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Collapsing structures and Expanding Universe

The cosmological black holes are black holes living not in an
asymptotically flat universe but in an expanding spacetime. They
have a rich dynamics in particular for their mass and horizon

Expanding.«
niverse |




What happens when there is no asymptotically flat
universe?

The usual definition of black hole event horizon turns out to be
pretty much useless for practical purposes in highly dynamical

situations.
-— m"‘“‘m Inside the event horizon, space is being
pulled faster than the speed

o,




What happens when boundary of black hole is evolving?




why charged evolving black hole?

Completing the literature on cosmological black holes by making a
natural step forward: in the same way the Schwarzschild solution
generalizes to the ReissnerNordstrom solution by considering the
coupled Einstein-Maxwell system, we will generalize the neutral
CBH to its charged counterpart: Charged Cosmological Black
Hole (CCBH)




charged black hole and nature

it is believed that black holes with large charge-mass ratio don’t
exist in nature. For instance, Wald has shown that the
charge-mass ratio for a Kerr black hole rotating in the small
uniform magnetic field of a galaxy (10~% — 1075 Gauss) is

~ 10724, However, if a highly magnetized plasma accretes onto
the black hole, the charge-to-mass ratio can be much larger. In
particular, in the merging of a binary system of neutron stars, it is
expected at the final steps of a gravitational collapse to a black
hole to obtain electromagnetic fields larger than the critical value
for vacuum polarization. In this case, the charge-to-mass ratio
could be near to 1. This would produce the most energetic known
objects in the universe: the gamma-ray bursts (GRB) with an
energy around 10%* ergs (~ 1M c?) released in few seconds.



Metric

Consider a general inhomogeneous spherically symmetric spacetime
constructed with a charged perfect fluid and a metric expressed in
xt=(t, r, 0, ¢):

ds® = —e? dt* + e dr* + R dQ? (1)
where 0 = o(t, r), A = A(t, r) are functions to be determined,
R = R(t,r) is the physical radius, and dQ? = d6? +sin®0 d¢? is
the metric of the unit 2-sphere. The energy momentum tensor of
the perfect fluid is

Ty =(p+p)uu” +g"p, (2)
and the electromagnetic tensor is
1 v 1 1%
T =4 (F‘“"F o= 8" FaﬁFa/3> : (3)

where p = p(t, r) is the mass-energy density, p = p(t, r) is the
pressure, and u* = (e77,0,0,0) is the charged perfect fluid
four-velocity. Choosing a perfect fluid implies that there is no heat
flow, radiation, or viscosity.
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Electromagnetic field

The electromagnetic field F*” satisfies Maxwell’s equation:
V.F" = 4nJ” (4)

and
Flag =0, (5)

where J¥ is the 4-current. To describe the charged black hole, we
consider an electric charge at rest in the comoving coordinate of
fluid ; in this case, the potential and the current are given by:

Au(t,r) = A(t, r)s) J” = pem(t, r)u”. (6)



Electromagnetic field
Because of the spherical symmetry, the only non-vanishing
component of the electromagnetic field is FO! = —F19 so from
Eq. (4) we have
01 —(o4+2) @

FOlL _ (UJFZ)E' (7)
Here we consider that the only non-vanishing current density is J°,
so @ is not an explicit function of time

R A
Q(r) = / ane (T2 R2 Odr. (8)
0
Therefore, the electromagnetic invariants are
1 174
F = SRwF"=(B"-F)
2
— _E2 — _ Q(t7 r)
R(t,r)?] "’
1 * 174
g = ZFNVFH =E-B=0, (9)

where *FH is the dual of the electromagnetic tensor F*¥.
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Einstein equations
The Einstein equations G*¥ = x T*” — g’ can be reduced to

2R1/ RIZ Rl
20 ~tt [ 2T N
e? G" = ( A + ) R)\) Ay
R R o 1 Q?
<R2+R)\> +ﬁ_ﬂp+R4 + A,

(10)



Einstein equations

R/2 2Rl
e)\ G" = ( + O'/> ef)\

RZ "R
2R R? 2R .\ ., 1 Q?
<R e R“>62 ~ R =P —(82)
R// / Rl 1
R2G99<R+Ra +o"+o _ﬁ)‘,_i X) e



The conservation laws

2e20 : 2p 4R
=V, TH" = — = 14
e " Mo TR T (14)
e)\ p/ QQ/
—V,TH*= ! + - = 07 15
(p+p) " " T o¥p (ot p)R® (15)

where the dot denotes a partial derivative with respect to t, and
the prime denotes a partial derivative with respect to r.
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Partial Differential Equations

Using Misner-Sharp mass definition

2M 52 —2 2 -\ ¥ 1. .

?:Re U—Re +1+ﬁ_§AR (16)
and some simplifications the five coupled partial differential
equations governing the evolution of the CCBH are:



Partial Differential Equations

. oM Q2 AR2
R=+e"/" - +2E+ ——
€ \/R R teEt 3
. —kpRR?
M= ——
2 b
. R 2RQQ R' 2R
— /7 — —_— R —
._dp .
P—dpp,
R\ (p+p) Ar(p + p)R*

where
2E(t,r) = R?e* -1

is the curvature term, analogous to E(r) in the LTB model.

(21)

(22)



Analytical solutions

Assuming A =0, p =0 and Q = cst the metric (1) reduces to the
charged LTB metric:
R"?(t,r)
ds? = —dt? + ——2_dr® + R?(t, r)dQ?. 2
s +1+2E(r)r+ (t,r) (23)
For our purpose of describing charged black holes, the system to
solve becomes:

. r 2
R2(t,r) = 2E(r) + 2"//’?( ) _ R2?t pk (24)
M(r) = ZepR2(t, R'(t, ), (25)

2

since M =0, M is only a function of r, i.e. M = M(r).
The explicit solutions of Eq. (24) involve elliptic function which in
the case of @ = 0 were discussed by Lemaitre and Omer.



LTB solution

In mathematical physics, the Lemaitre-Tolman metric is the
spherically symmetric dust solution of Einstein's field equations. It
was first found by Lematre in 1933 and Tolman in 1934 and later
investigated by Bondi in 1947. This solution describes a spherical
cloud of dust (finite or infinite) that is expanding or collapsing
under gravity. It is also known as the Lemaitre-Tolman-Bondi
metric and the Tolman metric.



LTB solution

The metric is:
2
ds® =dt* — l(f'iEdrz ~ R?d0?
where:

d0? = d6” + sin® #dg*
R—R(t,r), R —0R/ér, E—Br> —%
The matter is comoving, which means its 4-velocity is:
u® = 8% = (1,0,0,0)
so the spatial coordinates (r, 8, ¢) are attached to the particles of dust

The pressure is zero (hence dusi), the density is

P
LT
and the evolution equation is
2 2M
R = — +2E
R +
where
R=0R/8t
The evolution equation has three solutions, depending on the sign of E,
M ) (2E)2(t — tg)
E>0: H:E(wshn—l), (smhn—v;):T;
1/3
OM(t — tp)?

oM L (2EPRE )
E<o:  R=gil-cosn), (n-smm)= 00—



Analytical solutions

When @ # 0 we obtain the explicit solutions as follow
e E(r) <0:

E(r)e"Q*
R(t.r)-QE())(coshn—l— (r)e"
7 —sinhp =

s E(r) =0

).
(=2B())*" B,
= 22O e tae)) -

M(r)?
Q* Q*
en) = § (it * arrzn + 107
1/3
QF  18v3/243t — ta(r)]* M(r)* - [t~ tn(r) @
Lit,r) = (435[g_:,,(r)]’m(r)- i )
® E(r)>0:
) 2

R(t,r) = 2ﬁré((r)) (coﬁhn -1+ E( )e'Q

n —sinhny =

e ):
(E(r)*? E(r)e"Q*
M) [t—ta(r)] + M(r)?
These solutions are valid even for Q = Q(r) with the mass of Eq. (27)

M'(r) = 3ot )R (67) + Q) R((’i)‘:(‘ 1),




Characterization of the horizons

The expansion for ingoing and outgoing null geodesics is:

[2m _Q? /2m _Q?
9(4) o (1 _ R+2ER2>v g(n) o <_1 _ RHE!??) < 0.

V14+2E VI142E

9(@) 0= 1= % — %- Its roots are

R =M+ /M2 — Q2 (26)

To study the horizon of the CCBH, we consider R = R} where the
expansion for null outgoing geodesic changes its sign.



Slowly evolving horizon

We define the evolution parameter C such that the tangent vector
to the dynamical horizon, V , is given by

VH = ¢ — Cp (27)

2M'

1/87R2 — © s = R (28)
2

where A = 47rR_% is the area of the black hole. For Q = cst

2
C=2 1—% : (29)
AH




Slowly evolving horizon
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C function for different values of £ = QB: From this behavior for
the C-function, one can conclude that the charge helps to reach

the quasi-event (isolated) horizon in a shorter time.




Initial conditions

In order to fulfill the FLRW limit and to have a structure with a
void, we choose the the initial density as follows

p(to, r) = pc + ps — r’pg(r), (30)

where pc is the background density, ps is the density of the
collapsing object and pg(r) = aexp(—r?) is a Gaussian term that
controls the location of the void. a is a dimensionless
normalization constant. The initial conditions for the curvature
term E(t, r) and for the physical radius R(t,r) are:

E(ty,r) = —bgrle t1r
R(to,r) =r, (31)

bg and by are constants. FLRW limit is fullfiled for r — oo



Analytical solutions for density evolution

Log (plp.. )

Evolution of the density of the CCBH with our initial density. with
ps = 2%, a= pc. In the FLRW limit, the density is decreasing
while it is increasing inside the structure density. Rs is the radius
of the collapsing structure, p. is the background density. For
decreasing R(t,r), one can see first the decreasing FLRW density
corresponding to the expanding universe, second a void and third
an increasing density for the gravitational collapse.



Numerical solutions

Q=001M
--=Q=01M
------ Q=05M
/: Collapsing CCBH
L A
3 | Y | ELRW
T i ‘\
ES i
z i \
\
\
H "YX
0 H \

"RIR,

The effect of the electric charge (Q) on the collapse rate (H = g)
at a constant time for three different values of Q. When Q is

large, the collapse rate tends to zero for large radius R. This
illustrates the repulsive nature of the electromagnetic energy. In
the case Q = M, this repulsive force halts the collapse and the BH
does not form. Note also that the equation of state for three cases
is the same
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