Angular resolution of mid-frequency GW detectors

Sunghoon Jung (Seoul National University)

Works to appear soon, with Peter W. Graham

2017. 7. 4 @ ICGAC-XIII and IK15

Takeaway messages

- Single-baseline measurement of mid-frequency GW contains directional information!
 - The mid-frequency band (~0.01-5 Hz) has ideal and natural properties for good localization.
 - Single-baseline can be a good precision detector.

Takeaway messages

- Single-baseline measurement of mid-frequency GW contains directional information!
 - The mid-frequency band (~0.01-5 Hz) has ideal and natural properties for good localization.
 - Single-baseline can be a good precision detector.

NB: We use Atom Interferometers as a typical single-baseline detector to demonstrate these messages.

Why localization?

 Among many reasons already discussed in this conference, two most important are:

- Multi-messenger observations & standard siren
- Precision measurement of GW and its source

NB: A good first target would be ground-based telescope FOVs ~1 deg

How do LIGO/LISA localize?

One main difference of LIGO vs LISA is GW lifetimes (and frequencies).

How do LIGO/LISA localize?

- LIGO : triangulation from multiple detectors (practically may need >~3 detectors; short duration)
- LISA : signal modulation over annual orbit around the Sun (relative angle btwn baseline and source direction)

Mid-frequency angular resolutions

Mid-frequency band

Is it just an interpolation btwn LIGO and LISA?

Mid-frequency band

Is it just an interpolation btwn LIGO and LISA?

No!

strain sensitivity [Hz^{-1/2}]

First of all, new science cases (e.g. WDB).
It's also a gate to LIGO; any mergers pass mid-frequency band.

— It turns out to have natural properties extremely useful for localization!

Energy-dependent phase accumulation

Atom Interferometer (AI)

10m drop tower at Stanford campus

Evaporatively cooled atom source

one of the most precise measurement of the gravity constant on the Earth.

picture credit: M.Kasevich

Differential measurement

Differential phase can measure (space-time oscillating) GW signal.

Ref: S.Dimopoulos, P.W.Graham, J.Hogan, M.Kasevich, S.Rajendran

Al in mid-frequency band

 sensitive to f = 0.03~5 Hz; both space and terrestrial missions are considered for each design/protocol studies (also illuminating some underlying physics).

Mid-frequency angular resolutions

¹² f [Hz]

Space & Terrestrial AI

Two underlying physics

- "Reorientation" of baselines modulation of signal strength and phase (rapid, O(1)-size)
- periodic change of "Doppler" shift around the Sun. Modulation of phase (slow, but can be large in proportion to the frequency)

GW150914 by space Al

GW150914 (36-29 Ms) spends 9.6 months in the AI band.

Reorientation

Doppler

Earth-Sun Doppler improves much further (only) after a few months.

 $\sim 1/
ho/(2\pi f R/c) \ll 1/
ho$ Doppler phase-shift grows with f and R.

> Change of Doppler is appreciable only after months.

Improving quickly as frequency chirps.

Final Angular Resolution

- Space AI usually O(0.1)deg, good enough for most ground-based telescopes, but not for the Hubble.
- Need multiple terrestrial Als. Maybe useful for Fermi.

	-			
	resonant	terrestrial	lifetime	-
LIGO1	$0.16 \deg (\rho = 67)$	400 deg (ρ =1.8)	9.6 months	Loot 1 vr
LIGO2	$0.20 \deg (\rho = 16)$	$450 \deg (\rho {=} 0.94)$	5.5 years	Lastiyi
NS-NS	$0.27 \deg (\rho = 3.6)$		140 years	or
Short signal	$0.75 \deg (\rho = 190)$	710 deg (ρ =1.4)	$25 \mathrm{~days}$	full lifetime

TABLE II. Angular resolution $\sqrt{\Delta\Omega_s}$ and SNR ρ of an atom interferometer. Errors can be scaled linearly with 1/distance.

Aside: Angular Resolution vs SNR

			S_I/N	S/N	$\frac{\Delta\Omega_{S,I}}{(10^{-5} \text{ str})}$	$\frac{\Delta\Omega_S}{(10^{-5} \text{ str})}$	
			975	1336	153	1.52	
In this band			1435	2085	256	15.5	
m the band.			3150	4907	148	29.1	
CNID 10 100 for O(0, 1) dog			2505	3361	234	24.5	
			4610	6715	53.8	13.0	
			2386	3940	164	38.8	
				3984	457	/8./	
		resonant	469	641	125	1.53	
			- 687	1001	188	12.4	
	LIGO1	$0.16 \deg(\rho = 67)$	1483	2310	104	20.9	
			1182	1589	154	18.1	
LIGO NS-N	LIGO2	$0.20 \deg (\rho = 16)$	2193	3188	42.3	9.61	
	NS-NS	$0.27 \deg (\rho = 3.6)$	1125	1853 1884	$_$ LIS	SA: S	NR 10^3-4
	Object strengt	$0.75 \deg (\rho = 190)$	2774	3806			(0,1) dec
	Short signal		4091	5935		ior U	
			9016	14041			
			7165	9607	104	13.8	
			- 13152	19172	27.5	6.93	
			6826	11280	76.8	20.8	
TABLE II. Angular resolution $\sqrt{\Delta \Omega_{e}}$			9749	11385	220	39.8	
			1318	1809	152	1.67	
interferometer. Errros can be scaled li] ₁₉₄₃	2820	164	16.6	
			4280	6666	99.5	25.3	
			3402	4561	135	23.8	
			6246	9104	43.0	10.5	
			3241	5355	109	34.5	
			4628	5405	289	60.0	
			667	913	294	4.54	
			982	1425	331	42.4 F	Ref: C.Cutler, 9703068
10			2157	3359	238	62.4	
Mid-frequency angular resolutions			1715	2301	312	61.5	Sunghoon Jung (SNU)

Thus, this mid frequency band 0.01~5 Hz is ideal for (1) sub-degree angular resolution, (2) to warn merger follow-ups.

Sunghoon Jung (SNU)

GW is real now!

Shall realize the full physics potential.

Ambitious goals and challenges became real too.

20

25

130

B compone

135

Sunghoon Jung (SNU)

Must be open to different/new ideas and passions!
 (Many many are ongoing...)
 Numerical relativity
 Reconstructed (wavelet)

 Natural good localization in the mid-f band (and Al inputs) should greatly help understand the Universe.

Mid-frequency angular resolutions

Reconstructed (template

0.5

0.0

-0.5

-1.0

Thank you

But (quick) reorientation still essential

- DL, polarization, inclination can *only* be measured by reorientation. Doppler doesn't contribute directly.
- Localization of short signals spending less than months.

Technical aside: enhancing sensitivities

• Large Momentum Transfer (LMT):

Repeating pulses/atom transitions can give larger momentum kick —> larger energy and higher sensitivity.

• Resonant-mode:

Tuning $\pi/2 - \pi$ pulse interval T to the GW frequency, the phase-shift is (resonantly) maximized.

Al noise curves

