreases as mass ratio increases  $(0.5R_s$  was used for minimum size to allow extremal Kerr BH)
- In order to keep  $\Re$  >1.0, q<12.8.
- Maximum  $m_1$ = 432 M<sub>sun</sub>, and thus minimum  $m_2 \sim 11$  M<sub>sun</sub>.
  - More massive than NS mass.



Allen et al., LIGO T1500566-v7

# Black Hole Masses: X-ray binary versus GW sources

- Most of the known black holes from X-ray sources have typical mass between 5-15 M<sub>sun</sub>.
- GW sources cover much wider mass range
- GW merger also leaves BHs of higher masses (up to 62 M<sub>sun</sub>)



#### Remnants of massive single stars



# What determines the mass of the black holes?

- BH mass depends on the progenitor star
- Mass also determines the remnant mass
- Stellar winds depends on metallicity
- Lower metallicity stars leave higher mass BHs
- GW 150914 may have formed from stars with  $Z < 0.1 Z_{\odot}$ .



Data provided by Belczynski

# Formation channels of black hole binaries

- Evolutionary formation channels
  - Evolution of binaries composed of two massive stars
  - How to get black holes close enough to merge within Hubble time
- Dynamical formation Channels
  - Three-body processes, direct capture etc
  - How to form binaries efficiently from single black holes?
- Primordial Black Hole Binaries



Figure credit: de Mink

#### Formation of Compact BH (or NS) binaries

(Sung Chul Yoon, 2015)

Common envelope phase is necessary for the formation of very compact BH (or NS) binaries



## Formation Rates of BH Binaries

• Gravitational Wave Capture in parabolic approximation

$$\Sigma_{cap} \approx 17 \frac{G^2 m^2}{c^{10/7} v_{\infty}^{18/7}} \qquad \left(\frac{dn}{dt}\right)_{cap} = \frac{1}{2} < n^2 \Sigma_{cap} v_{rel} >$$

Three-body processes (Goodman & Hut 1983)

$$\left(\frac{dn}{dt}\right) \approx 0.2n^3 \frac{(Gm)^5}{\sigma^9}$$

# Which is more efficient?

• Capture versus 3-body processes

$$\frac{(dn/dt)_{cap}}{(dn/dt)_{3B}} \approx 0.37 \left(\frac{10^5 \text{ pc}^{-3}}{n_{BH}}\right) \left(\frac{\sigma}{10 \text{ km/s}}\right)^{52/7}$$

- Globular clusters :  $\sigma < 10$  km/s
  - Three-body processes are more efficient [talk by D. Park this afternoon]
- Galactic Nuclei:  $\sigma \sim 100$  km/s
  - Direct capture is more efficient
  - However, direct capture gives only small number of events (<1 yr Gpc , Hong & Lee 2015)

# Estimation of rates

- Wide range of predictions for the evolutionary formation models (up to 1000 yr<sup>-1</sup> Gpc<sup>-3</sup>)
- Dynamical scenario predicts ~ 10 yr<sup>-1</sup> Gpc<sup>-3</sup> (Park et al. 2017 and Others)
  - Probably dynamical formation could be more efficient
- One channel dominates?

![](_page_22_Figure_5.jpeg)

Figure courtesy: Belczynski

# GW background

• Incoherent superposition of merging BH could generate stochastic GW background

$$\Omega_{GW}(f) \equiv \frac{f}{\rho_c} \frac{d\rho_{GW}}{df}$$

- Consider a BBH of class k with parameters  $\theta_k$  merge at a rate  $R_m(z; \theta_k)$  per unit comoving volume, then  $\Omega_{GW}$  can be obtained by  $\Omega_{GW}(f) \equiv \frac{f}{\rho_c H_0} \int_0^\infty dz \frac{R_m(z, \theta_k) \frac{dE_{GW}}{df_s}(f_s, \theta_k)}{(1+z)E(\Omega_M, \Omega_A, z)}$
- $E(\Omega_M, \Omega_\Lambda, z)$  captures the dependence of comoving volume on *z*.
- Fiducial model based on GW150914: mass, rates, spin, etc. and

$$R = 16 \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}$$

![](_page_24_Figure_0.jpeg)

- Expected sensitivity of LIGO and Virgo detectors to the fiducial model based on GW150914 mass
  - 33% coincidence for O1 and 50% for all other runs
- The estimation of  $\Omega_{GW}$  is quite uncertain, but detection may be possible in early 2020

# Summary

- LIGO Detected 3 GW events and one candidate
- All detections are black hole binaries, no NS binaries
- NS binary can be detected when LIGO reaches design sensitivity of aLIGO.
  - Expected rate is  $\sim$ 7 per year
- Black holes are typically more massive than those in X-ray binaries
  - They could have been formed in low metallicity environment
- Effective spins are very small.
- There are several channels for the formation of binaries
  - Spin alignment is a good way to distinguish, but measurement of spin is difficult
- Stochastic background of astrophysical origin could be measured in a few years