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Introduction: Pair Creation

Schwinger effect: the creation of pairs out of the vacuum under the presence of a strong electric
field background in the Minkowski spacetime.

Was initially discovered in the pioneers' works: [F. Sauter, Z. Phys. 69, 742 (1931); J. S. Schwinger, Phys.
Rev. 82, 664 (1951)].

The pair creation rate is proportional to:
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Hence, despite tremendous efforts on the experimental point of view, it has never been
detected so far.




What else can create pairs? A strong gravity field [1].

The tool to study is quantum field theory in curved spacetime [2].

To detect this effect a new idea is developing past years: considering Schwinger effect in astrophysical
and cosmological contexts where huge background fields could naturally be present.

1. L. PARKER, PHYS. REV. LETT. 21, 562 (1986).

2. L. PARKER AND D. TOMS, QUANTUM FIELD THEORY IN CURVED SPACETIME,
(CAMBRIDGE UNIVERSITY PRESS, 2009).



Introduction: de sitter

In the early universe to model the gravitational field we consider the de Sitter (dS) spacetime.

dS might describe both the early stage of inflation and the late stage of acceleration of the
expansion of the Universe.

In the Poincare path, the dS metric reads:

ds? =QZ(T)(dT2—dX2 —dyz—dzz), Q(T)=_—:|',

T
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This portion of dS is conformal to a portion of Minkowski spacetime.




Introduction: Existing Literature

Considering a constant electric field background in dS, the semi-classical pair creation rate of
Schwinger scalars has been investigated:

°In 1+1D dS: Frob et al, JCAP. 04, 009 (2014).
°In 1+3D dS: Kobayashi and Afshordi, JHEP, 10, 166 (2014).

°In 1+dD dS: Bavarsad, Stahl and Xue, PRD 94, 104011 (2016).



The right quantity to describe Schwinger effect in curved spacetime is the induced current.

Indeed, it is not plagued by the need of the notion of particle in the adiabatic future which allows one
to explore a broader parameter space.

The renormalized in-vacuum expectation value of the induced current operator of the scalar
field coupled to a constant electric background:

In 1+1D dS: Fréb et al, JCAP. 04, 009 (2014).
In 1+3D dS: Kobayashi and Afshordi, JHEP, 10, 166 (2014).
In 1+2D dS: Bavarsad, Stahl and Xue, PRD 94, 104011 (2016).

In 1+3D dS with another renormalization scheme: Hayashinaka and Yokoyama, JCAP 07, 012
(2016).



Aiming at checking if there is a difference between boson and fermion the equivalent problem for Dirac
particles has been investigated.

*Semi-classical pair creation rate and the renormalized induced current in 1+1D dS:
Stahl, Strobel, and Xue, PRD 93, 025004 (2016).
*Semi-classical pair creation rate in 1+3D dS: Stahl, Strobel [arXiv:1507.01401].

*Renormalized Induced current in 1+3D dS: Hayashinaka, Fujita, and Yokoyama, JCAP 07, 010
(2016).

In this work, we propose to take one step back and to add the presence of a constant magnetic
field background to the already present dS and electric backgrounds.



Preliminaries

To study the Schwinger effect we start from the action of a complex scalar field coupled to an
electromagnetic field

s=[d" ] {(@ +ieA,)p(0, ~ieA )p" (M’ +ER)pp’ -%FWF”V}

We assume: the gravitational and electromagnetic field are background fields whereas the
scalar field is dynamical (and quantized).

The dS has a constant scalar curvature, hence for simplicity, we set:

=0



The dS metric in conformal coordinates has been written as

ds? =Q*(7)(dz? —dx® —dy? —dz*),  Q(r) =—H1, (x,y,2) e R®
T

The vector potential describing a constant electric and magnetic fields parallel to each other in the
conformal metric is given by
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The Klein-Gordon (KG) equation then reads form the action

;2 : 2 iecE \* m? B
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Using the ansatz
p(x) =07 (r)e " "h* (y) F* (), k, =(k,,0,k,)

Where + and - denote the positive and negative frequency solutions of KG equation respectively,

we decouple the spatial and time dependent parts of KG equation as
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The harmonic wave function is a Landau state

JeB 2~ k
= = + X )
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Mode functions:

The positive and negative frequency solutions with desired asymptotic forms (mode functions in
Minkowski spacetime) at early times (7t = —0)

-1 ixz

U, (x)=(2k)2e 2 Q"™ h(y, )W, (2ip),

1 —ixrx

V. (x) = (2k)2e 2 Qe "h(y )W, (~2ip),



The positive and negative frequency solutions with desired asymptotic forms (mode
functions in Minkowski spacetime) at late times (7 — 0)

-1 iyz

U, (X) = (-4iyk) 2 e 2 Q"™ h(y, )M . (2ip),

-1 iyz

Vo (X) = (-4idk) 2 e 2 Q"¢ ™ h(y )M, (=2ip),

where W, M are the Whittaker functions.




The parameters have been defined as:

k = Jk? +(2n+1)eB, r=-z, p=—kr, p, =—k,z,
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The Bogoliubov coefficients are defined

A:(Uout'uin)’ B:(Uout' in)'
A= (27)*8% (k, —K,)5, ., B=(27)*5°(k, -K,)35, .0,
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Schwinger Effect

The usual quantity describing the Schwinger effect is the pair creation or decay rate which

is derived from the Bogoliubov coefficients

| B I’

N 1 dk,  dk,
Jdgmv QL ZOI (27z)j (27)

The Bogoliubov coefficient B is independent of the momentum k, which determines the
position of the center of the Gaussian wave pocket on y axis by

ke _ J-dkx_eBLy

Y =B 27)  (27)




In order to transform the k, integral into a T integral, we can use the semi-classical relation [1,2]

2
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which estimates the time when most of the particles are created. Then

dk | 7|
j(27r) (27,)! (s

1. FROB ET AL, JCAP. 04, 009 (2014).
2. KOBAYASHI AND AFSHORDI, JHEP, 10, 166 (2014).



Using the following parameterization of the decay rate

N
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*There is a term independent of the Landau levels whose sum apparently gives a diverging factor.
However, using the Riemann zeta function {(0) = _?1 gives

r = H* 7| (ij : 1 £+Ze2”('7""f')
27 27 )et 1| 2 &

°In the limit E = 0 the first term in the square bracket vanishes and the second term is the dS
radiation with a Gibbons-Hawking temperature

1 H2|y|(eB) 1
=< 27171
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°In the Minkowski spacetime limit (H = 0) gives the Schwinger formula in scalar QED
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Induced current

Now | wish to investigate the in vacuum expectation value of the current operator which is
referred to as the induced current

" =2 9" (0.0 +ieA 0.0 (0.0 e s )

The scalar field operator and in vacuum state

U, +V, bl | a,|0) =0

(2)



By the symmetry the time-like and the perpendicular components of the current vanish
o0\ _ /:1\ _ /:2\ _
(%) =(ir)=(i7)=o0

It is easily seen that the only non-vanishing component of the current is the component
parallel to the electric field background

: H = d !
(°)= Zﬁ( jZJ IDZ(fIDHu)e W, , (-2ip)|
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p:\/p22+(2n+1)eBrz, /1:?, y:ﬁ, 7=\/Z—/12—/12




10 — —

0.010 —

eB/H?=0.1

0001 ]

L ‘ L ‘ L L ‘ L L L L ‘ L ‘ L L ‘ L L L L ‘
0.1 0.2 05 1 2 5 10

For different values of eB/H?, the induced current J/eH?3 is plotted as a function of
eE /H? in the lowest Landau state n = 0 with % =1
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For different values of eE/H?, the induced current J /eH? is plotted as a function of eB/H? in
the lowest Landau state n = 0 with % =1



We will now analytically investigate the limiting behavior of the induced current

Limiting Behavior in Weak Magnetic Field Regime

eE m

e : : B :
In the weak magnetic field regime the relation % <« min {1, pERRT

} is satisfied.

Using the similar integration procedure introduced in [Frob et al, JCAP. 04, 009 (2014)] and
[Kobayashi and Afshordi, JHEP, 10, 166 (2014)],

and the zeta function regularization

;_¢eH (eB j(;/s.inh(Zml) +/1]
2w \ 27 sin(2zy)
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In the strong electric field regime: Z—i > max {1,%} the leading order term obtained
3 —m?
7.8 EB o IE

 47%H

In the IR regime Z—i « 1and % <« 1 the leading order term obtained

] 9e’H ® EB
| 8x? (eE)? + (MH )2

In this regime the current and conductivity are increasing as the electric field is decreasing
(IRHC) [Frob et al, JCAP. 04, 009 (2014)].




Strong Magnetic Field Regime

E

. : . B : -
In the strong magnetic field regime the relation % > max{1, %, %} is satisfied.

The leading order term of the current obtained
e’EB
87°H

J ~



Conclusions

(JWe obtained the pair production rate, which agrees with the known Schwinger result in
Minkowski spacetime and with the Hawking radiation in the limit of zero electric field in dS.

(JUsing the zeta function regularization scheme we calculate the induced current and examine
the effect of magnetic field on the vacuum expectation value of the current operator.

J We find that in the strong electric E or magnetic field B the current responds as E. B, instead
in the infrared regime, it responds as B/E which leads to a phenomenon of infrared
hyperconductivity.

1 Those results of the induced current would be important for discussing the cosmic magnetic
field evolution.

Thank you for your attention.



