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Werner Israel(1967), 

Brandon Carter(1971,1977),  

David Robinson (1975)

No-Hair Theorem of Black Holes
Stationary black holes (in 4-dim Einstein Gravity) are completely described 

by 3 parameters of the Kerr-Newman metric :

mass, charge, and angular momentum  (M, Q, J) 

Exists the minimum mass of BH

Affects the stability, etc.

Why Gauss-Bonnet Term?

1) Effects to the Black Holes.

Hairy black hole solution ? 

In the dilaton-Gauss-Bonnnet theory → Yes!

2) Effects in the Early Universe.

Low energy effective theory from string theory 

→ Einstein Gravity + higher curvature terms

Gauss-Bonnet term is the simplest leading term.

Q : What is the physical effects of Gauss-Bonnet terms?

1. Motivation : 



Werner Israel(1967), 

Brandon Carter(1971,1977),  

David Robinson (1975)

No-Hair Theorem of Black Holes

Stationary black holes (in 4-dim Einstein Gravity) are completely 

described by 3 parameters of the Kerr-Newman metric :

mass, charge, and angular momentum  (M, Q, J)

• A rotating black hole (one 
with angular momentum) 
has an ergoregion around 
the outside of the event 
horizon

• In the ergoregion, space and 
time themselves are dragged 
along with the rotation of the 
black hole 

Hairy black hole solution is 

possible in the dilaton-Gauss-

Bonnnet  theory.



Colliding Galaxies: A Black Hole Merger

NASA / CXC / MPE / S. Komossa, et al.

Actual observations provide evidence and 

data for computer simulations. What does it 

look like when black holes collide?

Colliding Black Holes : 

A Black Hole Merger 

+ Gravitational Wave

Q: A Black Hole unstable ? 

splitting 

into two Black Holes ?

GW150914



(asymptotic) AdS Black Hole in d+1 dim 

↔ 

Quantum System in d dim.  

Instability of Black Holes 

↔ instability of Quantum System

Hence,
instability of AdS BH 

↔ phase transitions in Quantum System

Holography

* Black holes  in higher dimensions are quite diverse !
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W.Ahn, B. Gwak, BHL, W.Lee, Eur.Phys.J.C (2015)

2. Black Holes in the Dilaton Einstein Gauss-Bonnet (DEGB) theory 

𝜙 = 0

2) GB term is a surface term, not affecting the e.o.m. Hence,
The black hole solution is the same as that of the Schwarzschild one. 

2-1) Einsten Gauss-Bonnet (EGB) theory 

1) For the coupling α = 0, the theory becomes the Einstein gravity.

3) However, the GB term contributes to the black hole entropy and influence stability.

The Gauss-Bonnet term



2-2) Dilaton-Einstein-Gauss-Bonnet (DEGB) theory : Hairy black holes

Action

where and

Guo,N.Ohta & T.Torii, Prog.Theor.Phys. 
120,581(2008);121 ,253 (2009); 
N.Ohta &Torii,Prog.Theor.Phys.121,959; 
122,1477(2009);124,207 (2010);
K.i.Maeda,N.Ohta Y.Sasagawa, PRD80, 
104032(2009); 83,044051 (2011) 
N. Ohta and T. Torii, Phys.Rev. D 88 
,064002 (2013).

2) The symmetry under allows choosing γ positive without loss of generality.

Note :

3) α scaling :The coupling α dependency could be absorbed by the r → r/ α transformation. 
However, the behaviors for the α = 0 case cannot be generated in this way. 
Hence, we keep the parameter α, to show a continuous change to α = 0.

1) For 𝛾 = 0, DEGB theory becomes the Einstein-Gauss-Bonnet (EGB) theory,
with the GB term becoming the boundary term

The GB term : 



The Einstein equations and the scalar field equation are

1) All the black holes in the DEGB  theory with given non-zero couplings α and γ have hairs.
I.e., there does not exist black hole solutions without a hair in DEGB theory. 

Note :

(If we have Φ = 0, dilaton e.o.m. reduces to 𝑅𝐺𝐵
2 = 0. so it cannot satisfy the dilaton e.o.m..)

2) Hair Charge Q is not zero, and is not independent charge either. 



4. Below γ=1.29, the solutions are perturbatively stable and approach the Schwarzschild black hole in
the limit of γ going to zero. These solutions depend on the coupling γ.

Coupling γ dependency of the minimum mass for fixed α 1/16.

Singular pt S & the min. mass 
C exist for γ = √2.

As γ→0, 
solution →Schw BH.

1. For large γ, sing. pt S & extremal pt C (with minimum mass ෩𝑀) exist. 

Note :

γ=√2(green),γ=1.3(cyan),γ=1.29(blue)  
γ=1/2(red), γ=1/6(black), γ=0(purple)

3. As γ smaller, the singular point S gets closer to the minimum mass point C.

2. The solutions between point S and C are unstable for perturbations and end at the singular point S , 
I.e., there are two black holes for a given mass in which the smaller one is unstable under perturbations. 

5. If DEGB BH horizon becomes larger, the scalar field goes to 0, and the BH becomes a Schwarzschild BH.

No lower branch below γ=1.29

pt S coincides 
w/ pt C

btwn
γ=1.29(blue) 
& 1.30(cyan). 

GB term → repulsive gravity effects !!! 

Q: How about the properties, such as Stability & implication to the cosmology, etc ?



Perturbative Gravitational (in)stability
Perturbations of a black hole space-time 

by adding fields or by perturbing the metric. 

The typical equations in the linear approximation : 

Quasinormal modes : 
solutions of the wave equation,  satisfying specific boundary conditions 
at the black hole horizon and far from the black hole. 

The quasinormal spectrum of a stable black hole is an infinite set of 
complex frequencies which describes damped oscillations. 

If there is at least one growing mode, the space-time is unstable

with the instability growth rate proportional to the imaginary part of the 
growing QNM.

Note : Black Hole Stability



Kerr-Newman BHs, and their 
string theory generalizations, 
which include axion and dilaton
fields, are still not tested for 
stability.

Perturbative Stability of 4-dimensional blackholes

Schwarzschild (M)                         √
R-N (M, Q) √
Schwarzschild-dS (M, Λ > 0) √
Schwarzschild-AdS (M, Λ < 0) √
R-N-dS (M, Q, Λ) √
Kerr (M, J)                                    √
Kerr-dS (M, J, Λ > 0) √
Kerr-AdS (M, J, Λ < 0) √ 
Kerr-Newmann (M, J, Q) ?
Kerr-Newman-A(dS) (M, J, Q, Λ) ?
dilaton (M, Q, φ ) √
dilaton-axion (M, Q, J, φ , ψ ) ?
dilaton-GB (M, φ ) √
Born-Infeld (M, Q)                         √ (axial)
blackuniverses (M, φ ) √
BHs in the C-S theory (M, β ) unstable (*) (*) if the coupling of 

the scalar field β is 
small enough.

Konoplya and Zhidenko, RMP (2011) (arXiv:1102.4014)

Most of the 4-dim. black holes 
proved to be stable. 

Q : How about nonperturbative stability?

Extreme Kerr & RN BHs are 
unstable.

(See Carlos Herdeiro’s talk)



Higher (D ≥ 5) dim BH & Gravitational instabilities 

- A wide class of objects : 

black strings, black branes, black ring, saturn, etc.

- There exists various instabilities 

(non) Gregory-Laflamme instabilities



The qualitative phase diagram for the black objects in D ≥ 6

If thermal equilibrium is not imposed, multi-rings are possible
in the upper region of the diagram.

spin

area

An infinite sequence of pinched black hole 
phases emanating from the MP curve.



(In)stability of higher-dimensional blackholes

Schwarzschild (M)             stable for all D 
R-N    (M, Q)                   stable for D =5,6,…,11 & non-extremal charge
Schwarzschild-dS (M, Λ), stable for D =5, 6, . . . 11
Schwarzschild-AdS (M, Λ) stable in EM theory for D =5, 6, . . .

RN-dS   (M, Q, Λ > 0) unstable for D =7, 8, . . . 11
RN-AdS (M, Q, Λ < 0) stable in EM theory and unstable in SUGRA 5

Gauss-Bonnet (M, α) unstable for moderate and large α

Myers-Perry & generalizations (M, J) ? only particular types of perturbations
dilaton (M, Q, φ ) ?
dilaton-axion (M, Q, J, φ , ψ ) ?
dilaton-GB (M, φ , α) ?

Konoplya and Zhidenko, RMP (2011)

(arXiv:1102.4014)



NonperturbativeBlack Hole Stability

Fragmentation instability 
is based on the entropy preference 

between the solutions.              
Emparan and Myers, JHEP 0309, 025 (2003).

3 

entropy  of 1 BH < entropy of 2 fragmented BHs 

Apply thermodynamic 2nd law 

to initial (one black hole)  

and 

final(fragmented two black holes) phase. 

→ (transition to) instability



Rotating AdS black hole and charged AdS black hole show the 

fragmentation instability in some parameter range

Fragmentation allows the upper or lower bound of black hole charges.                

Myers-Perry blackhole becomes unstable for large angular momentum 
into fragmentation. 

RN blackhole is also thermodynamically unstable in specific parameter 
region. 

Myers-Perry blackhole : Rotating Black hole in higher dimensions
There doesn’t exist any upper limit on the angular momentum

B.Gwak, BHL, D. Rho, Phys.Lett. B761 (2016)

B. Gwak and BHL,  PRD91 (2015) 6, 064020.

𝑺𝑭𝑺 stable under both fragmentation and superradiance.
𝑼𝑭 unstable under fragmentation. 
𝑼𝑺 unstable under superradiance.
𝑼𝑭𝑺 unstable under both fragmentation and superradiance.



The mass and momenta of the black hole are related

The linear momenta are arbitrary, so we set to

maximize the total entropy of the final phase. In this condition,

the black hole slightly breaks into two black holes with

negligible momenta. The initial phase decays to the final phase

if the entropy is larger than that of the initial phase.



For Schwarzschild black hole

The entropy ratio is always smaller than 1.

Therefore, a Schwarzschild black hole is always stable under

fragmentation.

The entropy ratio marginally approaches 1 in

These phenomena become different in the theory with the higher

order of curvature term.



For a black hole in EGB theory

The initial black hole entropy is

Unlike Schwarzschild black holes, the fragmentation instability

occurs depending on the fragmentation ratio For the case of

fragmentation, the final phase entropy is given

The EGB black hole is unstable if,

The EGB black hole solution is the 
same as the Schwarzschild one. 
However, the GB term contributes to 
the black hole entropy and influence 
stability.





The mass ratio can have continuous values, and the black

hole has stable and unstable phases. The minimum unstable

region is at For the limit of all of EGB black holes

become unstable for fragmentation as shown in 4(b).



For a black hole in DGB theory

The DGB black hole has a GB term coupled with a scalar field,

so additional entropy correction comes from the higher

curvature term. The DGB black hole entropy is

where a EGB black hole case corresponds to . The DGB

black hole entropy ratio between the initial and the final

entropy including the higher-curvature corrections



In the large mass limit the entropy ratio becomes that of

Schwarschild case,

Thus, massive DGB black holes are stable under

fragmentation. The small mass limits are bounded to .

DGB black holes of mass are absolutely stable, because

there are no fragmented black hole solutions. Larger than ,

the black hole stability is dependent on an entropy correction

term. The entropy ratio is given



where the horizon radius square term is important in the small

black hole. The entropy ratio may increase in smaller mass

like EGB black holes, but there is ambiguity since DGB black

holes have a minimum mass. In this part, there is no proper

approximation to describe the instabilities of small mass DGB

black holes. It should be pointed out through numerical

calculation. Also, the minimum mass bounds the

fragmentation mass ratio. It is not seen in the Schwarzschild

black hole or EGB black hole. The DGB black holes have more

variety properties and behaviors. We will obtain detailed

behaviors through the numerical calculation.



Fragmentation Instability 

for DGB Black Holes

We investigate the fragmentation instability using a numerical analysis.



The phase diagrams with respect to α and ෩𝑀 in fixed γ .
The red solid line represents (1/2 ,1/2) fragmentation. 
The green solid line represent ( ҧ𝛿,1 − ҧ𝛿) fragmentation



The phase diagrams with respect to γ and ෩𝑀 for fixed α for 
(1/2 ,1/2) ( red solid line ), (1/4 , 3/4) ( blue solid line ), 
(1/10 , 9/10) (cyan solid line ), and ( ҧ𝛿,1 − ҧ𝛿) (green solid line ) fragmentation



3.Cosmological Effects of the Gauss-Bonnet term - Inflation

• FLRW Universe metric:

• An action with a Gauss-Bonnet term:

𝑆 = න𝑑4𝑥 −𝑔
1

2𝜅2
𝑅 −

1

2
𝑔𝜇𝜈𝜕𝜇𝜙𝜕𝜈𝜙 − 𝑉 𝜙 −

1

2
𝜉 𝜙 𝑅𝐺𝐵

2

𝑅𝐺𝐵
2 = 𝑅𝜇𝜈𝜌𝜎𝑅

𝜇𝜈𝜌𝜎 − 4𝑅𝜇𝜈𝑅
𝜇𝜈 + 𝑅2

Gauss-Bonnet term

Einstein and Field equations yield:

ሶ𝐻 = −
𝜅2

2
ሶ𝜙2 −

2𝐾

𝜅2𝑎2
− 4 ሷ𝜉 𝐻2 +

𝐾

𝑎2
− 4 ሶ𝜉𝐻 2 ሶ𝐻 − 𝐻2 −

3𝐾

𝑎2
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𝐾

𝑎2
ሶ𝐻 + 𝐻2 = 0

𝐻2=
𝜅2

3

1

2
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3𝐾

𝜅2𝑎2
+ 12 ሶ𝜉𝐻 𝐻2 +

𝐾

𝑎2

𝑑𝑠2 = - 𝑑𝑡2 + 𝑎2 𝑡
𝑑𝑟2

1−𝐾𝑟2
+ 𝑟2(𝑑θ2 + 𝑠𝑖𝑛2θ 𝑑φ2)

𝐺μν=𝜅2 𝑇μν + 𝑇μν
𝐺𝐵

𝜅2= 8π𝐺 𝐺μν ≡ 𝑅μν −
1

2
𝑔μν 𝑅

□𝜙 − 𝑉,𝜙 𝜙 −
1

2
𝑇𝐺𝐵 = 0

𝑇μν
𝐺𝐵 = 4 𝜕𝜌𝜕𝜎𝜉𝑅𝜇𝜌𝜈𝜎 − □𝜉𝑅𝜇𝜈 + 2𝜕𝜌𝜕(𝜇𝜉𝑅𝜈)

𝜌
−
1

2
𝜕𝜇𝜕𝜈𝜉𝑅 − 2 2𝜕𝜌𝜕𝜎𝜉𝑅

𝜌𝜎 − □𝜉𝑅 𝑔μν

𝑇μν = 𝜕𝜇𝜙𝜕𝜈𝜙 + 𝑉 𝜙 −
1

2
𝑔μν 𝑔𝜌𝜎𝜕𝜌𝜙𝜕𝜎𝜙 + 2𝑉
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Inflation with a Gauss-Bonnet

Einstein and Field equations yield:

ሶ𝐻 = −
𝜅2

2
ሶ𝜙2 −

2𝐾

𝜅2𝑎2
− 4 ሷ𝜉 𝐻2 +

𝐾

𝑎2
− 4 ሶ𝜉𝐻 2 ሶ𝐻 − 𝐻2 −

3𝐾

𝑎2

ሷ𝜙 + 3𝐻 ሶ𝜙 + 𝑉,𝜙 + 12𝜉,𝜙 𝐻2 +
𝐾

𝑎2
ሶ𝐻 + 𝐻2 = 0

𝐻2=
𝜅2

3

1

2
ሶ𝜙2 + 𝑉 −

3𝐾

𝜅2𝑎2
+ 12 ሶ𝜉𝐻 𝐻2 +

𝐾

𝑎2

𝑉0 = 0.5 × 10−12

𝜉0 = 0(black), 𝜉0 = 3 × 106 (red), and 𝜉0= 3 × 107 (blue).

The duration of inflation gets shorter as the Gauss-
Bonnet coupling constant increases.
(making the effective potential steeper)

• Action 𝑆 = න𝑑4𝑥 −𝑔
1

2𝜅2
𝑅 −

1

2
𝑔𝜇𝜈𝜕𝜇𝜙𝜕𝜈𝜙 − 𝑉 𝜙 −

1

2
𝜉 𝜙 𝑅𝐺𝐵

2

S. Koh, BHL, W. Lee, Tumurtushaa
PRD90 (2014) no.6, 063527

S. Koh, BHL, W. Lee, Tumurtushaa
arXiv:1610.04360

http://inspirehep.net/author/profile/Koh, Seoktae?recid=1292097&ln=en
http://inspirehep.net/author/profile/Lee, Wonwoo?recid=1292097&ln=en
http://inspirehep.net/author/profile/Tumurtushaa, Gansukh?recid=1292097&ln=en
http://inspirehep.net/author/profile/Koh, Seoktae?recid=1292097&ln=en
http://inspirehep.net/author/profile/Lee, Wonwoo?recid=1292097&ln=en
http://inspirehep.net/author/profile/Tumurtushaa, Gansukh?recid=1292097&ln=en
http://arxiv.org/abs/arXiv:1610.04360




 Model-2
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Reheating parameters in Gauss-Bonnet 
inflation Models

Let us consider a mode with comoving wavenumber 𝑘∗ which crosses the horizon during inflation when the
scale factor is 𝑎∗. The comoving Hubble scale 𝑎∗𝐻∗ = 𝑘∗ at the horizon crossing time can be related to that of
the present time as

where 𝑎0, 𝑎∗, 𝑎end, and 𝑎th denote the scale factor at present, the horizon crossing, the end of inflation, and
the end of reheating, respectively. By taking logarithm from both sides, we rewrite

where 𝑁∗ ≡ ln(𝑎end/𝑎∗) is the number of e-foldings between the time of mode exits the horizon and the end
of inflation, and 𝑁th ≡ ln(𝑎th/𝑎end) is the number of e-foldings between the end of inflation and the end of
reheating.

(6)

(7)



• Numerically constructed the static DGB hairy black hole in 

asymptotically flat spacetime

There exists minimum mass, etc. (“repulsive” gravity effect)
• Fragmentation instability of black holes:

We have studied the Black Hole with Gauss-Bonnet term 

When the scalar field on the horizon is the maximum, the DGB

black hole solution has the minimum horizon size.

The amount of black hole hair decreases as the DGB black hole

mass increases. DGB black hole configurations go to EGB black

hole cases for small and

The DGB black hole phase is unstable under fragmentation,

even if these phases are stable under perturbation.

We have found the phase diagram of the fragmentation

instability for a black hole mass and two couplings.

4.Summary 



Summary - continued
We have reviewed the stability of black holes.

4 dim. and higher dim.

perturbative and nonperturbative (fragmentation)

Most of the 4-dim. black holes are perturbatively stable. 
(Stability of Kerr-Newman blackholes, & generalizations 
including axion and dilaton fields, are still not clear.

Higher Dim. BH : rich phases,

(non)Gregory-Laflamme instabilities

For  rotating AdS BH,  the instability  sources are              
:  Kerr bound. 
: superradiance instability, 
: BPS-like a = |l| bound.
There exists region 
unstable under fragmention while perturbatively stable. 



• We have investigated the slow-roll inflation with the GB term which coupled to the inflaton field 
nonminimally. We have considered the potential and coupling functions as

•First, we have applied our general formalism to the large-field inflationary model with exponential 
potential and exponential coupling. In this case, we could find the valid model parameter range for 
inflation to happen, unfortunately, these parameter ranges are not favored by the data sets. 

•Second, we have studied models with monomial potential and monomial coupling to GB term. In this 
case, r is enhanced for 𝛼 > 0 while it is suppressed for 𝛼 < 0. 

•GB term makes the e-folding smaller.

•N≈60 condition requires that 𝛼 ≈ 10−6 for V~𝜑2 𝛼 ≈ 10−12 for V~𝜑4.

•In this work, running spectral index turns out to be inconsistent with BICEP2+Planck data. It would be 
interesting to search for the alternatives to reconcile Planck data with BICEP2 besides consideration of 
the running spectral index.

GB term in inflation 

Other Effects such as the reheating under investigation

The model parameter must take values in interval between 2.1276 × 106 ≤ 𝜉0 ≤ 3.7796 × 106 to be
consistent with accuracy of future observation in which 𝑛𝑠= 0.9682 ± 103.



Thank You!


