Solution-generating methods of Einstein's equations by (2+2) Hamiltonian reduction

Seung Hun Oh

Department of Physics, Konkuk University, Seoul, Korea

July 3, 2017, Ewha Womans University

collaborating with Professor Jong Hyuk Yoon

Outline

2+2 Hamiltonian reduction of GR

Einstein-Rosen Waves

Schwarzschild spacetime

Discussion

2+2 Hamiltonian reduction of GR
Einstein-Rosen Waves
Schwarzschild spacetime
Discussion

2+2 Hamiltonian reduction of GR

Geometry of the privileged coordinates

▶ The privileged coordinates $\{\tau, R, Y^1, Y^2\}$ are the coordinates on spacetime whose line element is given by

$$ds^2 = -2h(2dRd\tau + dR^2) + \tau \rho_{ab}dY^adY^b.$$

- h and ρ_{ab} depend on all coordinates.
- ▶ The tangent space of the whole spacetime is decomposed into

$$T_p(M) = T_p(L_2) \bigoplus T_p(N_2) ,$$

- ▶ $T_p(L_2)$ is a subtangent space spanned by ∂_{τ} and ∂_R with Lorentzian signature.
- ▶ $T_p(N_2)$ is a subtangent space spanned by ∂_{Y^1} and ∂_{Y^2} with Rimaniann signature.

Main Characters

▶ The privileged coordinates $\{\tau, R, Y^1, Y^2\}$ are the coordinates on spacetime whose line element is given by

$$ds^2 = -2h(2dRd\tau + dR^2) + \tau \rho_{ab}dY^adY^b.$$

- ▶ h : conformal factor of L_2 , superpotential...
- \triangleright τ : a time coordinate, the area element of $N_2...$
- ▶ ρ_{ab} : conformal two-metric on N_2 , $det \rho_{ab} = 1$, it contains the genuine degrees of freedom of gravitational fields...
- $\blacktriangleright \pi^{ab}$: The conjugate momentum of ρ_{ab} which is traceless,

$$\rho_{ab}\pi^{ab}=0.$$

Constraint equations

► The constraint equations are defining equations of physical Hamiltonian and momentum densities.

$$\begin{split} -\pi_{\tau} &= \mathcal{H} - 2\partial_{R} \ln(-h) \;, \qquad \pi_{R} = -\pi^{ab} \partial_{R} \rho_{ab} \;, \\ \tau^{-1} \pi_{a} &= -\pi^{bc} \partial_{a} \rho_{bc} + 2\partial_{b} (\pi^{bc} \rho_{ac}) - \partial_{a} \{ \tau(\mathcal{H} + \pi_{R}) \} \;, \end{split}$$

where a Hamiltonian functional is

$$\mathcal{H} = \tau^{-1} \rho_{ab} \rho_{cd} \pi^{ac} \pi^{bd} + \frac{1}{4} \tau \rho^{ab} \rho^{cd} (\partial_R \rho_{ac}) (\partial_R \rho_{bd}) + \pi^{ac} \partial_R \rho_{ac} + \frac{1}{2\tau} > 0.$$

 With an appropriate boundary conditions, the total energy and momentum are given by,

$$\begin{split} E &= \int_{\Sigma_\tau} dR d^2 Y \ \mathcal{H} \ , \qquad \Pi_R = - \int_{\Sigma_\tau} dR d^2 Y \ \pi^{ab} \partial_R \rho_{ab} \ , \\ \Pi_a &= - \int_{\Sigma} \ dR d^2 Y \ \pi^{bc} \partial_a \rho_{bc} \ . \end{split}$$

▶ Superpotential equations: The gradient of ln(-h) gives the Hamiltonian and momentum densities of gravitational fields.

$$\begin{split} &\partial_{\tau} \ln(-h) = \mathcal{H} - \tau^{-1} \\ &\partial_{R} \ln(-h) = -\pi_{R} \\ &\partial_{a} \ln(-h) = -\tau^{-1} \pi_{a} \end{split}$$

▶ Integrability conditions of superpotential ln(-h):

$$\begin{split} &\partial_{\tau}\pi_{R}=-\partial_{R}\mathcal{H},\\ &\partial_{\tau}(\tau^{-1}\pi_{a})=-\partial_{a}\mathcal{H},\\ &\partial_{R}(\tau^{-1}\pi_{a})=\partial_{a}\pi_{R}. \end{split}$$

• Evolution equations of ρ_{ab} and π^{ab} :

$$\begin{split} \frac{\partial}{\partial \tau} \rho_{ab} &= 2\tau^{-1} \rho_{ac} \rho_{bd} \pi^{cd} + \partial_R \rho_{ab}, \\ \frac{\partial}{\partial \tau} \pi^{ab} &= -2\tau^{-1} \rho_{cd} \pi^{ac} \pi^{bd} + \partial_R \pi^{ab} - \frac{\tau}{2} \rho^{ai} \rho^{bj} \rho^{ck} (\partial_R \rho_{ic}) (\partial_R \rho_{jk}) \\ &+ \frac{\tau}{2} \rho^{ac} \rho^{bd} (\partial_R^2 \rho_{cd}), \end{split}$$

- ▶ These equations are solely expressed in the terms of ρ_{ab} and π^{ab} !
- ▶ The genuine degrees of freedom of gravitational fields!
- ▶ These equations determine the dependences of ρ_{ab} and π^{ab} on τ and R.

► Topological constraint equations

$$\tau R_{ab}^{(2)} - \frac{1}{2} \tau^{-2} \pi_a \pi_b + \tilde{\nabla}_a (\tau^{-1} \pi_b) = 0$$
,

where $\tilde{\nabla}_a$ is an induced covariant derivative on N_2 .

- ► This equation restricts the spatial topology of a compact 2-dimensional cross-section of an out-going null hypersurface (either a 2-sphere or a torus)
- ▶ This equation determines the dependences of ρ_{ab} and π^{ab} on Y^1 and Y^2 .

Evolution equations of physical Hamiltonian $-\pi_{\tau}$ and physical momentum $\tau^{-1}\pi_a$:

$$\begin{split} \partial_{\tau}\pi_{a} &= 2\tau^{-1}\pi_{a} + \left(\pi^{bc} + \frac{1}{2}\rho^{bd}\rho^{ce}\partial_{R}\rho_{de}\right)\partial_{a}\rho_{bc} \\ &-\partial_{b}(2\pi^{bc}\rho_{ac} + \rho^{bc}\partial_{R}\rho_{ac}) \\ \partial_{\tau}\pi_{\tau} &= \frac{1}{2}\tau^{-2} + \tau^{-2}\rho_{ab}\rho_{cd}\pi^{ac}\pi^{bd} - \frac{1}{4}\rho^{ab}\rho^{cd}(\partial_{R}\rho_{ac})(\partial_{R}\rho_{bd}) \\ &-2\tau^{-2}\partial_{a}(h\rho^{ab}\pi_{b}) \end{split}$$

► These equations are trivially satisfied if ρ_{ab} and π^{ab} satisfy the evolution equations of ρ_{ab} and π^{ab} .

A Strategy to solve Einstein's equation

▶ Step 1. Solve the evolution equations of ρ_{ab} and π^{ab} . The dependences on τ and R are determined in this step.

$$\begin{split} \frac{\partial}{\partial \tau} \rho_{ab} &= 2\tau^{-1} \rho_{ac} \rho_{bd} \pi^{cd} + \partial_R \rho_{ab}, \\ \frac{\partial}{\partial \tau} \pi^{ab} &= -2\tau^{-1} \rho_{cd} \pi^{ac} \pi^{bd} + \partial_R \pi^{ab} - \frac{\tau}{2} \rho^{ai} \rho^{bj} \rho^{ck} (\partial_R \rho_{ic}) (\partial_R \rho_{jk}) \\ &+ \frac{\tau}{2} \rho^{ac} \rho^{bd} (\partial_R^2 \rho_{cd}), \end{split}$$

A Strategy to solve Einstein's equation

Step 2. Solve the topological constraint equation of ρ_{ab} and π^{ab} . The dependences on Y^1 and Y^2 are determined in this step.

$$\tau R_{ab}^{(2)} - \frac{1}{2}\tau^{-2}\pi_a\pi_b + \tilde{\nabla}_a(\tau^{-1}\pi_b) = 0 \ .$$

▶ Step 3. Integrate the superpotential equations. The conformal factor h will be determined in this step.

$$\partial_{\tau} \ln(-h) = \mathcal{H} - \tau^{-1}$$
$$\partial_{R} \ln(-h) = -\pi_{R}$$
$$\partial_{3} \ln(-h) = -\tau^{-1}\pi_{3}$$

+2 Hamiltonian reduction of GR Einstein-Rosen Waves Schwarzschild spacetime Discussion

Einstein-Rosen Waves

Ansatz with two commuting spacelike Killing vectors

let us make the following ansatz for ρ_{ab} and π^{ab} ,

$$\rho_{ab} = \left(\begin{array}{cc} f & 0 \\ 0 & 1/f \end{array} \right), \qquad \pi^{ab} = \left(\begin{array}{cc} \pi_F/f & 0 \\ 0 & -f\pi_F \end{array} \right),$$

where f and π_F are functions of τ and R to be determined.

- Namely, we are assuming two commuting spacelike Killing vectors $\frac{\partial}{\partial Y^1}$ and $\frac{\partial}{\partial Y^2}$.
- ▶ This ansatz satisfies the traceless condition $\rho_{ab}\pi^{ab}=0$ trivially.

Evolution eqns and Superpotential eqns

Substitution of the above ansatz into the evolution equations of ρ_{ab} and π^{ab} yields the following two equations,

$$\partial_{\tau}F = \frac{4}{\tau}\pi_{F} + \partial_{R}F,$$

$$\partial_{\tau}\pi_{F} = \frac{\tau}{4}\partial_{R}^{2}F + \partial_{R}\pi_{F},$$

where $F := 2 \ln f$.

- Most equations are trivially satisfied due to the Killing condition.
- Non-trivial superpotential equations are,

$$\partial_{\tau} \ln(-h) = -\frac{1}{2\tau} + \frac{2}{\tau} \pi_F^2 + \frac{\tau}{8} (\partial_R F)^2 + \pi_F (\partial_R F),$$

$$\partial_R \ln(-h) = \pi_F (\partial_R F).$$

Solution

 \blacktriangleright π_F can be expressed in terms of F,

$$\pi_F = \frac{\tau}{4}(\partial_{\tau} - \partial_R)F.$$

▶ If we plug π_F into the other non-trivial equations, then they become

$$\begin{split} \partial_{\tau}^{2}F + \frac{1}{\tau}(\partial_{\tau} - \partial_{R})F - 2\partial_{\tau}\partial_{R}F &= 0, \\ \partial_{\tau}\ln(-h) &= -\frac{1}{2\tau} + \frac{\tau}{8}(\partial_{\tau}F)^{2}, \\ \partial_{R}\ln(-h) &= \frac{\tau}{4}(\partial_{\tau}F)(\partial_{R}F) - \frac{\tau}{4}(\partial_{R}F)^{2}. \end{split}$$

- ▶ The first equation is a linear second-order PDE of *F*, the existence of whose solutions is well-established.
- ▶ With a given *F*, the conformal factor *h* will be determined by the last two equations.

The field momenta

▶ The local Hamiltonian and momentum densities are also determined by the constraint equations (1), (2), and (3), which become,

$$\begin{split} -\pi_{\tau} &= \frac{1}{2\tau} + \frac{2}{\tau} (\pi_F - \frac{\tau}{4} \partial_R F)^2, \\ \pi_R &= -\pi_F (\partial_R F), \\ \pi_a &= 0. \end{split}$$

- ► The last equation is a trivial consequence of the assumption that $\frac{\partial}{\partial Y^1}$ and $\frac{\partial}{\partial Y^2}$ are the Killing vectors.
- ► Thus, all the components of the metric tensor are completely determined by a single function *F* for this ansatz.

The Einstein-Rosen waves

let us make the following coordinate transformation,

$$t = \tau + R$$
, $\rho = \tau$, $\phi = Y^1$, $z = Y^2$.

Let us introduce two complex functions $\Psi(t,\rho)$ and $\Gamma(t,\rho)$ defined by

$$\Psi = -\ln(f/\rho) + i\pi$$
, $\Gamma = \ln(-2\rho h/f) + i\pi$,

where the imaginary constants were introduced to keep our sign convention h < 0.

▶ In the coordinates (t, ρ, ϕ, z) , the line element becomes

$$ds^2 = e^{\Gamma - \Psi} (dt^2 - d\rho^2) - \rho^2 e^{-\Psi} d\phi^2 - e^{\Psi} dz^2,$$

The Einstein-Rosen waves

 Under the previous coordinate transformation, the three main equations become

$$\begin{split} &\partial_t^2 \Psi - \frac{1}{\rho} \partial_\rho \Psi - \partial_\rho^2 \Psi = 0, \\ &\partial_t \Gamma = \rho (\partial_t \Psi) (\partial_\rho \Psi), \\ &\partial_\rho \Gamma = \frac{\rho}{2} \{ (\partial_t \Psi)^2 + (\partial_\rho \Psi)^2 \}. \end{split}$$

▶ This proves that the spacetime discussed in this section represents the Einstein-Rosen spacetime of cylindrically symmetric graviational waves.

2+2 Hamiltonian reduction of GR Einstein-Rosen Waves Schwarzschild spacetime Discussion

Schwarzschild spacetime

The same ansatz again!

- ▶ Remark that our time coordinate τ is the area element of N_2 . And at the same time L_2 must be conformally flat.
- So the Kruskal & Szekeres coordinates cannot be a privileged coordinates. We have to find a new slice of spacetime.
- It is helpful to use the fact that Schwarzschild metric can be expressed in the form of the canonical Weyl metric.
- let us begin with the ansatz for ρ_{ab} and π^{ab} ,

$$\rho_{ab} = \left(\begin{array}{cc} f & 0 \\ 0 & 1/f \end{array} \right), \qquad \pi^{ab} = \left(\begin{array}{cc} \pi_F/f & 0 \\ 0 & -f\pi_F \end{array} \right),$$

where f and π_F are functions of τ and R.

Coordinate transform

If we make the following *complex* coordinate transformations from (τ, R, Y^1, Y^2) to (t, ρ, ϕ, z) defined by

$$t = Y^1$$
, $\rho = \tau$, $\phi = iY^2$, $z = i(\tau + R)$,

and introduce two functions $\psi(\rho,z)$ and $\gamma(\rho,z)$ defined by

$$\psi = \frac{1}{2} \ln(\rho f), \quad \gamma = \frac{1}{2} \ln(-2\rho f h),$$

the line element becomes

$$ds^{2} = e^{2\psi} dt^{2} - e^{2(\gamma - \psi)} (d\rho^{2} + dz^{2}) - \rho^{2} e^{-2\psi} d\phi^{2},$$

which is just the canonical Weyl metric.

Schwarzschild solution in Weyl metric

▶ In the coordinates (t, ρ, ϕ, z) , the three main equations become

$$\partial_{\rho}^{2}\psi + \frac{1}{\rho}\partial_{\rho}\psi + \partial_{z}^{2}\psi = 0,$$

$$\partial_{\rho}\gamma = \rho\{(\partial_{\rho}\psi)^{2} - (\partial_{z}\psi)^{2}\},$$

$$\partial_{z}\gamma = 2\rho(\partial_{\rho}\psi)(\partial_{z}\psi).$$

- All the remaining Einstein's equations hold trivially as before.
- As is well-known, the canonical Weyl metric represents the Schwarzschild solution if ψ and γ are given by

$$\psi = \frac{1}{2} \ln \frac{r_+ + r_- - 2m}{r_+ + r_- + 2m}, \quad \gamma = \frac{1}{2} \ln \frac{(r_+ + r_-)^2 - 4m^2}{4r_+ r_-},$$

where $r_{\pm} = [\rho^2 + (z \pm m)^2]^{\frac{1}{2}}$ and m is the Schwarzschild mass .

Schwarzschild solution in (2+2) metric

▶ It is a straightforward exercise to find that the Schwarzschild solution in the privileged coordinates becomes

$$ds^2 = -2h \left(2dRd\tau + dR^2\right) + \tau \rho_{ab} dY^a dY^b ,$$

where

$$\begin{split} \rho_{ab} &= \left(\begin{array}{c} f & 0 \\ 0 & 1/f \end{array} \right), \qquad f = \frac{1}{\tau} \frac{\sqrt{\xi + \sqrt{\xi^2 + \eta^2}} - \sqrt{2}m}{\sqrt{\xi + \sqrt{\xi^2 + \eta^2}} + \sqrt{2}m} \ , \\ h &= -\frac{1}{4\sqrt{\xi^2 + \eta^2}} \Big(\sqrt{\xi + \sqrt{\xi^2 + \eta^2}} + \sqrt{2}m \Big)^2 \ , \end{split}$$

and ξ and η are functions of τ and R given by

$$\xi = m^2 - 2R\tau - R^2, \quad \eta = 2m(\tau + R),$$

respectively.

Field momenta

The local Hamiltonian and momentum densities of the Schwarzschild spacetime are found to be

$$\begin{split} -\pi_{\tau} = & \frac{1}{2\tau} + \frac{\tau}{2} \Big[\frac{2\sqrt{2}m\{(m^2 + R^2)(R + 2\tau) - R\sqrt{\xi^2 + \eta^2} \,\}}{\sqrt{\xi^2 + \eta^2}\sqrt{\xi + \sqrt{\xi^2 + \eta^2}}(\xi + \sqrt{\xi^2 + \eta^2} - 2m^2)} - \frac{1}{\tau} \Big]^2 \\ & + \frac{4(\tau + R)}{\sqrt{\xi^2 + \eta^2}} \Big(\frac{\sqrt{\xi + \sqrt{\xi^2 + \eta^2}} - \sqrt{2}m}{\sqrt{\xi + \sqrt{\xi^2 + \eta^2}}} + \frac{R^2 + 2R\tau + m^2}{\sqrt{\xi^2 + \eta^2}} \Big), \\ \pi_R = & \frac{2(\tau + R)}{\sqrt{\xi^2 + \eta^2}} \Big(\frac{\sqrt{\xi + \sqrt{\xi^2 + \eta^2}} - \sqrt{2}m}{\sqrt{\xi + \sqrt{\xi^2 + \eta^2}}} + \frac{R^2 + 2R\tau + m^2}{\sqrt{\xi^2 + \eta^2}} \Big), \\ \pi_3 = & 0. \end{split}$$

Field momenta

- ▶ The local Hamiltonian and momentum densities can be also obtained by taking the gradient of the "superpotential" ln(-h), as are indicated by the superpotential equations.
- ▶ It is clear that both $-\pi_{\tau}$ and π_{R} depend on τ explicitly.
- ▶ This simply reflects the fact that the area time τ is a geometric object that is quite different from the usual Killing time.

Discussion

- First of all, locally defined Hamiltonian and momentum densities of gravitational fields can be straightforwardly calculated, provided that the metric of the gravitating system is known in the privileged coordinates.
- The complete deparametrization of the Einstein's theory is achieved by choosing certain functions of the gravitational phase space as the privileged coordinates in which all the constraints become trivial.
- It is clear in this (2+2) Hamiltonian reduction that true physical degrees of freedom reside in the conformal two metric ρ_{ab} (and its conjugate π^{ab}) and that the time evolutions of ρ_{ab} and π^{ab} are completely determined by the Hamilton's equations of motion.

Discussions

- ▶ The (2+2) Hamiltonian reduction can be used to find exact solutions to the Einstein's equations in a minimal way in the sense that, if the solutions to the Hamilton's equations of motion of ρ_{ab} and π^{ab} are known, then the rest of the Einstein's equations are either trivial or can be solved by integrating the first-order differential equations.
- ▶ In our Hamiltonian reduction, however, this issue of stability of the constraint equations does not appear. One can bypass the *notorious* problem of solving the constraint equations because they are simply the defining equations of the local Hamiltonian and momentum densities of gravitational fields.
- ▶ It is a very interesting problem to find the (2+2) Hamiltonian reduction formalism of the Einstein's theory with a non-vanishing two-dimensional shift. This problem is under investigation.

2+2 Hamiltonian reduction of GR Einstein-Rosen Waves Schwarzschild spacetime Discussion

Thank you for your attention!