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What is Hamiltonian reduction? (P.A.M. Dirac)

> A singular Hamiltonian system

n+1
S= / > pidg’
I=1
with a constraint
Cpi, ql) = pn+1+ H(pi, qi) =0 (i=1---,n)
becomes a regular Hamiltonian system if we solve the constraint
poi1 = —H(pi,q')

and identify time t as ¢"™! = t:

n
S= /Zp,dq" — Hdt
i=1
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» General relavity is a singular Hamiltonian system

ogl
— 4 "
S—/d XZ PUW

subject to 4 constraints
C(pj,&") =0, Ci(pj,g")=0

> Hamiltonian reduction (Arnowitt, Deser, Misner):
Identify suitables functions on the gravitational phase space (p;j,gif)
as spacetime coordinates such that 4 constraints are solved to
define non-trivial Hamiltonian and momentum.

> GR as a standard Hamiltonian system with non-zero true
Hamiltonian Hi.ue, with the constraints associated with spacetime
diffeomorphism removed
> A sure road to Quantum Gravity: Schrodinger quantization
ov

.7:I:Iruew
187 i
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> Partial success:
ADM: Successul isolation of (pr7,g"") in asymptotically flat zone
K. Kuchar: Complete analysis for spacetimes with 2 Killing
symmetries
V. Moncrief and A. Fischer: Beyond 2 Killing symmetries, but not
very successful
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242 formalism of GR

2+2 fibration of 4-dimensional spacetime

» Kinematics of 2+2 fibration
ds® = 2dudv—2hdu®+7pap (dy® + A2du+ AZdv) (dy® + ALdu+ ALdv)
cf. A2 =0 = Newman-Unti coordinates where v is an affine parameter

for out-going nulls

0, = 0/9y*(a = 2,3)

2 dimensional
vertical space Ny

141 dimensional
base manifold
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242 formalism of GR

2+2 fibration of 4-dimensional spacetime

» Horizontal basis 0+ = 05 — A2, (84 = 0,0 = ,)
> Vertical basis 9, (a = 2,3) for a (compact) spacelike 2-surface N,
» Metric on X3 defined by v = constant is
ds®|s, = —2hdu® + Tpap (dy? + A7 du) (dy® + A,2du)

= Choose Y3 spacelike (h < 0)

cf. Timelike (h > 0) or null (h = 0) cases are also possible
> detpa, =1 = pap is a conformal 2-metric
> 7 is the area element of N, (defined by u, v = constant)
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242 formalism of GR

Action integral in the first-order form in 2+2 formalism

» The action integral in the first-order form is given by

S = [dudvd®y {m,0_7 + mhO_h + 1,0_AZ + 7°°_pap — C}
C:="1"-C_+"0"-Cy+A%C, =0,

> “1", "0", A_? are Lagrange multipliers enforcing the 4 Einstein
constraints C_ = C; = C, = 0.

> {C., C,} satisfy the first-class algebra (JHY, CQG 31 (2014)
045005)
<= residual symmetry of Newman-Unti metric
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242 formalism of GR

Classification of fields by diff\, transformation properties

» diffNp-covariant derivative Dy f,p... of tensor density with weight w
is defined as

Difop... = Ot fap.. — [Ax, flab...,

> Lie derivative f,p... of along A0, is given by
[Ai, f]abm = A:tcacf;-,;bm + fcb...aaAiC + f;c...abAiC R W(&CAiC)fab....

» Classification into scalar, scalar density, tensor density, field strength:
Dih=0+h—AZ0,h,
Dipab = aipab - Aicacpab - pcbaaAj:C - pacabAj:C + (8cAic)paba
Fl2=0,A2—0_A7—ALOAZ + ALOLAL.
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242 formalism of GR

Einstein constraints
> Let R(® be the scalar curvature of Ns

» Conjugate momenta m; = {m,, mh, ma, 7} of ¢/ = {7, h, A2, pap}
are defined w.r.t. the v time

> The 4 Einstein's constraints on X3 (defined by v = constant)

1 h 1 1 T
= 5ThTr = EW% - ZﬂhDJrT + ﬁpabﬂaﬂb - S*hpabPCd(D+Pac)(D+Pbd)
1 1
arbd _ Z 73D pae — 7R® + Dymy — 0,(7 7 p?Pm,) = 0,

—%/)abpcdﬂ T 2h
C.=m,Dy7+mDyh+ 71'abDJrPab — 2D (hmp + D7)
+20,(hr " p** 7 + p**Oph) = 0,
Co := m:0aT + Th0ah + 7 0appc — 205(pact®™) — Dyma — O5(77,) =0

form the first class algebra.
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242 formalism of GR

Hamilton's equations before Hamiltonian reduction

» Dynamical variables are 6 configuration variables
q ={h,, Af,pab}band 6 conjugate momenta
T = {ﬂ—hv Ur 7T27 7.[.3 }

» Hamilton's equations of motion w.r.t. v time are given by

C
i = / duc?y 2
™

6C
. 2 .
= —/dud y(;—ql ( '=09,),

~

where C is the sum of Einstein’'s constraints

C="1"-C_+"0"-C.+A?C,=0
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Privileged spacetime coordinates and Hamiltonian reduction

Canonical transformation

» Introduce new variables (R, g) such that
0+ R := —hmp, g := —04In(—h) (1)

> It is a canonical transformation of (h, 7)) because

/dvdudzym,h = /dvdud2y7rRR + surface terms.

» Impose 3 momentum constraints C; = C; = 0 and choose the
multiplier A2 =0
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Privileged spacetime coordinates and Hamiltonian reduction

Area element 7 as the privileged time coordinate
> 7 =7(v,u,y?) = v =v(7,u,y?) (assume invertibility)
> Canonical variables can be treated as functions of (7, u, y?)
Example: R(v, u,y?) :/?(T, u, y?) (and drop tilde)
= R= 70-R, etc

» Use 7 = —5-0. R (e.o.m. of 7) and the action becomes
S = [dvdud?y(m,7 + TRR + m A2 + 7pap — C)
/dvdud y{n: + mrO-R + m,0,A7 + w0, pap + ( )C }

= /drdud2y(7rRBTR +m0,A7 + 7220, pap — K)
> with dvr = d7

> K= —(%)C_ — 7y & =l
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Privileged spacetime coordinates and Hamiltonian reduction

Privileged spatial coordinates: u = R, y? = Y?

> Exercise freedoms to choose y? on N, arbitrarily.
(a) Let y* = Y2 on N, such that N is normal to Y2 = constant
<= the 2 dimensional shift A7 =0
(b) Choose v as u=R
= R = constant is an "equipotential” surface (cf. d,R = —hmy)

» Stick to the privileged spacetime coordinates XA := (7, R, Y?) with
the following coordinate condition
XA 5A
OXE —

> Issues of general covariance are eliminated from consideration

> Spacetime metric in the priviledged coordinates are as simple as
ds? = —4hdRdT — 2hdR? + Tp,pdY?dY?

where h = h(7, R, Y?) and pap = pap(7, R, Y?)
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Privileged spacetime coordinates and Hamiltonian reduction

Hamilton's equations in the privileged coordinates

» Solely expressed by physical degrees of freedom p,;, and 72>
(det Pab = 1, pab’frab = 0)

» Define a function H(7; pap, 72°) as

1 1
H =7 pappeamml+ TﬂabPCd(aRpac)(3prd)+7racaRpac+E >0

> Physical Hamiltonian density —7, physical momentum densities mg
and 717, are given by

1. C_ = 0= m, = —H + 20g In(—h)
2. C+ =0=>nmr= —FabaRpab

0 0
— -1 _ _ bc bc
3.G=0=7"1'1m,=—7 aYanc+2ayb(7r Pac) — aYa{T(H—I—ﬂR)}
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Privileged spacetime coordinates and Hamiltonian reduction

Hamilton's equations in the privileged coordinates

» The remaining equations are the followings:

(a) equations that define superpotential In(-h)

(b) integrability conditions of superpotential In(-h)

(c) evolution equations of physical degrees of freedom p.p and 72
(d) a topological constraint restricting the topology of N,

(e) trivial equations that dictate the evolutions in 7 time of physical
Hamiltonian —7, and physical momentum 717,
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Privileged spacetime coordinates and Hamiltonian reduction

Hamilton's equations in the privileged coordinates
(a) Equations that define superpotential In(—h):

4. 9 In(—h) =H — 771
5. — 3R|n(fh) = TR

d
-~ aye

6. In(—h) = 7717,

(b) Integrability conditions of superpotential In(—h):

7 Ok _ O
" 9r  OR’
0, 4 0
8. E(T 4) aYa’H,
0, 4 1o}
9 ﬁ(T 7Ta) WWR.
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Privileged spacetime coordinates and Hamiltonian reduction

Hamilton's equations in the privileged coordinates

(c) Evolution equations of physical degrees of freedom p,p, and 72°

9 5 B .
10. o—pap = W/dez YH =27 pacppam™™ + Orpab,
9 5
11, —7?? = — dRd*Y
37’ 5pab/ H
= 2 pegm® b + Opm® — T p% pb o (Oppic) (Orpi)

2

+5 Gy}
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Privileged spacetime coordinates and Hamiltonian reduction

Hamilton's equations in the privileged coordinates

(d) The transverse degrees of freedom p.p and 72 are "almost” free,
subject to the following topological constraint:

1
12. Rﬁ) — 57'7277371}, + Vg2)(7'717rb) =0

whose trace is

1
TR® _ 5772p3b7r37rb + (7 1p?7) = 0.

aoys?
Integral over a closed N, becomes
d*Y 12 p*r,m, = 167(1 — g) > 0,
N>

where g is the genus of N,

d?YTR® =8r(1 - g).
N>
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Privileged spacetime coordinates and Hamiltonian reduction

Hamilton's equations in the privileged coordinates

= Einstein’s equations dictates that the spatial topology of a
compact 2-dimensional cross-section of an out-going null
hypersurface is either a 2-sphere or a torus (when the
2-dimensional shift A;? = 0) cf. Topological Censorship Theorem in
black hole physics:

The spatial topology of the event horizon of a four dimensional
asymptotically flat black hole spacetime must be a two sphere (or
marginally a torus) under physically reasonable conditions

J.L. Friedman, K. Schleich, and D.M. Witt, Phys. Rev. Lett. 71, 1486

(1993).
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Privileged spacetime coordinates and Hamiltonian reduction

Hamilton's equations in the privileged coordinates

(e) Trivial equations that dictate the evolutions in 7 time of physical
Hamiltonian —7, and physical momentum 7~}

T,

on 1 0 0
13. a — 27 bc = bd ce . . — 2 bc e bc e
3.5 o+ (T + 5™ P 0rpde) 5175 Pbc = 5y75 (27 Pac + p7 ORpac)

o, 1 1
14.—= = 2172 4+ 772 pappeam® ™ — = p% % (Orpac) (Orpba)

or 2

0
-2 hp?
T ava( p*°7h)
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Consistency with Einstein's equations Rqg = 0

Consistency with Einstein's equations Ry = 0

v

The metric in the privileged coordinates X* = (7, R, Y?) are given
by
ds? = —4hdRdT — 2hdR? + Tp,pdY?dY?,

where h = h(, R, Y?) and p.p = pan(7, R, Y?)

v

Compute Einstein’s equations Rag = 0 for the above metric

v

Equations 1, ---, 14 are identical to Rag =0 !!
= The Hamiltonian reduction is a self-consistent procedure

v

A generalization of Hamiltonian reduction of midi-superspace model
to spacetimes of 4-dimensions without isometries
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