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Introduction

The weak-field and low-velocity approximation of GW emission given
by the quadrupole formula [Einstein A., 1918; Landau, L. & Lifshitz
E., 1959].

Strong gravitational field and extreme mass-ratio: gravitational
radiation due to a test particle geodesic on the Schwarzschild [Davis
M., et al., 1971] or the Kerr spacetime [Detweiler, S., 1978].

Weak-field and comparable masses: Post-Newtonian approximation,
correction to the quadrupole formula for a review see e.g. Blanchet, L.
2006).

Numerical Relativity: Strong field, comparable masses nd high velocity
[Pretorius, F. 2005].
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Introduction

Gravitational wave emission of a test particle spiraling into a BH, with
rhe transition from the adiabatic regime to the plunge.

Solve the equations of motion of test particle with gravitational
backreaction and contrast our result with Ori and Thorne 20001.

Formulate Newtonian two-body-like problem and compute
gravitational waveforms and constrast with Numerical Relativity.

1Ori, A. & Thorne, K. S., Phys. Rev. D 62, 124022 (2000)
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Teukolsky’s Formalism

Hereafter we use the Boyer-Linquist coordinates .t; r; �; '/.

Study gauge invariant curvature perturbations �! Newman-Penrose
scalars. Master equation for perturbations [Teukolsky, S., 1973]. For
spin s D �2:

 4 D C˛ˇ��n
˛
Nmˇn� Nm� !

1

2

�
RhC � i Rh�

�
; r !1: (1)

Separation of variable:

 4 D .r � a cos �/�4
Z
d! e�i!t

X
lm

sSlm!.�/e
im�Rlm!.r/; (2)

The spheroidal harmonics satisfy the polar equation:

.s OL
2
C a2!2 cos2 � � 2a! cos � C Elm/sSlm D 0 (3)
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Radial Equation

The radial function satisfies:

�2
d

dr

� 1
�

Rlm!

dr

�
� V.r/Rlm! D Tlm! ; (4)

where

V D
K2 C 4i.r �M/K

�
C 8i!r C Elm � 2am! C .a!/2: (5)

The source T is obtained from the projections of the energy-momentum
tensor into the Newman-Penrose null-tetrad 2 and from this it is
obtained Tlm! :

4�†T D

Z
d!e�i!t

X
lm

sSlm!.�/e
im'Tlm!.r/ (6)

2Breuer, R. A., Gravitational Perturbation Theory and Synchrotron Radiation, 1975
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Sasaki-Nakamura Equation

The potential in the original Teukolsky radial equation is long-ranged.

Sasaki-Nakamura found a change of variables that makes the potential
and the source short-ranged3:

d2

dr�
Xlm! �F .r/

d

dr�
Xlm! �U .r/Xlm! D Slm! (7)

where r� is the Kerr “tortoise” coordinate.

Solve the equations and compute the gravitational wave radiation using
the Green’s function technique as described in Rodriguez, J. F., Rueda,
J & Ruffini, R, 2017.

3Sasaki, M. & Nakamura, T., Prog. Theor. Phys, 67, 1788 (1982)
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Gravitational Radiation

The solution of the radial equation with source is:

Rlm D Z
H
lm!R

1
lm! CZ

1
lm!R

H
lm! (8)

The complex numbers ZH
lm!

is given by:

ZHlm! D
1

2i!Ain
lm!

Z r

rC

dr 0
RH
lm!

Tlm!
�

; (9)

where � D r2 � 2rM C a2, and the complex number Ain
lm

is obtained
from the wronskian of the two independent solutions.
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Gravitational Radiation

The fluxes of energy and angular momentum to1 due to GW are given
in terms of ZH

lm!
:

dE

dt
D

1X
l;m

j QZH
lm!
j2

4�!2m
; (10)

dJ

dt
D

1X
l;m

mj QZH
lm!
j2

4�!3m
; (11)

In the case of circular orbits !m D m�, where � is the orbital angular
velocity.
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Energy Flux
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(a) Kerr, a D 0:9075
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Figure 1: Energy flux to infinity due Gravitational Wave radiation.
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Non-conservative dynamics

The Hamiltonian of the test particle of mass m in the field of the Kerr
black hole of mass M is given by

H D �Pt D �N
iPi CN

q
m2 C 
 ijPiPj ; (12)

where N D 1=
p
�g00, N i D �gti=gt t , 
 ij D gij � gtigtj =gt t .

Dynamical equations are:

Pr D
@H

@pr
� � P� D

@H

@L
; (13)

PPr D �
@H

@r
C Fnc

r
PP� D �Fnc

� (14)

where Fnc
r and Fnc

� are the radial and azimuthal non-conservative
radiation-reaction forces.
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Non-conservative force

For quasi-circular, adiabatic motion we have:

Fnc
r D 0; (15)

Fnc
� D �

1

�

dE

dt
: (16)

The energy flux works only for quasi-circular orbits. We used it up to
LSO.
The dynamics includes the contribution of the radial momentum which
is not negligible near the LSO.
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Plunge

Study the effective potential.

For L > LLSO, a small decrease in L due t radiation makes the particle
to change from one minimum to the next.

At L D LLSO the particle reaches LSO, for L < LLSO, the effective
potential has no minima, particle falls.

The effective potential of Schwarzschild and Kerr is different:

V.r D rC; L D LLSO/ D

(
0 Schwarzschild
˛ ¤ 0 Kerr

The particle’s effective potential with LSO in Kerr spacetime is flat
H) �E � 0 during the plunge.
The plunge is geodesic i.e. with constant E and L.
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Effective potential
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Figure 2: Effective potential for selected values of L and E for the case of
Schwarzschild and Kerr. [Rodriguez, Rueda & Ruffini arXiv:1706.06440]
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Test particle extrapolation

We make the extrapolation based on the Newtonian two-body problem.

m 7! �;MBH 7!M D m1 Cm2 (17)

Angular momentum conservation ; the “background” space has
angular momentum. The normalized angular momentum is the one of
the final black hole.
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Trajectories
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Figure 3: Trajectories for � D 0:25 i.e. m1 D m2. See [Rodriguez, Rueda & Ruffini
arXiv:1706:06440].
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Dynamics
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Figure 4: Dynamics of test particle formalism for � D 0:25; a=Mf D 0:9075
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“Test particle” waveforms

The gravitational waveform can be constructed from circularized waves
[Rodriguez, Rueda & Ruffini arXiv:1706.07704 ]:

1

2

�
hC � ih�

�
D �

1

R

X
l;m

ZH
lm

!2m
�2Slm.‚/e

imˆe�i!m.t�R
�/; (18)

where R is the distance to the observer, ‚ is the angle between the axis
of rotation and the observer, ˆ is the azimuthal coordinate of the
orbiting body at t D 0; R� is the Kerr “tortoise”.

Along the dynamics the wave frequency changes with time.

The complex number Zlm! evolves with time, inducing a variable
wave amplitude and phase shift.

!m.t � r
�/ 7! m�.t � r�/:
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“Test particle” vs Numerical Relativity
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Figure 5: Gravitational waveforms. For test particle waveforms � D 0:25
a=Mf D 0:9075. The NR simulation is BBH:0230 with the same parameters.
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Conclusion

We have studied two different cases of emission of gravitational waves
in the strong-field limit of falling body into an already formed black.

We have obtained the transition from the adiabatic regime to the plunge
using the Hamiltonian with additive forces. The plunge can be treated
as geodesic.

We have used the Newtonian two-body like problem to compute the
waveform of the in-spiral of two black holes.

We have compared NR relativity waveforms and test particles
waveforms and found general agreement between NR nd the current
approach.
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