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@ Strong gravitational field and extreme mass-ratio: gravitational
radiation due to a test particle geodesic on the Schwarzschild [Davis
M., et al., 1971] or the Kerr spacetime [Detweiler, S., 1978].

@ Weak-field and comparable masses: Post-Newtonian approximation,
correction to the quadrupole formula for a review see e.g. Blanchet, L.
2006).

e Numerical Relativity: Strong field, comparable masses nd high velocity
[Pretorius, F. 2005].
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Introduction

@ Gravitational wave emission of a test particle spiraling into a BH, with
rhe transition from the adiabatic regime to the plunge.

@ Solve the equations of motion of test particle with gravitational
backreaction and contrast our result with Ori and Thorne 2000'.

e Formulate Newtonian two-body-like problem and compute
gravitational waveforms and constrast with Numerical Relativity.

10ri, A. & Thorne, K. S., Phys. Rev. D 62, 124022 (2000)
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Teukolsky’s Formalism

@ Hereafter we use the Boyer-Linquist coordinates (¢, r, 6, ¢).

@ Study gauge invariant curvature perturbations —> Newman-Penrose
scalars. Master equation for perturbations [Teukolsky, S., 1973]. For
spin s = —2:

1,. .
V4 = Copuon®mPn’m” — 5 Ui —ihx),r — oo, 0

@ Separation of variable:

Va= 0 =acost)* [doe 3 Sino@)e™ Rino (). @)

Im

@ The spheroidal harmonics satisfy the polar equation:

(sﬁz + a?w? cos? 0 — 2aw cos 0 + Ey)sSim = 0 3)
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Radial Equation

@ The radial function satisfies:

d /1R
24 (- moy\ —
A dr (A dr ) V(V)lew ﬁmwv (4)
where
K?+4i(r — MK
y o K40 =MK o + & — 2ame + @) 5)

A

@ The source T is obtained from the projections of the energy-momentum
tensor into the Newman-Penrose null-tetrad ? and from this it is
obtained 77,,4:

dnXT = /dwe_iwt ZsSlmw(Q)eimlema)(r) (6)

Im

2Breuer, R. A., Gravitational Perturbation Theory and Synchrotron Radiation, 1975
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Sasaki-Nakamura Equation

@ The potential in the original Teukolsky radial equation is long-ranged.

@ Sasaki-Nakamura found a change of variables that makes the potential
and the source short-ranged?:

2

d d
——Ximo — f(r) Ximw — %(r)lew = <Sﬂlma) @)
dr* dr*

where r* is the Kerr “tortoise” coordinate.

@ Solve the equations and compute the gravitational wave radiation using
the Green’s function technique as described in Rodriguez, J. F., Rueda,
J & Ruffini, R, 2017.

3Sasaki, M. & Nakamura, T., Prog. Theor. Phys, 67, 1788 (1982)
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Gravitational Radiation

@ The solution of the radial equation with source is:
le = ZlPrIan?r.;ta) + Z;)r.;szﬁInw (8)

@ The complex numbers Z zlfn » 18 given by:

ZH — d / lmw Imo (9)
e wA;‘;,w, -
where A = r? —2rM + a?, and the complex number A} is obtained

from the wronskian of the two independent solutions.
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Gravitational Radiation

@ The fluxes of energy and angular momentum to co due to GW are given
in terms of ZII;IM)

dE |Zlmw|

at _ , 10

dt Z drw?, (10
l,m

aJ lelmwl

v _ , 11

dt 12: drw? ab

>

@ In the case of circular orbits w,, = m<2, where 2 is the orbital angular
velocity.
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Energy Flux
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Figure 1: Energy flux to infinity due Gravitational Wave radiation.
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Non-conservative dynamics

@ The Hamiltonian of the test particle of mass m in the field of the Kerr
black hole of mass M is given by

H=-P,=—N'P; +Nm2+yiPP, (12)

where N = 1/ /_goo’ Ni = _gti/gtt’ )/ij — gij _gtigtj/gtz_
@ Dynamical equations are:

. 0H Q=4 oH (13)
r= =0 =,
opy oL
) oH ne > ne

where 7€ and F° are the radial and azimuthal non-conservative
radiation-reaction forces.
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Non-conservative force

e For quasi-circular, adiabatic motion we have:

Fre=0, (15)
1 dE
Fyf=——=—. 16
¢ Q dt (16
@ The energy flux works only for quasi-circular orbits. We used it up to
LSO.
@ The dynamics includes the contribution of the radial momentum which
is not negligible near the LSO.
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o Study the effective potential.

@ For L > L;g0, a small decrease in L due t radiation makes the particle
to change from one minimum to the next.

@ At L = Ligo the particle reaches LSO, for L < Ligo, the effective
potential has no minima, particle falls.

@ The effective potential of Schwarzschild and Kerr is different:

0 Schwarzschild

Vir=ri.,L=1L =
( + LS0) «#0 Kerr

The particle’s effective potential with LSO in Kerr spacetime is flat
=— AE = 0 during the plunge.

The plunge is geodesic i.e. with constant £ and L.
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Effective potential
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Figure 2: Effective potential for selected values of L and E for the case of
Schwarzschild and Kerr. [Rodriguez, Rueda & Ruffini arXiv:1706.06440]
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Test particle extrapolation

@ We make the extrapolation based on the Newtonian two-body problem.
me pw, Mgy M = my +m, a7

@ Angular momentum conservation ~» the “background” space has
angular momentum. The normalized angular momentum is the one of
the final black hole.
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Trajectories

270°

(a) Kerr, a = 0.9075 (b) Schwarzschild

Figure 3: Trajectories for v = 0.25i.e. m; = m». See [Rodriguez, Rueda & Ruffini
arXiv:1706:06440].

José F. Rodriguez



Dynamics
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Figure 4: Dynamics of test particle formalism for v = 0.25,a/ My = 0.9075
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“Test particle” waveforms

@ The gravitational waveform can be constructed from circularized waves
[Rodriguez, Rueda & Ruffini arXiv:1706.07704 ]:

m

1 p— . : .
§(h+ — ihx) = X Z ﬁ_2slm(®)etm<l>e—zwm(t—R )7 (18)
I,m

where R is the distance to the observer, O is the angle between the axis
of rotation and the observer, ® is the azimuthal coordinate of the
orbiting body at ¢+ = 0; R* is the Kerr “tortoise”.

@ Along the dynamics the wave frequency changes with time.

@ The complex number Z;,,,, evolves with time, inducing a variable
wave amplitude and phase shift.

ot —r*) > me@ —r*).
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“Test particle” vs Numerical Relativity
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Figure 5: Gravitational waveforms. For test particle waveforms v = 0.25

a/M i = 0.9075. The NR simulation is BBH:0230 with the same parameters.



Conclusion

@ We have studied two different cases of emission of gravitational waves
in the strong-field limit of falling body into an already formed black.

@ We have obtained the transition from the adiabatic regime to the plunge
using the Hamiltonian with additive forces. The plunge can be treated
as geodesic.

@ We have used the Newtonian two-body like problem to compute the
waveform of the in-spiral of two black holes.

@ We have compared NR relativity waveforms and test particles
waveforms and found general agreement between NR nd the current
approach.
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