Gravitational waves from the first order electroweak phase transition in the Z₃ symmetric singlet scalar model

Toshinori Matsui [KIAS]

in collaborated with Zhaofeng Kang and Pyungwon Ko

Z. Kang, P. Ko and T. Matsui, arXiv:1706.09721 [hep-ph]

Motivation

- Discovery of the Higgs boson
 - Mass generation mechanism is confirmed
 - The standard model as an effective theory is established
- What is the nature of electroweak symmetry breaking?
 - SM have minimal Higgs potential...no principle
 - Higgs self-couplings have not been measured

 \rightarrow We have not understood the shape of the Higgs potential

- Exploring the structure of the Higgs sector is important
 - New physics is required to solve BSM phenomena
 Baryon asymmetry of the Universe, Existence of dark matter,...
 - BSM might be related to the extended Higgs sector

EW baryogenesis, Radiative neutrino mass models, ...

Electroweak Baryogenesisa

- Observed Baryon number: $n_B/s \simeq \mathcal{O}(10^{-10})$
- Sakharov's three conditions

1. #B violation, 2. CP violation, 3. Departure from equilibrium

 \sim Mechanisms to create the potential barrier - 1 \sim

• Thermal loop effects (E)

Analytic formula (High temperature approximation)
The strength of phase transition

$$\frac{\varphi_c/T_c = 2E/\lambda(T_c) \gtrsim 1}{V_{\text{eff}} = D(T^2 - T_0^2)\varphi^2 - ET\varphi^3 + \frac{\lambda(T)}{4}\varphi^4}$$

e.g. Two Higgs doublet model (2HDM)

$$m_{\Phi}^2 \simeq M^2 + \lambda_i v^2 \quad \Phi = H, A, H^{\pm}$$

$$E = \frac{1}{12\pi v^3} \left\{ 6m_{W^{\pm}}^3 + 3m_Z^3 + \sum_{\Phi} m_{\Phi}^3 \left(1 - \frac{M^2}{m_{\Phi}^2} \right)^3 \left(1 + \frac{3}{2} \frac{M^2}{m_{\Phi}^2} \right) \right\}$$

Enhanced by $M \rightarrow 0$ limit (large λ_i)

 \sim Mechanisms to create the potential barrier - 1 \sim

• Thermal loop effects (E)

The deviation in the Higgs boson couplings from the SM is required!

 \sim Mechanisms to create the potential barrier - 2 \sim

• Non-thermal tree level effects (-e) Analytic formula (High temperature approximation) $\frac{\varphi_c}{T_c} = \frac{2E}{\lambda} (1 - \frac{e\lambda}{ET})$ $V_{\text{eff}} = D(T^2 - T_0^2)\varphi^2 - (ET - e)\varphi^3 + \frac{\lambda(T)}{4}\varphi^4$

 \sim Mechanisms to create the potential barrier - 2 \sim

- Non-thermal tree level effects (-e) $\begin{array}{c} \varphi S \\ \left(\frac{\varphi}{\sqrt{2}},\varphi_{S}\right) \equiv (\bar{\varphi}\cos\alpha,\bar{\varphi}\sin\alpha) \\ \left(\frac{\varphi}{\sqrt{2}},\varphi_{S}\right) \equiv (\bar{\varphi}\cos\alpha,\bar{\varphi}\sin\alpha) \\ FW \text{ phase} \\ \varphi \\ FW \text{ phase} \\ FW \text{$
- e.g. Higgs singlet model (HSM)

$$V_{0} = -\mu_{\Phi}^{2}|\Phi|^{2} + \lambda_{\Phi}|\Phi|^{4} + \mu_{\Phi S}|\Phi|^{2}S + \frac{\lambda_{\Phi S}}{2}|\Phi|^{2}S^{2} + \mu_{S}^{3}S + \frac{m_{S}^{2}}{2}S^{2} + \frac{\mu_{S}'}{3}S^{3} + \frac{\lambda_{S}}{4}S^{4}$$
$$e = \left(\mu_{\Phi S}\cos^{2}\alpha + \frac{\mu_{S}'}{3}\sin^{2}\alpha\right)\sin\alpha \quad <0$$

 \sim Mechanisms to create the potential barrier - 2 \sim

e.g. Higgs singlet model (HSM)

Nightmare scenario

- However, even if the Higgs couplings do not deviate from SM, an alternative way to the desired tree level barrier is available in the symmetric limit where an additional scalar does not acquire VEV at *T*=0.
 - In the model with the unbroken discrete symmetry, the strongly 1stOPT can be realized by multi-step phase transition.
 - By the absence of the field mixing, it is difficult to test at colliders.
- We expect the observation of the gravitational waves as a new technique to detect the signal of the strongly 1stOPT.

Gravitational waves

 \sim Probing the Higgs potential by GW observations \sim

Gravitational waves

 \sim Probing the Higgs potential by GW observations \sim Sensitivity of GW detectors **Red shifted frequency:** LIGO Virgo 1st Gen. $f_0 = \frac{a_t}{-} f_t$ GW15091 AdV aLIGO (O1 2nd Gen. aLIGO **Massive binaries** KAGRA 3rd Gen. EWPT (~100GeV) eLISA'11 $f_0 \simeq 10^{-5} \mathrm{Hz} \frac{T_t}{100 \mathrm{GeV}} \frac{f_t}{H_t}$ LIGO have detected GWs from BH binary directly! eLISA'17 "GW150914", PRL. 116, 061102 (2016), $(f_t \simeq 10^9 \mathrm{Hz})$ "GW151226", PRL. 116, 241103 (2016), "GW170104", PRL. 118, 221101 (2017) DECIGO **EWPT** can be explored at future **BBO** space-based interferometers! http://rhcole.com/apps/GWplotter/ 10° 10⁻¹⁰ 10-6 10² 10.2 10⁻⁸ 10-4 10⁴ 10⁶ Space-based **Pulsar Timing Array Ground-based** interferometers (PTA) interferometers Toshinori MATSUI [KIAS] July 3-7, 2017, ICGAC-IK

GWs from 1stOPT

Characteristic parameters of 1stOPT

"Normalized difference of the potential minima"

• α is defined as $\alpha \equiv \frac{\epsilon}{\rho_{rad}}\Big|_{T=T_t}$. (ρ_{rad} is energy density of rad.)

- Latent heat: $\epsilon(T) \equiv -\Delta V_{\text{eff}}(\varphi_B(T), T) + T \frac{\partial \Delta V_{\text{eff}}(\varphi_B(T))}{\partial T}$

"~How fast the minimum goes down"

•
$$\beta$$
 is defined as $\beta \equiv \frac{1}{\Gamma} \frac{d\Gamma}{dt} \Big|_{t=t_t} \rightarrow \tilde{\beta} \left(\equiv \frac{\beta}{H_t} \right) = T_t \frac{d(S_3(T)/T)}{dT} \Big|_{T=T_t}$
- Bubble nucleation rate: $\Gamma(T) \simeq T^4 e^{-\frac{S_3(T)}{T}}$

- 3-dim. Euclidean action: $S_3(T) = \int dr^3 \left\{ \frac{1}{2} \left(\vec{\nabla} \varphi \right)^2 + V_{\text{eff}}(\varphi, T) \right\}$

Three sources of GWs (relic abundance @ peak frequency) "Sound waves" (Compressional plasma) "Bubble collision" (Envelope approximation) "Magnetohydrodynamic turbulence in the plasma"

• Higgs potential

 $V_0 = -\mu_h^2 |H|^2 - \mu_s^2 |S|^2 + \lambda_h |H|^4 + \lambda_s |S|^4 + \sqrt{2} \left(\frac{A_s}{3}S^3 + \text{h.c.}\right) + \lambda_{sh} |H|^2 |S|^2$ - complex singlet scalar: $S \to e^{i2w}S$ with $w = \pi/3$

- Phase transition patterns
 - One-step ($\mu_s^2 > 0$, large λ_{sh}) $\Omega_0 \rightarrow \Omega_h$ - Two-step ($\mu_s^2 < 0$) $\Omega_0 \rightarrow \Omega_s \rightarrow \Omega_h$ - Three-step $\Omega_0 \rightarrow \Omega_s \rightarrow \Omega_{sh} \rightarrow \Omega_h$

Higgs potential

 $V_0 = -\mu_h^2 |H|^2 - \mu_s^2 |S|^2 + \lambda_h |H|^4 + \lambda_s |S|^4 + \sqrt{2} \left(\frac{A_s}{3}S^3 + \text{h.c.}\right) + \lambda_{sh} |H|^2 |S|^2$

- complex singlet scalar: $S \rightarrow e^{i2w}S$ with $w = \pi/3$

• Phase transition patterns

- One-step (
$$\mu_s^2 > 0$$
, large λ_{sh})
 $\Omega_0 \rightarrow \Omega_h$

Metastable vacua

 $\Omega_h = (\langle h \rangle, 0)$

 $\Omega_0 = (0,0)$

• Higgs potential

 $V_0 = -\mu_h^2 |H|^2 - \mu_s^2 |S|^2 + \lambda_h |H|^4 + \lambda_s |S|^4 + \sqrt{2} \left(\frac{A_s}{3}S^3 + \text{h.c.}\right) + \lambda_{sh} |H|^2 |S|^2$ - complex singlet scalar: $S \to e^{i2w}S$ with $w = \pi/3$

• Phase transition patterns

 ${f S}$ <u>Metastable vacua</u> $\Omega_s=(0,\langle s
angle)$

 $\Omega_h = (\langle h \rangle, 0)$

- Two-step ($\mu_s^2 < 0$) $\Omega_0 \rightarrow \Omega_s \rightarrow \Omega_h$

Toshinori MATSUI [KIAS]

 $\Omega_0 = (0,0)$

• Higgs potential

 $V_0 = -\mu_h^2 |H|^2 - \mu_s^2 |S|^2 + \lambda_h |H|^4 + \lambda_s |S|^4 + \sqrt{2} \left(\frac{A_s}{3}S^3 + \text{h.c.}\right) + \lambda_{sh} |H|^2 |S|^2$ - complex singlet scalar: $S \to e^{i2w}S$ with $w = \pi/3$

 $\Omega_s = (0, \langle s \rangle)$

 $_{0} = (0,0)$

 $\Omega_{sh} = \left(\left\langle h \right\rangle', \left\langle s \right\rangle' \right)$

 $\Omega_h = (\langle h \rangle, 0)$

• Phase transition patterns

- Three-step
$$\Omega_0 \to \Omega_s \to \Omega_{sh} \to \Omega_h$$

• Higgs potential

 $V_0 = -\mu_h^2 |H|^2 - \mu_s^2 |S|^2 + \lambda_h |H|^4 + \lambda_s |S|^4 + \sqrt{2} \left(\frac{A_s}{3}S^3 + \text{h.c.}\right) + \lambda_{sh} |H|^2 |S|^2$ - complex singlet scalar: $S \to e^{i2w}S$ with $w = \pi/3$

- Phase transition patterns
 - One-step ($\mu_s^2 > 0$, large λ_{sh}) $\Omega_0 \rightarrow \Omega_h$ - Two-step ($\mu_s^2 < 0$) $\Omega_0 \rightarrow \Omega_s \rightarrow \Omega_h$ - Three-step $\Omega_0 \rightarrow \Omega_s \rightarrow \Omega_{sh} \rightarrow \Omega_h$

: 2nd order EWPT (one-step)

Transition temperatures

 $T_* \searrow \Longrightarrow \varphi_*/T_* \nearrow$

Gravitational waves from 1stOPT

• DECIGO [S.Kawamura, et al., Class. Quant. Grav. 28, 094011 (2011)]

2/13

- eLISA [C.Caprini et al., arXiv:1512.06239 [astro-ph.CO]]
- July 3-7, 2017, ICGAC-IK

Conclusions

- In general, the strongly 1stOPT can be realized by
 - The thermal loop coupling
 - The field mixing of the Higgs boson with additional scalar fields
- These cases can be tested at colliders.
- However, there is another case to hide such effects: "nightmare scenario"
- In this talk, we have focused on a model with unbroken discrete symmetry.
- The potential barrier is created by "the multi-step phase transition" on multi-field at finite temperature.
- We have shown that even if it is difficult to test at the colliders,
 - GWs is significantly enhanced by the strongly 1stOPT
 - GWs can be detected by future interferometers such as eLISA/DECIGO