Solution-generating methods of Einstein's equations by $(2+2)$ Hamiltonian reduction

Seung Hun Oh

Department of Physics, Konkuk University, Seoul, Korea

July 3, 2017, Ewha Womans University

collaborating with Professor Jong Hyuk Yoon

→ イ冊 ト イヨ ト イヨ ト

Outline

[2+2 Hamiltonian reduction of GR](#page-2-0)

[Einstein-Rosen Waves](#page-12-0)

[Schwarzschild spacetime](#page-19-0)

[Discussion](#page-26-0)

イロメ イ母メ イヨメ イヨメー

 299

э

[Discussion](#page-26-0)

2+2 Hamiltonian reduction of GR

 \sqrt{m}) \sqrt{m}) \sqrt{m})

 QQ

曲

Geometry of the privileged coordinates

 \blacktriangleright The privileged coordinates $\{\tau, R, Y^1, Y^2\}$ are the coordinates on spacetime whose line element is given by

$$
ds^2 = -2h(2dRd\tau + dR^2) + \tau \rho_{ab} dY^a dY^b.
$$

- In h and ρ_{ab} depend on all coordinates.
- \blacktriangleright The tangent space of the whole spacetime is decomposed into

$$
T_p(M)=T_p(L_2)\bigoplus T_p(N_2)\ ,
$$

- \triangleright $T_p(L_2)$ is a subtangent space spanned by ∂_τ and ∂_R with Lorentzian signature.
- ► $T_p(N_2)$ is a subtangent space spanned by ∂_{Y^1} and ∂_{Y^2} with Rimaniann signature.

KORK ERKER ADAM DI SAGA

Main Characters

 \blacktriangleright The privileged coordinates $\{\tau, R, Y^1, Y^2\}$ are the coordinates on spacetime whose line element is given by

$$
ds^2 = -2h(2dRd\tau + dR^2) + \tau \rho_{ab} dY^a dY^b.
$$

- \blacktriangleright h : conformal factor of L_2 , superpotential...
- \triangleright τ : a time coordinate, the area element of N_2 ...
- ρ_{ab} : conformal two-metric on N_2 , $det \rho_{ab} = 1$, it contains the genuine degrees of freedom of gravitational fields...
- $\blacktriangleright \pi^{ab}$: The conjugate momentum of ρ_{ab} which is traceless,

$$
\rho_{ab}\pi^{ab}=0.
$$

KORK ERKER ADAM DI SAGA

Constraint equations

 \triangleright The constraint equations are defining equations of physical Hamiltonian and momentum densities.

$$
-\pi_{\tau} = \mathcal{H} - 2\partial_R \ln(-h) , \qquad \pi_R = -\pi^{ab} \partial_R \rho_{ab} ,
$$

$$
\tau^{-1} \pi_a = -\pi^{bc} \partial_a \rho_{bc} + 2\partial_b (\pi^{bc} \rho_{ac}) - \partial_a \{ \tau (\mathcal{H} + \pi_R) \} ,
$$

where a Hamiltonian functional is

$$
\mathcal{H} = \tau^{-1} \rho_{ab} \rho_{cd} \pi^{ac} \pi^{bd} + \frac{1}{4} \tau \rho^{ab} \rho^{cd} (\partial_R \rho_{ac}) (\partial_R \rho_{bd}) + \pi^{ac} \partial_R \rho_{ac} + \frac{1}{2\tau} > 0.
$$

 \triangleright With an appropriate boundary conditions, the total energy and momentum are given by,

$$
E = \int_{\Sigma_{\tau}} dR d^2 Y \mathcal{H}, \qquad \Pi_R = -\int_{\Sigma_{\tau}} dR d^2 Y \pi^{ab} \partial_R \rho_{ab} ,
$$

$$
\Pi_a = -\int_{\Sigma_{\tau}} dR d^2 Y \pi^{bc} \partial_a \rho_{bc} .
$$

K 何 ▶ 【 ヨ ▶ 【 ヨ ▶

Hamilton's equations in the privileged coordinates

 \triangleright Superpotential equations: The gradient of ln(−h) gives the Hamiltonian and momentum densities of gravitational fields.

$$
\partial_{\tau} \ln(-h) = \mathcal{H} - \tau^{-1}
$$

$$
\partial_R \ln(-h) = -\pi_R
$$

$$
\partial_a \ln(-h) = -\tau^{-1} \pi_a
$$

 \triangleright Integrability conditions of superpotential ln(−h):

$$
\partial_{\tau}\pi_{R} = -\partial_{R}\mathcal{H},
$$

\n
$$
\partial_{\tau}(\tau^{-1}\pi_{a}) = -\partial_{a}\mathcal{H},
$$

\n
$$
\partial_{R}(\tau^{-1}\pi_{a}) = \partial_{a}\pi_{R}.
$$

伊 ▶ マミ ▶ マミ ▶

Hamilton's equations in the privileged coordinates

E Evolution equations of ρ_{ab} and π^{ab} .

$$
\frac{\partial}{\partial \tau} \rho_{ab} = 2\tau^{-1} \rho_{ac} \rho_{bd} \pi^{cd} + \partial_R \rho_{ab},
$$

\n
$$
\frac{\partial}{\partial \tau} \pi^{ab} = -2\tau^{-1} \rho_{cd} \pi^{ac} \pi^{bd} + \partial_R \pi^{ab} - \frac{\tau}{2} \rho^{ai} \rho^{bj} \rho^{ck} (\partial_R \rho_{ic}) (\partial_R \rho_{jk})
$$

\n
$$
+ \frac{\tau}{2} \rho^{ac} \rho^{bd} (\partial_R^2 \rho_{cd}),
$$

- **These equations are solely expressed in the terms of** ρ_{ab} **and** π^{ab} **!**
- \triangleright The genuine degrees of freedom of gravitational fields!
- **F** These equations determine the dependences of ρ_{ab} and π^{ab} on τ and R.

マーティ ミューティー

 Ω

Hamilton's equations in the privileged coordinates

 \blacktriangleright Topological constraint equations

$$
\tau R^{(2)}_{ab} - \frac{1}{2} \tau^{-2} \pi_a \pi_b + \tilde{\nabla}_a (\tau^{-1} \pi_b) = 0 ,
$$

where $\tilde{\nabla}_{{\sf a}}$ is an induced covariant derivative on $\mathcal{N}_2.$

- \triangleright This equation restricts the spatial topology of a compact 2-dimensional cross-section of an out-going null hypersurface (either a 2-sphere or a torus)
- **This equation determines the dependences of** ρ_{ab} and π^{ab} on Y^1 and Y^2 .

→ イラン イヨン イラン

Hamilton's equations in the privileged coordinates

► Evolution equations of physical Hamiltonian $-\pi$ _τ and physical momentum $\tau^{-1}\pi_a$:

$$
\partial_{\tau}\pi_{a} = 2\tau^{-1}\pi_{a} + (\pi^{bc} + \frac{1}{2}\rho^{bd}\rho^{ce}\partial_{R}\rho_{de})\partial_{a}\rho_{bc}
$$

$$
-\partial_{b}(2\pi^{bc}\rho_{ac} + \rho^{bc}\partial_{R}\rho_{ac})
$$

$$
\partial_{\tau}\pi_{\tau} = \frac{1}{2}\tau^{-2} + \tau^{-2}\rho_{ab}\rho_{cd}\pi^{ac}\pi^{bd} - \frac{1}{4}\rho^{ab}\rho^{cd}(\partial_{R}\rho_{ac})(\partial_{R}\rho_{bd})
$$

$$
-2\tau^{-2}\partial_{a}(h\rho^{ab}\pi_{b})
$$

These equations are trivially satisfied if ρ_{ab} **and** π^{ab} **satisfy the** evolution equations of $\rho_{\sf ab}$ and $\pi^{\sf ab}.$

メロメ メ母メ メラメ メラメー

A Strategy to solve Einstein's equation

Step 1. Solve the evolution equations of ρ_{ab} and π^{ab} . The dependences on τ and R are determined in this step.

$$
\frac{\partial}{\partial \tau} \rho_{ab} = 2\tau^{-1} \rho_{ac} \rho_{bd} \pi^{cd} + \partial_R \rho_{ab},
$$

\n
$$
\frac{\partial}{\partial \tau} \pi^{ab} = -2\tau^{-1} \rho_{cd} \pi^{ac} \pi^{bd} + \partial_R \pi^{ab} - \frac{\tau}{2} \rho^{ai} \rho^{bj} \rho^{ck} (\partial_R \rho_{ic}) (\partial_R \rho_{jk})
$$

\n
$$
+ \frac{\tau}{2} \rho^{ac} \rho^{bd} (\partial_R^2 \rho_{cd}),
$$

∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

A Strategy to solve Einstein's equation

Step 2. Solve the topological constraint equation of ρ_{ab} and π^{ab} . The dependences on Y^1 and Y^2 are determined in this step.

$$
\tau R^{(2)}_{ab} - \frac{1}{2} \tau^{-2} \pi_a \pi_b + \tilde{\nabla}_a (\tau^{-1} \pi_b) = 0.
$$

 \triangleright Step 3. Integrate the superpotential equations. The conformal factor h will be determined in this step.

$$
\partial_{\tau} \ln(-h) = \mathcal{H} - \tau^{-1}
$$

$$
\partial_R \ln(-h) = -\pi_R
$$

$$
\partial_a \ln(-h) = -\tau^{-1} \pi_a
$$

何 ▶ (三) (三)

Einstein-Rosen Waves

す 何 ト す ヨ ト す ヨ ト

 QQ

曲

Ansatz with two commuting spacelike Killing vectors

In let us make the following ansatz for ρ_{ab} and π^{ab} ,

$$
\rho_{ab} = \left(\begin{array}{cc} f & 0 \\ 0 & 1/f \end{array} \right), \hspace{1cm} \pi^{ab} = \left(\begin{array}{cc} \pi_F/f & 0 \\ 0 & -f\pi_F \end{array} \right),
$$

where f and π_F are functions of τ and R to be determined.

- ▶ Namely, we are assuming two commuting spacelike Killing vectors $\frac{\partial}{\partial Y^1}$ and $\frac{\partial}{\partial Y^2}$.
- This ansatz satisfies the traceless condition $\rho_{ab}\pi^{ab}=0$ trivially.

メ ランド スコール

Evolution eqns and Superpotential eqns

If Substitution of the above ansatz into the evolution equations of ρ_{ab} and π^{ab} yields the following two equations,

$$
\partial_{\tau}F = \frac{4}{\tau}\pi_{F} + \partial_{R}F,
$$

$$
\partial_{\tau}\pi_{F} = \frac{\tau}{4}\partial_{R}^{2}F + \partial_{R}\pi_{F},
$$

where $F := 2 \ln f$.

- \triangleright Most equations are trivially satisfied due to the Killing condition.
- \triangleright Non-trivial superpotential equations are,

$$
\partial_{\tau} \ln(-h) = -\frac{1}{2\tau} + \frac{2}{\tau} \pi_F^2 + \frac{\tau}{8} (\partial_R F)^2 + \pi_F (\partial_R F),
$$

\n
$$
\partial_R \ln(-h) = \pi_F (\partial_R F).
$$

 $\langle \bigcap \mathbb{P} \rangle$ \rightarrow $\langle \bigcap \mathbb{P} \rangle$ \rightarrow $\langle \bigcap \mathbb{P} \rangle$

Solution

 $\blacktriangleright \pi_F$ can be expressed in terms of F,

$$
\pi_F = \frac{\tau}{4} (\partial_{\tau} - \partial_R) F.
$$

If we plug π_F into the other non-trivial equations, then they become

$$
\partial_{\tau}^{2}F + \frac{1}{\tau}(\partial_{\tau} - \partial_{R})F - 2\partial_{\tau}\partial_{R}F = 0,
$$

$$
\partial_{\tau}\ln(-h) = -\frac{1}{2\tau} + \frac{\tau}{8}(\partial_{\tau}F)^{2},
$$

$$
\partial_{R}\ln(-h) = \frac{\tau}{4}(\partial_{\tau}F)(\partial_{R}F) - \frac{\tau}{4}(\partial_{R}F)^{2}.
$$

- \triangleright The first equation is a linear second-order PDE of F, the existence of whose solutions is well-established.
- \triangleright With a given F, the conformal factor h will be determined by the last two equations.

イロメ イ母メ イヨメ イヨメー

The field momenta

 \triangleright The local Hamiltonian and momentum densities are also determined by the constraint equations (1) , (2) , and (3) , which become,

$$
-\pi_{\tau} = \frac{1}{2\tau} + \frac{2}{\tau} (\pi_F - \frac{\tau}{4} \partial_R F)^2,
$$

\n
$$
\pi_R = -\pi_F (\partial_R F),
$$

\n
$$
\pi_a = 0.
$$

- \triangleright The last equation is a trivial consequence of the assumption that $\frac{\partial}{\partial Y^1}$ and $\frac{\partial}{\partial Y^2}$ are the Killing vectors.
- \triangleright Thus, all the components of the metric tensor are completely determined by a single function F for this ansatz.

イロメ イ母メ イヨメ イヨメー

The Einstein-Rosen waves

 \blacktriangleright let us make the following coordinate transformation,

$$
t = \tau + R, \quad \rho = \tau, \quad \phi = Y^1, \quad z = Y^2.
$$

I Let us introduce two complex functions $\Psi(t, \rho)$ and $\Gamma(t, \rho)$ defined by

$$
\Psi = -\ln(f/\rho) + i\pi, \qquad \Gamma = \ln(-2\rho h/f) + i\pi,
$$

where the imaginary constants were introduced to keep our sign convention $h < 0$.

In the coordinates (t, ρ, ϕ, z) , the line element becomes

$$
ds^{2} = e^{\Gamma - \Psi} (dt^{2} - d\rho^{2}) - \rho^{2} e^{-\Psi} d\phi^{2} - e^{\Psi} dz^{2},
$$

イロト イ押 トイヨ トイヨ トーヨ

 η q α

The Einstein-Rosen waves

 \triangleright Under the previous coordinate transformation, the three main equations become

$$
\partial_t^2 \Psi - \frac{1}{\rho} \partial_\rho \Psi - \partial_\rho^2 \Psi = 0,
$$

\n
$$
\partial_t \Gamma = \rho (\partial_t \Psi) (\partial_\rho \Psi),
$$

\n
$$
\partial_\rho \Gamma = \frac{\rho}{2} \{ (\partial_t \Psi)^2 + (\partial_\rho \Psi)^2 \}.
$$

 \triangleright This proves that the spacetime discussed in this section represents the Einstein-Rosen spacetime of cylindrically symmetric graviational waves.

→ イ冊 ト イ ヨ ト イ ヨ ト |

Schwarzschild spacetime

and in Seung Hun Oh Solution-generating methods of Einstein's equations by $(2+2)$ Hamiltonian Reduction

∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

The same ansatz again!

- **F** Remark that our time coordinate τ is the area element of N_2 . And at the same time L_2 must be conformally flat.
- ▶ So the Kruskal & Szekeres coordinates cannot be a privileged coordinates. We have to find a new slice of spacetime.
- It is helpful to use the fact that Schwarzschild metric can be expressed in the form of the canonical Weyl metric.
- In let us begin with the ansatz for ρ_{ab} and π^{ab} ,

$$
\rho_{ab} = \left(\begin{array}{cc} f & 0 \\ 0 & 1/f \end{array} \right), \hspace{1cm} \pi^{ab} = \left(\begin{array}{cc} \pi_F/f & 0 \\ 0 & -f\pi_F \end{array} \right),
$$

where f and π_F are functions of τ and R.

∢ 何 ▶ (す 手) (す 手) (

Coordinate transform

If we make the following *complex* coordinate transformations from (τ, R, Y^1, Y^2) to (t, ρ, ϕ, z) defined by

$$
t = Y1, \quad \rho = \tau, \quad \phi = iY2, \quad z = i(\tau + R),
$$

and introduce two functions $\psi(\rho, z)$ and $\gamma(\rho, z)$ defined by

$$
\psi = \frac{1}{2}\ln(\rho f), \quad \gamma = \frac{1}{2}\ln(-2\rho f h),
$$

the line element becomes

$$
ds^{2} = e^{2\psi}dt^{2} - e^{2(\gamma - \psi)}(d\rho^{2} + dz^{2}) - \rho^{2}e^{-2\psi}d\phi^{2},
$$

which is just the canonical Weyl metric.

イ何 ト イヨ ト イヨ トー

 η an \equiv

Schwarzschild solution in Weyl metric

In the coordinates (t, ρ, ϕ, z) , the three main equations become

$$
\partial_{\rho}^{2} \psi + \frac{1}{\rho} \partial_{\rho} \psi + \partial_{z}^{2} \psi = 0,
$$

\n
$$
\partial_{\rho} \gamma = \rho \{ (\partial_{\rho} \psi)^{2} - (\partial_{z} \psi)^{2} \},
$$

\n
$$
\partial_{z} \gamma = 2\rho (\partial_{\rho} \psi)(\partial_{z} \psi).
$$

- \triangleright All the remaining Einstein's equations hold trivially as before.
- \triangleright As is well-known, the canonical Weyl metric represents the Schwarzschild solution if ψ and γ are given by

$$
\psi = \frac{1}{2} \ln \frac{r_+ + r_- - 2m}{r_+ + r_- + 2m}, \quad \gamma = \frac{1}{2} \ln \frac{(r_+ + r_-)^2 - 4m^2}{4r_+ r_-},
$$

where $r_{\pm}=[\rho^2+(z\pm m)^2]^{\frac{1}{2}}$ and m is the Schwarzschild mass .

KAD KED KED E NACH

Schwarzschild solution in $(2+2)$ metric

 \blacktriangleright It is a straightforward exercise to find that the Schwarzschild solution in the privileged coordinates becomes

$$
ds^2 = -2h (2dRd\tau + dR^2) + \tau \rho_{ab} dY^a dY^b,
$$

where

$$
\rho_{ab} = \begin{pmatrix} f & 0 \\ 0 & 1/f \end{pmatrix}, \qquad f = \frac{1}{\tau} \frac{\sqrt{\xi + \sqrt{\xi^2 + \eta^2}} - \sqrt{2}m}{\sqrt{\xi + \sqrt{\xi^2 + \eta^2}} + \sqrt{2}m},
$$

$$
h = -\frac{1}{4\sqrt{\xi^2 + \eta^2}} \left(\sqrt{\xi + \sqrt{\xi^2 + \eta^2}} + \sqrt{2}m \right)^2,
$$

and ξ and η are functions of τ and R given by

$$
\xi = m^2 - 2R\tau - R^2, \quad \eta = 2m(\tau + R) ,
$$

respectively.

同 ▶ イヨ ▶ イヨ ▶ │

Field momenta

The local Hamiltonian and momentum densities of the Schwarzschild spacetime are found to be

$$
-\pi_{\tau} = \frac{1}{2\tau} + \frac{\tau}{2} \Big[\frac{2\sqrt{2}m\{(m^2 + R^2)(R + 2\tau) - R\sqrt{\xi^2 + \eta^2}\} - \frac{1}{\tau}\Big]^2}{\sqrt{\xi^2 + \eta^2}\sqrt{\xi + \sqrt{\xi^2 + \eta^2}}(\xi + \sqrt{\xi^2 + \eta^2} - 2m^2)} - \frac{1}{\tau}\Big]^2
$$

$$
+ \frac{4(\tau + R)}{\sqrt{\xi^2 + \eta^2}} \Big(\frac{\sqrt{\xi + \sqrt{\xi^2 + \eta^2}} - \sqrt{2}m}{\sqrt{\xi + \sqrt{\xi^2 + \eta^2}}} + \frac{R^2 + 2R\tau + m^2}{\sqrt{\xi^2 + \eta^2}} \Big),
$$

$$
\pi_R = \frac{2(\tau + R)}{\sqrt{\xi^2 + \eta^2}} \Big(\frac{\sqrt{\xi + \sqrt{\xi^2 + \eta^2}} - \sqrt{2}m}{\sqrt{\xi + \sqrt{\xi^2 + \eta^2}}} + \frac{R^2 + 2R\tau + m^2}{\sqrt{\xi^2 + \eta^2}} \Big),
$$

$$
\pi_a = 0.
$$

K ロ ▶ K @ ▶ K 글 ▶ K 글 ▶ │ 글 │ K 9 Q @

Field momenta

- \triangleright The local Hamiltonian and momentum densities can be also obtained by taking the gradient of the "superpotential" $ln(-h)$, as are indicated by the superpotential equations.
- It is clear that both $-\pi_{\tau}$ and π_{R} depend on τ explicitly.
- **In** This simply reflects the fact that the area time τ is a geometric object that is quite different from the usual Killing time.

∢ 何 ▶ ((手) ((手) ()

Discussion

- \triangleright First of all, locally defined Hamiltonian and momentum densities of gravitational fields can be straightforwardly calculated, provided that the metric of the gravitating system is known in the privileged coordinates.
- \triangleright The complete deparametrization of the Einstein's theory is achieved by choosing certain functions of the gravitational phase space as the privileged coordinates in which all the constraints become trivial.
- It is clear in this $(2+2)$ Hamiltonian reduction that true physical degrees of freedom reside in the conformal two metric ρ_{ab} (and its conjugate $\pi^{ab})$ and that the time evolutions of ρ_{ab} and π^{ab} are completely determined by the Hamilton's equations of motion.

イロメ イ何メ イヨメ イヨメー ヨ

Discussions

- \triangleright The (2+2) Hamiltonian reduction can be used to find exact solutions to the Einstein's equations in a minimal way in the sense that, if the solutions to the Hamilton's equations of motion of ρ_{ab} and π^{ab} are known, then the rest of the Einstein's equations are either trivial or can be solved by integrating the first-order differential equations.
- \blacktriangleright In our Hamiltonian reduction, however, this issue of stability of the constraint equations does not appear. One can bypass the notorious problem of solving the constraint equations because they are simply the defining equations of the local Hamiltonian and momentum densities of gravitational fields.
- It is a very interesting problem to find the $(2+2)$ Hamiltonian reduction formalism of the Einstein's theory with a non-vanishing two-dimensional shift. This problem is under investigation.

イロメ イ母メ イヨメ イヨメー

 2990

 \equiv

Thank you for your attention!

 4.171 Seung Hun Oh Solution-generating methods of Einstein's equations by $(2+2)$ Hamiltonian Reduction

伊 ▶ ヨ ヨ ▶ ヨ ヨ