On the rate and gravitational wave emission of short and long GRBs

Jorge Armando Rueda Hernández – ICRANet (On behalf of a larger collaboration)

R. RUFFINI^{1,2,3,4}, J. RODRIGUEZ^{1,2}, M. MUCCINO^{1,2}, J. A. RUEDA^{1,2,4}, Y. AIMURATOV^{1,2}, U. BARRES DE ALMEIDA^{4,5}, L. BECERRA^{1,2}, C. L. BIANCO^{1,2}, C. CHERUBINI^{6,7}, S. FILIPPI^{6,7}, D. GIZZI¹, M. KOVACEVIC^{1,2,3}, R. MORADI^{1,2}, F. G. OLIVEIRA^{1,2,3}. G. B. PISANI^{1,2}. Y. WANG^{1,2}

International Conference on Gravitation: Joint Conference of ICGAC-XIII and IK15 July 3-7, Seoul 2017

Gamma-ray bursts and neutron-star physics

Short GRBs: NS-NS and NS-BH Mergers

Long GRB-SN: Induced Gravitational Collapse

Long and short GRB subclasses

Ruffini et al., ApJ (2015,2016); R. Ruffini's talk (Monday 03/07/2017)

Short and long GRB sub-classes

Table 1. Summary of the astrophysical aspects of the different GRB sub-classes and of their observational properties. In the first four columns we indicate the GRB sub-classes and their corresponding *in-states* and the *out-states*. In columns 5–8 we list the ranges of $E_{p,i}$ and E_{iso} (rest-frame 1–10⁴ keV), $E_{iso,X}$ (rest-frame 0.3–10 keV), and $E_{iso,GeV}$ (rest-frame 0.1–100 GeV). Columns 9 and 10 list, for each GRB sub-class, the maximum observed redshift and the local observed rate ρ_{GRB} obtained in Ruffini et al. (2016b).

	Sub-class	In-state	Out-state	$E_{\rm p,i}$	$E_{\rm iso}$	$E_{\rm iso,X}$	$E_{\rm iso,Gev}$	$z_{ m max}$	$ ho_{ m GRB}$
				(MeV)	(erg)	(erg)	(erg)		$(\mathrm{Gpc}^{-3}\mathrm{yr}^{-1})$
Ι	XRFs	$\rm CO_{\rm core}\text{-}\rm NS$	$\nu \text{NS-NS}$	$\lesssim 0.2$	$\sim 10^{48} 10^{52}$	$\sim 10^{48} 10^{51}$	_	1.096	100_{-34}^{+45}
II	BdHNe	$\rm CO_{\rm core}\text{-}\rm NS$	$\nu \text{NS-BH}$	~ 0.22	$\sim 10^{52} 10^{54}$	$\sim 10^{51} 10^{52}$	$\lesssim 10^{53}$	9.3	$0.77\substack{+0.09\\-0.08}$
III	BH-SN	$\rm CO_{\rm core}\text{-}BH$	$\nu \text{NS-BH}$	$\gtrsim 2$	$> 10^{54}$	$\sim 10^{51} 10^{52}$	$\gtrsim 10^{53}$	9.3	$\lesssim 0.77^{+0.09}_{-0.08}$
IV	S-GRFs	NS-NS	MNS	$\lesssim 2$	$\sim 10^{49} 10^{52}$	$\sim 10^{49} 10^{51}$	_	2.609	$3.6^{+1.4}_{-1.0}$
V	S-GRBs	NS-NS	BH	$\gtrsim 2$	$\sim 10^{52} 10^{53}$	$\lesssim 10^{51}$	$\sim 10^{52} 10^{53}$	5.52	$(1.9^{+1.8}_{-1.1}) \times 10^{-3}$
VI	U-GRBs	$\nu \text{NS-BH}$	BH	$\gtrsim 2$	$> 10^{52}$	—	_	_	$\gtrsim 0.77^{+0.09}_{-0.08}$
VII	GRFs	NS-WD	MNS	~ 0.22	$\sim 10^{51} 10^{52}$	$\sim 10^{49} 10^{50}$	_	2.31	$1.02\substack{+0.71 \\ -0.46}$

Ruffini et al., ApJ (2015,2016); arXiv: 1602.02732

Short GRBs

$\begin{array}{c} \text{NS+NS} \rightarrow \text{MNS} \\ \text{NS+NS} \rightarrow \text{BH} \end{array}$

Two sub-classes of short GRBs

NS mass distribution in BNS peaks at 1.32 M_{sun} (Kiziltan et al. 2013) So: $M_{RNS} \sim 2.64 M_{sun}$ (neglecting NS binding energy and angular momentum)

Ruffini et al., ApJ (2015); arXiv: 1412.1018v4

Neutron Star Binding Energy

(Cipolletta et al., PRD 2015; arXiv: 1506.05926; Cipolletta et al., PRD in press; arXiv:1612.02207)

Static Configurations

$$\frac{M_b}{M_\odot} \approx \frac{M}{M_\odot} + \frac{13}{200} \left(\frac{M}{M_\odot}\right)^2$$

 $c J/(G M_{sun}^2)$

Rotating Configurations

$$\frac{M_b}{M_{\odot}} = \frac{M}{M_{\odot}} + \frac{13}{200} \left(\frac{M}{M_{\odot}}\right)^2 \left(1 - \frac{1}{130}j^{1.7}\right)$$

Which are the mass and angular momentum of the merged core: NS+NS → MNS?

Depends on:

- 1) Mass-ratio of the binary (M1/M2 ~1 for the galactc BNS)
 - 2) Degree at which baryon mass is conserved
- 3) Degree at which angular momentum is conserved

$$(\mathsf{M}_{1},\mathsf{M}_{2}) \xrightarrow{} (\mathsf{M}_{b1},\mathsf{M}_{b2})$$
$$\mathsf{M}_{bf} = \alpha (\mathsf{M}_{b1} + \mathsf{M}_{b2}); \quad \alpha \sim 1$$

 $J_{mc} = \eta J_i \sim \eta J_{bin}$ (merger instant)

$NS+NS \rightarrow BH$?

The explanation of the observed GeV emission in S-GRBs by accretion onto the formed BH may constraint the BH properties and the merging NS masses !

Aimuratov, Ruffini, et al.; ApJ in press; arXiv:1704.08179 Ruffini, Muccino, et al.; ApJ 2016; arXiv:1607.02400 Ruffini, Muccino, et al.; ApJ 2016; arXiv:1412.1018

See also M. Muccino's talk; Friday 06/07/2017

Long GRBs

$\begin{array}{c} \textbf{CO+NS} \rightarrow \textbf{NS+MNS} \\ \textbf{CO+NS} \rightarrow \textbf{NS+BH} \end{array}$

Binary-Driven Hypercritical Accretion

Supernova ejecta at t=0

Becerra, et al., in preparation L. Becerra's talk on Monday 03/07/2017

Visualizing the IGC process

Becerra, Bianco, Fryer, Rueda, Ruffini, ApJ 2016;arXiv:1606.02523

L. Becerra's talk Monday 03/07/2017

Latest ICRANet-LANL simulations

Latest ICRANet-LANL simulations

NS evolution up to the instability point

Becerra, Cipolletta, Fryer, Rueda, Ruffini, ApJ 2015; arXiv: 1505.07580

NS-BH binaries produced by BdHNe

(Fryer, Oliveira, Rueda, Ruffini, Phys. Rev. Lett 2015; arXiv:1505.02809)

X-ray Flashes - BdHNe Separatrix

(Becerra, Bianco, Fryer, Rueda, Ruffini, ApJ 2016; arXiv:1606.02523)

Short and long GRB subclasses

Ruffini et al., ApJ (2015,2016)

Gravitational-wave detectability of GRBs

$$\rho^2 = 4 \int_0^\infty \frac{\left|\tilde{h}(f)\right|^2}{S_n(f)} df$$

$$\langle \rho^2 \rangle = 4 \int_0^\infty \frac{\langle |\tilde{h}(f)|^2 \rangle}{S_n(f)} df = 4 \int_0^\infty \frac{h_c^2(f)}{f^2 S_n(f)} df$$

$$h_c = \frac{(1+z)}{\pi d_l} \sqrt{\frac{\langle F_+^2 \rangle}{2} \frac{G}{c^3} \frac{dE}{df_s}} [(1+z)f],$$

We can estimate the signal-to-noise ratio with the gravitationalwave spectrum

Strong-field GW emission in Schwarzschild and Kerr geometries: some general considerations

Strong-field GW emission in Schwarzschild and Kerr geometries: some general considerations

Test-particle helicoidal-drifting-sequence in the Kerr geometry vs. numerical-relativity waveform

Rodriguez, Rueda, Ruffini, arXiv: 1706.07704 (last-week post) J. F. Rodriguez' talk Monday 4/07

Gravitational-wave spectrum during the helicoidal-drifting-sequence

GW spectrum during the final smooth merger?

Davis, Ruffini, Press, Price, Phys. Rev. Lett. 27, 1466 (1971) Davis, Ruffini, Tiomno, Phys. Rev. D 5, 2932 (1972)

$$f_{\text{merger}}^{\text{NS-NS}} \approx f_{\text{contact}}^{\text{NS-NS}} = \frac{1}{\pi} \frac{c^3}{GM} \left[\frac{\mathcal{C}_1 \mathcal{C}_2 (1+q)}{\mathcal{C}_1 + q \mathcal{C}_2} \right]^{3/2}$$

NS+BH

$$f_{\rm plunge}^{\rm NS-BH} \approx \frac{1}{\pi} \left(\frac{GM}{r_{\rm LSO}^3} \right)^{1/2} = \frac{1}{\pi 6^{3/2}} \left(\frac{c^3}{GM} \right)$$

Rodriguez, Rueda, Ruffini, arXiv: 1706.07704 (last-week post)

Ruffini, Rodriguez, Muccino, Rueda et al., arXiv: 1602.03545

Some properties of the relevant NS-NS and NS-BH mergers

	$\Delta E_{\rm insp}$	$f_{\rm merger}$	z_{\min}^{obs}	$d_{l_{\min}}$	$d_{\rm GW}$ (Mpc)	
	(erg)	(kHz)		(Mpc)	O1	2022 +
S-GRF	7.17×10^{52}	1.20	0.111	508.70	168.43	475.67
S-GRB	1.02×10^{53}	1.43	0.903	5841.80	226.62	640.18
U-GRB	1.02×10^{53}	0.98	0.169	804.57	235.62	665.72

Ruffini, Rodriguez, Muccino, Rueda et al., arXiv: 1602.03545

GW detectability by aLIGO, eLISA and resonant bars

Detectability of GRB GWs by aLIGO

Ruffini, Rodriguez, Muccino, Rueda et al., arXiv: 1602.03545

 $N_{\rm GW} = \rho_{\rm GRB} V_{\rm max}^{\rm GW}$ $V_{\rm max}^{\rm GW} = (4\pi/3)\mathcal{R}^3$ Abbott et al., Liv. Rev. Rel. 19 (2016)

IN CONCLUSION:

GRB sub-class	$\dot{N}_{\rm GRB} \ ({\rm yr}^{-1})$	$\dot{N}_{ m GRB}^{ m obs}~({ m yr}^{-1})$	$\dot{N}_{\rm GW}~({\rm yr}^{-1})$
XRFs	144-733	1 (1997 - 2014)	undetectable
BdHNe	662–1120	14 (1997–2014)	undetectable
BH-SN	$\lesssim 662 1120$	$\lesssim 14 \ (1997 – 2014)$	undetectable
S-GRFs	58-248	3 (2005–2014)	O1: $(0.4-8) \times 10^{-3}$
			O3: 0.011–0.065
			2022+: 0.1-0.2
S-GRBs	2-8	1 (2006 - 2014)	O1: $(0.4-8) \times 10^{-6}$
			O3: $(0.08 - 1.2) \times 10^{-4}$
			$2022+: (0.8-3.6) \times 10^{-4}$
U-GRBs	662–1120	_	O1: $(0.36-3.6) \times 10^{-3}$
			O3: 0.008–0.032
			2022+: 0.076-0.095

For more details see: Ruffini, Rodriguez, Muccino, Rueda et al.; arXiv: 1602.03545