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Dark Matter Problem

Galaxy rotation curves : observation Keplerian
√

MG/R fall-off : GR or Newton

– The galaxy rotation curve is a plot of the orbital velocities of visible stars versus their
radial distance from the galactic center.

– While Einstein gravity (GR), with Schwarzschild solution, predicts the Keplerian
(inverse square root) monotonic fall-off of the velocities, Vorbit =

√
MG/R,

observations however show rather ‘flat’ (∼ 200 km/s) curves after a fairly rapid rise.

– The resolution of the discrepancy may call for ‘dark matter’, or modifications of the
law of gravity (MOND), or perhaps both, as we shall see shortly in the string theory
extension of General Relativity, i.e. Stringy Gravity.
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– While mathematics is about dimensionless numbers, e.g. N, R, C, physical quantities
are generically dimensionful,

[R] = Length , [M] = Mass , etc.

– Physical laws given by mathematical formulas must be consistent with the dimensions
of the physical quantities.

• In natural unit, c ≡ 1, the orbital velocity is dimensionless. Further, R/(MG) ≡ x is a
dimensionless radial variable normalized by mass.

• The Keplerian orbital velocity reads then in terms of the two dimensionless variables,

Vorbit =
√

1/x .
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Main Message & Reference of This Talk

? Stringy Gravity modifies the orbital velocity formula at ‘short’ distance scale, while it
becomes asymptotically Keplerian at infinity in terms of x,

Vorbit = f (x) 6=
√

1/x : f (x) →
√

1/x as x → ∞ .

The resulting rotation curves generically feature a maximum at short x, and this may
solve the dark matter/energy problems.

? The observations of stars and galaxies far away, or the dark matter/energy problems,
are actually revealing the mathematically short-distance nature of Gravity:
Long distance divided by far heavier mass gives small values of x = R/(MG).

Reference: “The rotation curve of a point particle in stringy gravity”

Sung Moon Ko, JHP and Minwoo Suh 1606.09307 [JCAP]
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Stringy Gravity

Stringy Gravity is the ‘unambiguous’ extension of General Relativity,
dictated entirely by the Symmetry Principle from string theory.
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Ever since Einstein formulated General Relativity (GR),
by employing the differential geometry a la Riemann,
the Riemannian metric, gµν , has been privileged to be
the only geometric and hence gravitational field.

– Diffeomorphisms : ∂µ −→ ∇µ = ∂µ + Γµ

– ∇λgµν = 0, Γλ
[µν]

= 0 −→ Γλµν = 1
2 gλρ(∂µgνρ + ∂νgµρ − ∂ρgµν)

– Curvature : [∇µ,∇ν ] −→ Rκλµν −→ R

– Vielbein (“square-root” of metric) : gµν = eµpeνqηpq

– Local Lorentz symmetry of locally inertial frames :

Dµ = ∇µ + ωµ , Dλeµp = ∇λeµp + ωλ
p

qeµq = 0 −→ ωλpq = ep
µ∇λeµq

• All other fields are meant to be ‘extra’ matters.

• The coupling of GR to matters, e.g. to the Standard Model, are then ‘minimally’
determined through the explicitly appearing metric and covariant derivatives in
Lagrangians, which ensure both diffeomorphisms and local Lorentz symmetry.

? Symmetry dictates interaction. C. N. Yang
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• On the other hand, string theory suggests us to put a skew-symmetric two-form gauge
potential, Bµν , and a scalar dilaton, φ, on an equal footing along with the metric,∫

dDx
√
−ge−2φ

(
Rg + 4∂µφ∂µφ− 1

12 HλµνHλµν
)

where H = dB ,

– Forming the massless sector of closed strings, they are ubiquitous in all string
theories.

– Further, a nontrivial symmetry of string theory, called T-duality which forms the
group, O(D,D), transforms them to one another: Namely, {gµν ,Bµν , φ} forms a
multiplet of T-duality. Buscher

• String theory suggests us to view the whole massless sector of closed strings as the
gravitational unity, or {gµν ,Bµν , φ} as the gravitational trinity.

– Riemannian geometry is for ‘particle’ theory.

– ‘String’ theory requires a novel differential geometry, beyond Riemann.
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• The conventional treatment of the closed string massless sector is ‘organized’ in terms
of Riemannian geometry:∫

dDx
√
−ge−2φ

(
Rg + 4∂µφ∂µφ− 1

12 HλµνHλµν
)
.

– In this conventional description, the Riemannian metric provides the background
geometry, while the dilaton and the B-field are viewed as ‘matter’ living on it.

– The diffeomorphisms and the B-field gauge symmetry are manifest, e.g.

δBµν = LξBµν + ∂µΛν − ∂νΛµ , δHλµν = LξHλµν .

But, O(D,D) T-duality symmetry mixing the massless sector is secretly hidden.

– There is also much ambiguity to occur, when we try to couple the closed string
massless sector, especially φ and Bµν , to other matters, or the Standard Model,
e.g. the choice of the frame, string (Jordan) or Einstein.

• Thus, Riemannian geometry fails to provide the unifying geometric description of the
closed string massless sector.

• This talk is all about the action above, or completely new formulation of it into
Stringy Gravity (the string theory extension of GR), and its physical implications
especially to Dark Matter/Dark Energy problems.

• In Stringy Gravity, the above entire action is going to be identified as an integral of a
single scalar curvature of stringy differential geometry beyond Riemann.
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Due to limited time, I am not going to explain the details of Stringy Gravity.

Rather I will try to sketch the essence of it in a compact manner.

Stringy Gravity has emerged through the development of so called Double Field
Theory (DFT) a la Siegel 1993 as well as Hull-Zwiebach 2009.

And my group including, Imtak Jeon and Kanghoon Lee, has contributed to the
identification of the underlying Stringy Differential Geometry:

- Stringy differential geometry, beyond Riemann Jeon, Lee, JHP 1105.6294 PRD

- Stringy Unification of IIA and IIB Supergravities underN= 2 D= 10 Supersymmetric Double Field Theory
Jeon, Lee, JHP, Yoonji Suh 1210.5078 PLB

- Comments on double field theory and diffeomorphisms JHP 1304.5946 JHEP

- Covariant action for a string in doubled yet gauged spacetime Lee, JHP 1307.8377 NPB

- Green-Schwarz superstring on doubled-yet-gauged spacetime JHP 1609.04265 JHEP

- Standard Model as a Double Field Theory Kangsin Choi, JHP 1506.05277 PRL
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• Notation

– The word double in Double Field Theory (DFT) refers to the usage of doubled
coordinates,

xA : A = 1, 2, · · · ,D + D ,

for the description of D-dimensional physical spacetime. In this talk, D ≡ 4.

– Throughout the talk, the captial letters, A,B,C, · · · ,, denote the O(D,D) vector
indices, which can be freely raised or lowered by the constant O(D,D) invariant
metric (with its inverse),

JAB =


0 1

1 0

 .

– The constant O(D,D) metric, JAB , naturally decomposes the doubled coordinates
into two parts,

xA = (x̃µ, xν) , ∂A = (∂̃µ, ∂ν) ,

where µ, ν are D-dimensional curved indices.
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• Doubled-yet-gauged spacetime JHP 2013

Stringy Gravity adopts a doubled-yet-gauged coordinate system:
the doubled coordinates are ‘gauged’ by an equivalence relation,

xA ∼ xA + ∆A(x) ,

such that each equivalence class, or gauge orbit in RD+D , represents
a single physical point in RD .

In the above, ∆A is an arbitrary derivative-index-valued O(D,D) vector. This means
that its superscript index must be identifiable as that of derivative, ∂A = J AB∂B .

For example, with arbitrary functions, Φ1, Φ2 belonging to the theory, ∆A = Φ1∂
AΦ2.

The equivalence relation can be realized by requiring that all the fields/functions in
Stringy Gravity should be invariant under the coordinate gauge symmetry shift,

Φ(x + ∆) = Φ(x) ⇐⇒ ∆A∂A = 0 .

This invariance is equivalent to the ‘section condition’ in DFT, ∂A∂
A = 2 ∂µ∂̃µ = 0 ,

which can be generically solved, up to O(D,D) rotations, by letting ∂̃µ ≡ 0 , and hence

(x̃µ , xν) ∼ (x̃µ + Φ1∂µΦ2 , xν) : x̃µ coordinates are gauged and xν ’s form a section.

O(D,D) transformations then rotate the gauged directions (and the section).
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• Diffeomorphisms

Diffeomorphism symmetry in doubled-yet-gauged spacetime is generated by so called
the ‘generalized Lie derivative, Siegel 1993

L̂ξTA1···An := ξB∂BTA1···An + ω∂Bξ
BTA1···An +

n∑
i=1

(∂Ai ξB − ∂BξAi )TA1···Ai−1
B

Ai+1···An ,

where ω is the weight of the tensor density.

– It unifies the Riemannian diffeomorphisms and the B-field gauge symmetry as
ξA = (λµ, ξν), and form a closed algebra thanks to the section condition
(Coordinate Gauge Symmetry).

# Unlike O(D,D) rotations, diffeomorphisms leave the gauged directions of the
doubled coordinates, e.g. {x̃µ}, invariant, and preserve the section, {xν}. Thus,
diffemorphisms and O(D,D) rotations differ intrinsically.

JEONG-HYUCK PARK STRINGY GRAVITY & DARK PROBLEMS



• Diffeomorphisms

Diffeomorphism symmetry in doubled-yet-gauged spacetime is generated by so called
the ‘generalized Lie derivative, Siegel 1993

L̂ξTA1···An := ξB∂BTA1···An + ω∂Bξ
BTA1···An +

n∑
i=1

(∂Ai ξB − ∂BξAi )TA1···Ai−1
B

Ai+1···An ,

where ω is the weight of the tensor density.

– It unifies the Riemannian diffeomorphisms and the B-field gauge symmetry as
ξA = (λµ, ξν), and form a closed algebra thanks to the section condition
(Coordinate Gauge Symmetry).

# Unlike O(D,D) rotations, diffeomorphisms leave the gauged directions of the
doubled coordinates, e.g. {x̃µ}, invariant, and preserve the section, {xν}. Thus,
diffemorphisms and O(D,D) rotations differ intrinsically.

JEONG-HYUCK PARK STRINGY GRAVITY & DARK PROBLEMS



• Diffeomorphisms

Diffeomorphism symmetry in doubled-yet-gauged spacetime is generated by so called
the ‘generalized Lie derivative, Siegel 1993

L̂ξTA1···An := ξB∂BTA1···An + ω∂Bξ
BTA1···An +

n∑
i=1

(∂Ai ξB − ∂BξAi )TA1···Ai−1
B

Ai+1···An ,

where ω is the weight of the tensor density.

– It unifies the Riemannian diffeomorphisms and the B-field gauge symmetry as
ξA = (λµ, ξν), and form a closed algebra thanks to the section condition
(Coordinate Gauge Symmetry).

# Unlike O(D,D) rotations, diffeomorphisms leave the gauged directions of the
doubled coordinates, e.g. {x̃µ}, invariant, and preserve the section, {xν}. Thus,
diffemorphisms and O(D,D) rotations differ intrinsically.

JEONG-HYUCK PARK STRINGY GRAVITY & DARK PROBLEMS



• Fundamental fields : building blocks of Stringy Gravity

The geometric and hence gravitational fields in Stringy Gravity consist of {d ,PAB},
i.e. a dilaton, d , and a symmetric projection matrix,

PAB = PBA PA
BPB

C = PA
C .

They represent the massless sector of closed strings.

– The complementary, orthogonal projector, P̄AB , follows

P̄AB = P̄BA := JAB − PAB , P̄A
BP̄B

C = P̄A
C , PA

BP̄B
C = 0 .

– The difference of the two projectors sets the DFT-metric,

HAB = PAB − P̄AB ,

and hence

PAB = 1
2 (JAB +HAB) , P̄AB = 1

2 (JAB −HAB) .

– The dilaton gives rise to the O(D,D) invariant integral measure with weight one,

e−2d .

Naturally the cosmological constant term in Stringy Gravity should be e−2d ΛSG.
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• Parametrizations: Riemannian vs. non-Riemannian

With the choice of the section, ∂̃µ ≡ 0, which solves the Coordinate Gauge Symmetry
constraint, the O(D,D) covariant fundamental fields can be generically parametrized
by the conventional (Riemannian) variables:

e−2d ≡
√
|g|e−2φ , HAB ≡

 g−1 −g−1B

Bg−1 g − Bg−1B

 .

? However, the above is not the most general parametrization.

– Stringy Gravity encompasses novel geometries which do not allow any
Riemannian interpretation, i.e. non-Riemannian spacetime, e.g.

HAB = JAB =

 0 1

1 0

 .

Lee-JHP 2013, JHP 2016

? Stringy Gravity stands on its own feet, to be formulated through {PAB , P̄AB , d }.
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• Covariant derivative & Curvatures Jeon-Lee-JHP 2010, 2011

– Covariant derivatives and curvatures have been constructed.

– In particular, the string theory extension of the Christoffel connection has been
uniquely identified:

ΓCAB=2(P∂C PP̄)[AB]
+2
(

P̄[A
D P̄B]

E−P[A
DPB]

E
)
∂DPEC− 4

D−1

(
P̄C[AP̄B]

D+PC[APB]
D
)(
∂Dd+(P∂E PP̄)[ED]

)
which ensures the compatibility with the massless sector of closed strings,

∇APBC = ∇AP̄BC = ∇Ad = 0 .

– It turns out that there are scalar curvature and two-indexed “Ricci” curvature,

S0 , PA
C P̄B

DSCD ,

from which conserved “Einstein” curvature can be also constructed,

GAB := 4P[A
C P̄B]

DSCD − 1
2JABS0 , ∇AGAB = 0 .

Yet, there seems no four-indexed “Riemann-like” curvature in Stringy Gravity.

– Extension to vielbein formalism has been also completed,

PAB = VA
pVB

qηpq , P̄AB = V̄A
p̄V̄B

q̄ η̄p̄q̄ ,

which manifests the twofold local Lorentz symmetries of Stringy Gravity:

Spin(1,D−1)L × Spin(D−1, 1)R .
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• Coupling to the Standard Model Choi-JHP 2015 [PRL]

D = 4 Stringy Gravity naturally, or minimally, couples to the Standard Model in
particle physics, dictated by Symmetry Principle:

– O(4, 4) T-duality
– Twofold local Lorentz symmetry, Spin(1, 3)L × Spin(3, 1)R
– Doubled-yet-gauged diffeomorphisms
– SU(3)× SU(2)×U(1) gauge symmetry

LSM = e−2d


1

16πGN
S0

+
∑
V PABP̄CDTr(FACFBD) +

∑
ψ ψ̄γ

aDaψ +
∑
ψ′ ψ̄

′γ̄āDāψ
′

−HAB(DAφ)†DBφ − V (φ) + yd q̄·φ d + yu q̄·φ̃ u + ye l̄ ′·φ e′



While coupling to SM, one has to decide the spin group for each fermion, as it a
prediction of Stringy Gravity that the spin group is intrinsically twofold:

Spin(1, 3)L vs. Spin(3, 1)R .

Conjecture: the quarks and the leptons may belong to the distinct spin groups.

JEONG-HYUCK PARK STRINGY GRAVITY & DARK PROBLEMS



• Proper length in doubled-yet-gauged spacetime

In doubled-yet-gauged spacetime, the proper length is defined by a path integral:

Length := − ln
[ ∫
DA exp

(
−
∫ √

DxM DxNHMN

)]
,

where DxM = dxM −AM is a gauged infinitesimal one-form with the auxiliary gauge

potential, AM , satisfying the same properties as the Coordinate Gauge Symmetry
generator, i.e. derivative-index-valued vector, such as AM∂M = 0, AMAM = 0.
Essentially, half of the components are trivial, e.g. with ∂̃µ ≡ 0,

AM = Aλ∂M xλ = (Aµ , 0) , DxM = (dx̃µ − Aµ , dxν) .

And for Riemannian DFT-metric, we get a useful relation,

DxM DxNHMN ≡ dxµdxνgµν + (dx̃µ − Aµ + dxρBρµ) (dx̃ν − Aν + dxσBσν) gµν .

Hence, after integrating out the gauge potential, Aµ, the above O(D,D) covariant path
integral definition of the proper length reduces to the conventional one,

Length =⇒
∫ √

dxµdxνgµν .

Apparently, being x̃µ-independent and depending on xµ only,∣∣∣xA
1 − xA

2

∣∣∣ =
∣∣xµ1 − xµ2

∣∣ ,
it measures the distance between two gauge orbits rather than

two points in RD+D , which is of course a desired feature.
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• Doubled-yet-gauged point particle action Ko-JHP-Suh 2016

The definition of the proper length readily gives

Sparticle =

∫
dτ
[

e−1 DτxADτxBHAB(x)− 1
4 m2e

]
,

where e is an einbein and m is the mass of the particle.

With the Riemannian DFT-metric substituted, after integrating out e and AA, the
above action reduces to the conventional one in string frame:

Sparticle ≡
∫

dτ −m
√
−ẋµẋνgµν .

This implies that the particle follows the geodesic path defined in the string frame.

This preferred choice of the frame, i.e. String frame (Jordan) over Einstein frame, is
due to the Fundamental Symmetry Principle: O(D,D) & Coordinate Gauge Symmetry.

# Newton mechanics can be also formulated in the doubled-yet-gauged Euclidean space,

LNewton = 1
2 m Dt xM Dt xN δMN − V (x) ,

where M,N = 1, 2, · · · , 6, and the potential,V (x), satisfies the section condition.
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∗ The formalism has been successfully applied to Superstring Theory to construct

• D = 10 Maximally Supersymmetric Stringy Gravity Jeon-Lee-JHP-Suh 2012

L = e−2d
[

1
8 S0 + 1

2Tr(FF̄) + i ρ̄Fρ′ + iψ̄p̄γqF γ̄p̄ψ′q + i 1
2 ρ̄γ

pDpρ− i 1
2 ρ̄
′γ̄p̄Dp̄ρ

′

−iψ̄p̄Dp̄ρ− i 1
2 ψ̄

p̄γqDqψp̄ + iψ̄′pDpρ′ + i 1
2 ψ̄
′p γ̄q̄Dq̄ψ

′
p

]
• Doubled-yet-gauged Green-Schwarz superstring JHP 2016

S = 1
4πα′

∫
d2σ − 1

2

√
−hhij ΠM

i ΠN
j HMN − εij Di X M (AjM − iΣjM

)
,

where with i, j = 0, 1, we set ΠM
i := Di X M − iΣM

i and ΣM
i := θ̄γM∂iθ + θ̄′γ̄M∂iθ

′.

They enjoy all the desired symmetries :
– O(D,D) T-duality

– Doubled-yet-gauged diffeomorphisms

– twofold Lorentz symmetry, Spin(1, 9)L × Spin(9, 1)R ⇒ Unification of IIA & IIB

– Maximal 16+16 SUSY & kappa symmetries (full order)

– Worldsheet diffeomorphisms plus Weyl symmetry

– Coordinate gauge symmetry : XM ∼ XM + ∆A, ∆A∂A = 0

∗ String theory is better formulated on doubled-yet-gauged spacetime.
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Gravitational Implication

Stringy Gravity modifies GR at ‘short’ distance in terms of x = R/(MG), and
may solve the DM/DE problems in Uroboros manner.

Ko-JHP-Suh 1606.09307 [JCAP]
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• Darkness of Stringy Gravity

i) Point-like particles couple to the string metric only,∫
dτ
[

e−1 DτxADτxBHAB(x)− 1
4 m2e

]
=⇒

∫
dτ −m

√
−ẋµẋνgµν .

Hence, the string dilaton, φ, and B-field are dark to point particles.

ii) Each SM fermion couples to Stringy Gravity as

e−2d ψ̄γADAψ ≡
1
√

2

√
−g χ̄γµ

(
∂µχ+

1
4
ωµpqγ

pqχ+
1

24
Hµpqγ

pqχ

)
c.f. Coimbra-Strickland-Constable-Waldram

where χ ≡ e−φψ. This field redefinition removes the string dilaton, φ, completely.
– The string dilaton, φ, is dark to the SM fermions, χ ;
– Like F1, χ can source the H-flux, and seems to remember it stringy origin!

iii) Each SM gauge boson couples to Stringy Gravity as

e−2d Tr
(

PABP̄CDFACFBD

)
≡ − 1

4
√
−ge−2φ Tr

(
gκλgµνFκµFλν

)
– B-field, or ‘axion’ (dual scalar), is dark to the gauge bosons;
– Standard Model gauge bosons can source the string dilaton, φ.
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• Spherical symmetry in doubled-yet-gauged spacetime

While φ and B-field are ‘dark’ to point particles, the self-interaction of the massless
closed string sector, together with its coupling to the Standard Model, should let
Stringy Gravity modify General Relativity.

This motivates us to look for spherically symmetric vacua of Stringy Gravity,
especially D = 4.

– Spherical solutions should admit three Killing vectors, ξA
a , a = 1, 2, 3,

L̂ξaHMN = 0 ⇐⇒ (P∇)M (P̄ξa)N − (P̄∇)N (Pξa)M = 0

L̂ξa

(
e−2d)= 0 ⇐⇒ ∇Mξ

M
a = 0

which form an so(3) algebra in terms of the C-bracket,

[ξa, ξb]C =
∑

c
εabcξc .

JHP-Rey-Rim-Sakatani 2015
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• Asymptotically flat spherical vacuum:

e2φ = γ+

(
r−α
r+β

) b√
a2+b2 + γ−

(
r−α
r+β

) −b√
a2+b2 , B(2) = h cosϑ dt ∧ dϕ ,

ds2 = e2φ

[
−
(

r−α
r+β

) a√
a2+b2 dt2 +

(
r−α
r+β

) −a√
a2+b2 (dr2 + (r − α)(r + β)dΩ2)] ,

where a, b, h (h2 ≤ b2) are three free parameters and

α = a
a+b

√
a2 + b2 , β = b

a+b

√
a2 + b2 , γ± = 1

2

(
1±

√
1− h2/b2

)
.

In particular, the special case of b = h = 0 corresponds to the Schwarzschild geometry.
– This is a rederivation of the solution by Burgess-Myers-Quevedo (1994) who

generated the above solution by applying S-duality to the scalar-gravity solution
of Fischer (1948), Janis-Newman-Winicour (1968). It solves the familiar action,∫

d4x
√
−|g| e−2φ

(
R + 4 |dφ|2 − 1

12 |dB|2
)
.

– Equivalently, it solves the EOMs of D = 4 pure Stringy Gravity: the “Einstein”
curvatuture vanishes,

GAB = 0 .
Thus, within the framework of Stringy Gravity, it should be identified as
the vacuum solution, in analogy with the Schwarzschild solution in GR.

Further, although it would be naked-singular from GR point of view, within
Stringy Gravity it can be regular: no O(4, 4) covariant curvature diverges.
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• Orbital velocity

Given the exact spherical solution, we define ‘proper’ radius, R :=
√

gϑϑ(r), which
converts the string metric into a canonical form,

ds2 = gttdt2 + gRRdR2 + R2(dϑ2 + sin2ϑ dϕ2) .
We then compute the ‘orbital velocity’ of circular geodesics,

Vorbit =
∣∣∣R dϕ

dt

∣∣∣ =
[
− 1

2 R dgtt
dR

] 1
2
,

as a function of R/(MG) which is a dimensionless radial variable normalized by
‘asymptotic’ mass (Komar mass1),

MG := lim
R→∞

(RV 2
orbit) = 1

2

(
a + b

√
1− h2/b2

)
.

? Stringy Gravity reduces to Newton Gravity at spatial infinity,

gtt → − 1 + 2MG
R , Vorbit →

√
MG
R as R → ∞ .

? Yet, Stringy Gravity modifies GR at ‘short’ distance, in terms of R/(MG).
Generically (b 6= 0), the orbital velocity is not monotonic: it features a maximum.

1c.f. ADM mass a la Wald,Q[∂t ] = 1
4

[
a+
( a−b

a+b

)√
a2+b2

]
JHP-Rey-Rim-Sakatani, Blair 2015
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• Rotation curves

– Specifically, if b = 0 (and hence h = 0), the solution reduces to the Schwarzschild

metric, resulting in the Keplerian orbital velocity, Vorbit =
√

MG
R .

– As long as b 6= 0, rotation curves feature a maximum and thus non-Keplerian over a
finite range, while becoming asymptotically Keplerian at infinity.

For example, if a = h = 0 and b = 2MG, we reproduce the renowned orbital velocity
formula, Vorbit =

√
MR

(R+2MG)2 , by Hernquist :

The orbital velocity in Hernquist model
assumes its maximum, 1

2
√

2
, about 35%

of the speed of light, at R = 2MG.

However, this value seems too high
compared to observations of galaxies.

– More interesting cases turn out to include nontrivial H-flux (h 6= 0 and hence b 6= 0).
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– By tuning the variable, it is possible to make the maximal velocity arbitrarily small,
such as about 150 km/s c−1, comparable to observations:

Rotation curves in Stringy Gravity
(dimensionless, nonexhaustive).

For sufficiently small R/(MG), the
gravitational force can be repulsive.

Rescaling the horizontal axis,
R/(MG)→ R, rotation curves oscillate.
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– By tuning the variable, it is possible to make the maximal velocity arbitrarily small,
such as about 150 km/s c−1, comparable to observations:

Rotation curves in Stringy Gravity
(dimensionless, nonexhaustive).

For sufficiently small R/(MG), the
gravitational force can be repulsive.

Rescaling the horizontal axis,
R/(MG)→ R, rotation curves oscillate.

• Uroboros spectrum of R/(MG)

– The observations of stars and galaxies far away, or the dark matter and the dark
energy problems, are revealing the short-distance nature of gravity!

– The repulsive gravitational force at very short-distance, R/(MG)→ 0+, may be
responsible for the acceleration of the Universe.
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– By tuning the variable, it is possible to make the maximal velocity arbitrarily small,
such as about 150 km/s c−1, comparable to observations:

Rotation curves in Stringy Gravity
(dimensionless, nonexhaustive).

For sufficiently small R/(MG), the
gravitational force can be repulsive.

Rescaling the horizontal axis,
R/(MG)→ R, rotation curves oscillate.

• Uroboros spectrum of R/(MG)

– The observations of stars and galaxies far away, or the dark matter and the dark
energy problems, are revealing the short-distance nature of gravity!

– The repulsive gravitational force at very short-distance, R/(MG)→ 0+, may be
responsible for the acceleration of the Universe. Thank you.
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