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1. Motivations

Are the soliton solutions quantum mechanically stable ?

What is the role of the topological number for the
quantum stability of the vortex solution?

Tunneling decay of false vortices, PRD88, 085031 (2013)

Battle of the bulge: Decay of the thin, false cosmic string
PRD88, 105008 (2013)
Tunneling decay of false vortices with gravitation
the present work
Decay of the thin, false cosmic string with gravitation
the next work



2. Tunneling decay of false vortices

The vortex is the simplest soliton in gauge theory with
scalars (Abrikosov 1966, Nielsen and Olesen 1973). It
arises in a model with gauge group U(1) and the Higgs
mechanism in (2+1)-dimensional spacetime.

The model is described by the Lagrangian

1
L= _EF,LH_,F*‘“’ + (D) (DFo) — V(o™ 0).
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In Figure, we have drawn four possible examples of the scalar
potential, starting with (A) which is the usual quartic symmetry-
breaking potential with a maximum at ¢ = 0 and with vacuum at |p| = 1

after a suitable rescaling, (B) where a metastable local minimum (false

vacuum) is formed at ¢ = 0, (C) where this minimum becomes

degenerate with the symmetry-breaking minimum, and (D) where the
roles of the two vacua are reversed, with ¢ = 0 and | @ | =1 becoming

the true and false vacua, respectively.



After rescaling by appropriate e

powers of v and A\
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FIG. 2. The rescaled potential (3) with e = 0.1.

We use the following time-dependent ansatz for a vortex of
winding number n:
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The static vortex solution is the minimum of this functional
(without the time-derivative terms); the variational field
equations are

'|"' 2
-!1 .;,
a’ — ¢ -+ 2.*-'2(1 — rfjfﬁ = 0.
.I.

using the following boundary conditions:

flr)y—0, a(r)—0 as r— 0,

?L(!} — 1. rr[r} 1 as 71— oo.



Vortex (n= 50, e= 1.00, e= 0.005)

Vortex (n= 1, e= 1.00, e= 0.10)
(a} T T T T {b) T T T
1t - R — 1t ..f/- .................
f f
/ a i a
05+ B o 05 f .' B -
,:’f 'I
/ /
D /. 1 Ty 1 1 0 / 1
0 1 2 3 4 5 6 0 10 20 30 40

FIG. 3. (Color online) Vortex profile for (a) thick-wall and (b) thin-wall vortices. Displayed are

the functions f(r) and a(7) and the magnetic field B(r) = na'(r)/er.
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(a) Vortex (n= 1, e= 1.00, e= 0.10) (b) Vortex (n= 50, e= 1.00, e= 0.005)
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FIG. 4. (Color online) Scalar field gradient energy density pgraa. magnetic field energy density
Pmag, potential energy density ppor, and total energy density pgop for (a) thick-wall and (b) thin-

wall vortices.



2-1. Fate of the false vortices via
tunneling

A. Thick-wall ansatz (n=1)

The action of the ansatz
S = /dt (1T"— F)

where T is the kinetic energy

> : a’
T =27 drr | f2+ -
0 2e2r?

and E is the energy of a static configuration

o0 1 2 2
E=2n / dr (f"?+ 4 ?2”) 24 s+ f’g—f)(fg—l)g)
0
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We begin by determining the minimum-energy configuration
within a family of configurations representing a vortex of
width R, treating R as a variational parameter.

r/R r <R (r/R)?* r<R
f(r) = a(r) =
1 r > R 1 r > R
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FIG. 6. (Color online) (a) Piecewise vortex ansatz. (b) Vortex energy E(R) for e = 1, e = 0.1.
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B. Thin-wall ansatz (n>>1)

We introduce n into the action

S:/QHT—E)

where T is the kinetic energy

oo 2.9
, : n-a
0 2622

and E is the energy of a static configuration

o 201 _ \2 2 1
_E:%/ﬁmw(ﬁ+nﬁzﬂ)ﬁ+”“ +U”+Nﬁ—nﬂ
0

r 2272

12



We can divide the energy integral into three regions:
E(R) — Eint + Ewa,]l + Eext-

Summing the three contributions

272

E(R) = Sy + 7R —exR?

E(R) Ineed hats!!!

FIG. 8. The rescaled energy E(R) with € = 0.108 Numerical values for the three parameters shown

are: Fy = 1.38, Ry = 1.00, R, = 7.61.



3. Tunneling decay of false vortices
with gravitation

We consider the action for Einstein gravity coupled to a
gauge field and complex scalar field

R 1

S p— /M \/——gdgm [25 — 16’}'{'FMFF“H . (D,LIG)*(D“U) _ L‘T(Cf}*{_}) —l— S"YGB

The field strength tensor /,, =V, A, -V, A,
The covariant derivative 0,0 = (V, +wcA,)0.
The potential U(69)

U(5°6) = MI6f? — o) — )

We are interested in the o
case with () - < 1.

FIG. 2. The rescaled potential (3) with e = 0.1.
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The Einstein equation

R

i [T I

1 .
L, — §RQ”” — k1
where the energy-momentum tensor

1 1 . | . e
I = E(Fﬂﬂﬂf& - EQ#VF&EFQJ) + (Dpo)" (Dyo) + (Do) (Dy )’

— guw[(Dad) (D*¢) + U(679)].

The gauge field and scalar field equations are respectively
V,;F’; = Ar[ie(pV 0" — ¢"V ,10) + QEEA#;;'}*.;{{ :

_ 9U(¢79)

DuD¢ ==
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We take the metric ansatz as to be
ds® = —A%(t,r)dt* + B7%(t,r)dr* + D*(t,r)d6*,

where A(t, r), B(t, r), and D(t, r) are unknown functions of
the variable t and r.

We now rewrite the equations in terms of dimensionless
variables

@ ~
— = ¢,
.E.‘

N o A,
¥
The fields ansatz are chosen as

n(a(t,r) —1)
e

(t.r,0) = f(t,r)e™,  A,(t.r,0) = 0,0,

where n is an integer, the winding number.
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Using the metric and fields ansatzs, the (tt), (tr), (rr), and
(60) components of the Einstein equations take the form

+ 2+

_A’BAB'D'+BD") + BD _ [ n%a? A’n?

2,2 £2
ﬂrgBi 1 42 (foBQ 1 n-a f + Ef)]

BD | 8me2D? Sme? [)? D2

1 (DB A’D+Df [ n%a Yy
D\ B A A | T 4rerpe

AB?A'D'+ AD —AD [ 1 R n?a? n2a’ n niffa* U
B2D =k 2R sreD? ) s T T mepr T B2

D?[A?B*(A'B' + BA") — BAB + A(—2B* + BB)|

A3B?
— x iq szz _ 3:12(19 4 ?1.2{1"21?2 1+ n2a2f? — f?B2D? _ UD?
A? 8me? 8me?
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The scalar field equation has the form

. [A B DY .

The gauge field equation has the form
. (A B D). o[ (A B DN\ L,

A B D
We will only solve the static equation of motions. We will

use numerical methods to solve for f(r), a(r), A(r), B(r),
and D(r).

1
A?

A B D D?

1

A?

Because the metric functions only depend on r, we are
free to choose a gauge in which B(r) = 1 everywhere.

. A B D 202 dU
+Bﬂﬁ+( +— + )f]—”ﬂfz——

f
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We simultaneously solve the coupled Einstein, gauge,
and scalar field equations with the following boundary
conditions:

f(r)—=0, a(r) =1, AY(r)—0, D(r)—0, D'(r)—1, as r—0,
f(r)—=1, a(r)—0, A(r)—1, as r — oc.
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Figure 2: Thick-wall solutions of f(r), a(r), A(r) and D(r) respectively. n = e/y/dr = 1,
e = 0.1. The line patterns (—— , — — ., — — ., — —) respectively represent

G = (0,0.1,0.15,0.2).
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Figure 3: Thin-wall solutions of f(r), a(r), A(r), and D(r) respectively. n = 50, e/vdr = 1,
e = 0.005. The line patterns (——

G = (0,0.02,0.03,0.04).
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4. Israel junction conditions

We consider a thin wall or hypersurface X partitioning
bulk spacetime into two regions v+ and 7 -, with
boundaries >+ and Y -.

+ . X
4 Txy

Two regions of spacetime joined at a common boundary.
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The bulk spacetime geometry for the inside (=) and
outside (+) of the wall have below metric

ds® = —A%(r)dt* + BZ*(r)dr* + Di(r)d6”

We take the energy-momentum tensor as the form

TH = S*H(n) 4+ regular term

where 5" (2'.171=1]) is the stress-energy tensor of the wall

ii+e
Sy = lim / L dn.
nN—e

e—{)
hm = hm = ().

The extrinsic curvature has only two components,
K and (7. The form of the stress-energy tensor on the

wall could be obtained by the covariant conservation.
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We introduce the Gaussian normal coordinate system
near the wall

dS* = —dr? + dn* + R*(,n)d6*

where ¢, = —land E(r,7) = R(7). It must agree with the
coordinate R of the interior and exterior coordinate
systems. In this coordinate system the induced metric
on the hyperspace

ds(sy = —d7” + R(7)*d6’

where 7 is the proper time measured by an observer at
rest with respect to the wall and %(7)is the proper radius
of », The following relation is satisfied

—dr® = —A%dt* - B*dir? = (—A**+ B =-1),

where - denotes the differentiation with respect to r.
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The induced metric of the hypersurface
hab — Ha-,-:.%f’f;f'f

We take the tangent vectors

e = (T,R,0). ¢e5=1(0,0,RD™)
The three-velocity of any point on the wall
= (T.R.0). u,=(—AT.B*R.0).
Then the relation ;_ ,~ — —|is satisfied.

We take the normal vectors
n® = B YA(AT?R, B*T.0), n,= B tA(=R.T.0)

where we take the factor 5 '4 to normalize the vectors,
so that ;. = 1. The hypersurface is timelike.
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We take outside geometry as the flat Minkowski
spacetime minus a wedge related to the deficit angle

dsf,y = —dt* + dr* + (1 — A)r?d6*,

We employ the insider geometry as the magnetic
solution in the anti-de Sitter spacetime

X , Ldr2 2 Hirshmann & Welch
ds; \ = —N(r)dt® +— —df”, PRD53, 5579 (1996

?i—:' {:){ 4‘\'“)01(!) T I ? y ( )
N(r) = (1+LA?), J(r)=[1+(Q%/(Lr*)In(1+LA?)], L= (1+Q2A),

where (), represents the magnetic charge

The scalar magnetic field measured in an orthonormal
basisis ,_ \/\ /GOTIA7)
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We change the metric into the following because two
geometries do not have the proper circumferential
radius. The outside geometry takes the form

2

dr 2 10
- + 17df”
N

d::;i_} = —dt* + —

and the insider geometry takes the form

' o (dr/dr)?
i = -+ L

dr? + 72de?
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Finally, we obtain

g

R+ Vig(R) = 0,

o | =

= (1=A) (E*dR/dR)*— (1 - A) — k**R*)?

Ver(R) = 2 RK202 R2
The thin wall is located at position "=} (or R =7| )

We express everything as a function of r

- -\/r )dR 20 2
ik = Y El K(R) = (1+1 W )

R 4 Vig(R) = 0

wll—-

N(R)K(R) . x202R2J(R) ]
L(RJ(R) | (1-A) [—Lzm} —(1-28)—~7m — }

Ve (RR) = ~H(ﬁ‘) VT2 8k202R?J(R)/L(R)
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Figure 5: Effective potential for @ = 100, e = 0.001 and multiple gravitational coupling &.
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We now evaluate A related to the deficit angle

A = 1+42k0R(dR/dR)V E? + R? — E*(dR/dR)’ — k*0*R?
. \/’E JI\'TJ il Jﬁ\'rj{- 9 9 3 le'
= 1+ 2roR 7 7 + R? — i —HG’RE
VK GP2 )
R R
N.J . ®? .
— = = 1+87GeR? + O(G?),
I TG + 5o + O,
NK ,  Gd? )
—7 = 1+81GeR’ — —— + 0(G?).
2

A = 8Gu = 8G (

+210RV1+ R2 — Eﬂﬁﬂ) + O(G?),

Sm2R?2

In non-relativistic limit r < 1, the energy of the vortex is

)

1 .I L
po g +2mo R (1 + 533) — e R?,
.;rra.. a
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We now examine whether the gravitational effect on the
surface tension exists or not. We ignore the contribution
from the negligible magnetic flux on the wall. The
energy density on the wall is given by

Jo" Jios VAR gadalg™ 1P + (£ — ) (f2 — 1)

a = 27
Jo /00t
r4e/2 ;
— VO dr g7 2+ (7 =) (f* — 1)
r—e/f2
~ 1/24 O(e)

Decay rates : in preparation
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5. Summary and discussions

We study the decay of vortices trapped in the false vacuum of a
theory of scalar electrodynamics in 2+1 dimensions.

When n is large there exists thin-wall vortices solutions. The
false vortices are quantum mechanically unstable.

We study the model with gravitation. The dynamics of the

vortex with gravitation can be estimated by employing Israel
junction condition.
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