XII INTERNATIONAL CONFERENCE ON GRAVITATION, ASTROPHYSICS AND COSMOLOGY/ 15th ITALIAN-KOREAN SYMPOSIUM ON RELATIVISTIC ASTROPHYSICS A JOINT MEETING EWHA WOMANS UNIVERSITY JULY 3-7, 2017, SEOUL, KOREA

GRB 110731A within the IGC paradigm

Daria Primorac University of Rome "Sapienza" & ICRANet, Italy

On behalf of a large collaboration

R. Ruffini, Y. Aimuratov, L.M. Becerra, C.L. Bianco, C. Cherubini, M. Della Valle, S. Filippi, C.L. Fryer, L. Izzo, M. Karlica, M. Kovacevic, DJ. Melon Fuksman, R. Moradi, A.V. Penacchioni, G.B. Pisani, D. Primorac, J.F. Rodriguez, J.A. Rueda, S. Shakeri, G. Vereshchagin, Y. Wang & S.-S. Xue

GRB classification

GRB classification

GRB classification

[5] Fryer, C. L., Rueda, J. A., & Ruffini, R. 2014, ApJ, 793, L36[6] Izzo, L., Ruffini, R., Penacchioni, A. V., et al. 2012, A&A, 543, A10

Episode 1 The hypercritical accretion phase

[5] Fryer, C. L., Rueda, J. A., & Ruffini, R. 2014, ApJ, 793, L36[6] Izzo, L., Ruffini, R., Penacchioni, A. V., et al. 2012, A&A, 543, A10

Episode 1 The hypercritical accretion phase

[5] Fryer, C. L., Rueda, J. A., & Ruffini, R. 2014, ApJ, 793, L36[6] Izzo, L., Ruffini, R., Penacchioni, A. V., et al. 2012, A&A, 543, A10

Fireshell model [7-9]

- An optically thick e[±] plasma with energy E^{tot} is formed around a black hole (BH)
- The expanding e^{\pm} fireshell engulfs the baryons left over in the collapse to BH, described by the baryon load B=M_Bc²/E^{tot}, and thermalizes with the baryons.
- The fireshell self-accelerates to ultra-relativistic velocities up to the transparency and the **Proper-GRB (P-GRB)**, characterized by a thermal spectrum, is emitted.
- The dynamics of the fireshell in the optically thick phase up to the transparency condition is fully described by E^{tot} and B

[7] Ruffini, R., Bianco, C. L., Fraschetti, F., et al.. 2001, ApJ, 555, L117
[8] Ruffini, R., Bianco, C. L., Fraschetti, F., et al. 2001, ApJ, 555, L113
[9] Ruffini, R., Bianco, C. L., Fraschetti, F., et al. 2001, ApJ, 555, L107

Fireshell model [7-9]

- An optically thick e[±] plasma with energy E^{tot} is formed around a black hole (BH)
- The expanding e^{\pm} fireshell engulfs the baryons left over in the collapse to BH, described by the baryon load B=M_Bc²/E^{tot}, and thermalizes with the baryons.
- The fireshell self-accelerates to ultra-relativistic velocities up to the transparency and the **Proper-GRB (P-GRB)**, characterized by a thermal spectrum, is emitted.
- The dynamics of the fireshell in the optically thick phase up to the transparency condition is fully described by E^{tot} and B

[7] Ruffini, R., Bianco, C. L., Fraschetti, F., et al.. 2001, ApJ, 555, L117
[8] Ruffini, R., Bianco, C. L., Fraschetti, F., et al. 2001, ApJ, 555, L113
[9] Ruffini, R., Bianco, C. L., Fraschetti, F., et al. 2001, ApJ, 555, L107

[10] Becerra, L., Bianco, C. L. et al. 2016, ApJ, 833, 107

Prompt emission

The optically thin shell of baryons collides with a Circum Burst Medium (CBM) of density n_{CBM}, giving rise to the prompt emission. The CBM is modeled by the filling factor, which takes into account filamentary structures of the medium, R=A_{eff}/A_{vis}.

[10] Becerra, L., Bianco, C. L. et al. 2016, ApJ, 833, 107

Prompt emission

The optically thin shell of baryons collides with a Circum Burst Medium (CBM) of density n_{CBM}, giving rise to the prompt emission. The CBM is modeled by the filling factor, which takes into account filamentary structures of the medium, R=A_{eff}/A_{vis}.

GeV emission – BH formation

GeV emission – BH formation

[11] Ruffini, R., Muccino, M., Aimuratov, Y., et al. 2016, ApJ, 831, 178

GeV emission – BH formation

[11] Ruffini, R., Muccino, M., Aimuratov, Y., et al. 2016, ApJ, 831, 178

[12] Pisani, G. B., Izzo, L., Ruffini, R., et al. 2013, A&A, 552, L5[13] Pisani, G. B., Ruffini, R., Aimuratov, Y., et al. 2016, ApJ, 833, 159

[14] Ruffini, R., Wang, Y., Aimuratov, Y., et al 2017, arXiv:170403821[15] Ruffini, R., Muccino, M., Bianco, C. L., et al. 2014, A&A, 565, L10

[12] Pisani, G. B., Izzo, L., Ruffini, R., et al. 2013, A&A, 552, L5[13] Pisani, G. B., Ruffini, R., Aimuratov, Y., et al. 2016, ApJ, 833, 159

[14] Ruffini, R., Wang, Y., Aimuratov, Y., et al 2017, arXiv:170403821

[12] Pisani, G. B., Izzo, L., Ruffini, R., et al. 2013, A&A, 552, L5[13] Pisani, G. B., Ruffini, R., Aimuratov, Y., et al. 2016, ApJ, 833, 159

[14] Ruffini, R., Wang, Y., Aimuratov, Y., et al 2017, arXiv:170403821[15] Ruffini, R., Muccino, M., Bianco, C. L., et al. 2014, A&A, 565, L10

[13] Ruffini, R., Rueda, J.A., Muccino, M., et al. 2016 ApJ, 832, 136

[13] Ruffini, R., Rueda, J.A., Muccino, M., et al. 2016 ApJ, 832, 136

[13] Ruffini, R., Rueda, J.A., Muccino, M., et al. 2016 ApJ, 832, 136

RMFIT [15] & Data Analysis

[15] *rmfit* for GBM and LAT analysis was developed by the GBM Team and is publicly available at fermi.gsfc.nasa.gov/ssc/data/analysis/
[16] Meegan, C., et al. 2009, ApJ, 702, 791
[17] Atwood, W., et al. 2009, ApJ, 697, 1071

RMFIT [15] & Data Analysis

[15] *rmfit* for GBM and LAT analysis was developed by the GBM Team and is publicly available at fermi.gsfc.nasa.gov/ssc/data/analysis/
[16] Meegan, C., et al. 2009, ApJ, 702, 791
[17] Atwood, W., et al. 2009, ApJ, 697, 1071

RMFIT [15] & Data Analysis

[15] *rmfit* for GBM and LAT analysis was developed by the GBM Team and is publicly available at fermi.gsfc.nasa.gov/ssc/data/analysis/
[16] Meegan, C., et al. 2009, ApJ, 702, 791
[17] Atwood, W., et al. 2009, ApJ, 697, 1071

Comptonized Epeak		
Amp	0.06099 ± 0.00190	
Epeak	$354.6 \pm 13.1 \text{ keV}$	
3σ	-34.8, 42.8	
2σ	-23.9,27.5	
1σ	-12.3, 13.2	
Index	-0.7816 ± 0.0278	

Comptonized Epeak		
Amp	0.06099 ± 0.00190	
Epeak	$354.6 \pm 13.1 \text{ keV}$	
3σ	-34.8, 42.8	
2σ	-23.9,27.5	
1σ	-12.3, 13.2	
Index	-0.7816 ± 0.0278	

Comptonized Epeak		
Amp	0.06099 ± 0.00190	
Epeak	$354.6 \pm 13.1 \text{ keV}$	
3σ	-34.8, 42.8	
2σ	-23.9,27.5	
1σ	-12.3, 13.2	
Index	-0.7816 ± 0.0278	

S/N = 15

MODELS: PL, PL+BB, Compt, Compt+BB, Band, Band+BB

No single BB component

P-GRB ends around 0.7s

S/N = 15

MODELS: PL, PL+BB, Compt, Compt+BB, Band, Band+BB

No single BB component

P-GRB ends around 0.7s

S/N = 15

MODELS: PL, PL+BB, Compt, Compt+BB, Band, Band+BB

No single BB component

P-GRB ends around 0.7s

Calculating Eiso

Calculating Eiso

Band:

Amplitude: 0.04263 (± 0.00191)

E_{peak}: 321.4 (± 21.7) keV α:-0.910 (± 0.034) B:-2.197(± 0.081) Cstat/DOF: 770.91/358 En.FLux: 2.122 E-06 (±3.1E-08)

$$E_{\rm iso} = \frac{4\pi d_{\rm L}^2}{(1+z)} S_{\rm bol},$$

$$S_{\rm bol} = S_{\rm obs} \frac{\int_{1/(1+z)}^{10^4/(1+z)} E\phi(E) dE}{\int_{\rm E^{\rm min}}^{\rm E^{\rm max}} E\phi(E) dE}.$$

$$E_{\rm p,i} = E_{\rm p}(1+z)$$

Calculating Eiso

Band:

Amplitude: 0.04263 (± 0.00191)

E_{peak}: 321.4 (± 21.7) keV α:-0.910 (± 0.034) B:-2.197(± 0.081) Cstat/DOF: 770.91/358 En.FLux: 2.122 E-06 (±3.1E-08)

$$E_{\rm iso} = \frac{4\pi d_{\rm L}^2}{(1+z)} S_{\rm bol},$$
$$S_{\rm bol} = S_{\rm obs} \frac{\int_{1/(1+z)}^{10^4/(1+z)} E\phi(E) dE}{\int_{\rm E^{\rm min}}^{\rm E^{\rm max}} E\phi(E) dE}$$
$$E_{\rm p,i} = E_{\rm p}(1+z)$$

 $E_{iso}^{=} 6.04917(\pm 0.08836) \ 10^{53} \ erg$ $E_{p,i}^{=} 1231 \ keV$ $E_{P-GRB}^{=} 3.6711 \ (\pm 0.1855) \ 10^{52} \ erg$ $R = 0.060688 \ (\pm 0.003193)$

Simulation - light curve - prompt emission

E_{iso}= 6.04917(±0.08836) 10⁵³ erg B = 4.35 10⁻⁴

R₊= 0.06135 R₋= 0.05169 kT = 167.5 keV

R= 0.05636

Simulation - light curve - prompt emission

```
E<sub>iso</sub>= 6.04917(±0.08836) 10<sup>53</sup> erg
B = 4.35 10<sup>-4</sup>
```

R = 0.05636 $R_{+} = 0.06135$ R = 0.05169

R₊= 0.06135 R₋= 0.05169 kT = 167.5 keV

cost_max = 0.99999975d0		
jmaxx = 500		
nBin = 2500		
nrhoism=10		
0.00d00	2.25d-01	
2.30d16	3.3d-02	
3.85d16	0.45d-01	
5.15d16	5.9d-03	
8.05d16	2.7d-02	
9.15d16	1.0d-03	
10.50d16	1.8d-02	
12.30d16	1.5d00	
12.38d16	9.5d01	
12.39d16	1.0d-06	
ndr = 1		
0.0 d0	1.002d0	
nR = 2		
0.00d00	3.5d-10	
10.00d16	1.5d-9	

Simulated spectra

327.9 keV

Conclusion and future perspectives

- GRB 110731A is another interesting case of BdHN, exhibiting no early X-ray flare or plateau as in typical BdHNe (Ruffini et al. 2017 submitted to ApJ), suggesting that the system is very compact
- Study the GeV and X-ray emission in more detail infer the parameters of the binary progenitor within the IGC paradigm
- Compare the observed and simulated E_{peak} evolution, determine the impact of arbitrary chosen background intervals ...
- Continue the search for new BdHNe

Conclusion and future perspectives

- GRB 110731A is another interesting case of BdHN, exhibiting no early X-ray flare or plateau as in typical BdHNe (Ruffini et al. 2017 submitted to ApJ), suggesting that the system is very compact
- Study the GeV and X-ray emission in more detail infer the parameters of the binary progenitor within the IGC paradigm
- Compare the observed and simulated E_{peak} evolution, determine the impact of arbitrary chosen background intervals …
- Continue the search for new BdHNe

THANK YOU!