Quintessential inflation: A unified scenario of inflation and dark energy

Md. Wali Hossain

APCTP Pohang, Korea

Collaborators: C. Q. Geng, R. Myrzakulov, M. Sami and E. N. Saridakis

 $4^{\rm th}$ July, 2017, ICGAC-XIII and IK15, Ewha Womans University, Seoul, Korea

Plan:

- Cosmological dynamics of scalar field
- Quintessential inflation
	- Noncanonical scalar field
	- Canonical scalar field
- **•** Summary

Figure: Cosmic history. Picture is taken from wfirst.gsfc.nasa.gov.

- Cosmic acceleration \Longrightarrow Equation of state $\Longrightarrow w =$ Pressure/Density $< -\frac{1}{3}$ $\overline{3}$.
- **•** Observationally $\implies w_{\text{inf}} \approx -1$ and also currently $w_{\text{DE},0} \approx -1$.
- Cosmic acceleration \implies Equation of state \implies w = Pressure/Density $< -\frac{1}{3}$ $\overline{3}$.
- **Observationally** \implies $w_{\text{inf}} \approx -1$ and also currently $w_{\text{DE},0} \approx -1$.

Dark Energy:

Simplest candidate can be Λ.

$$
\sum_{n=1}^{\infty} \frac{\text{Fine tuning problem}}{\text{PA,theo}} = 10^{-120}
$$

Cosmic Coincidence $\Longrightarrow |\rho_{\Lambda} \approx \rho_{\rm m0}|$.

Alternatives =⇒ Make DE dynamical =⇒ Modification of gravity.

- Cosmic acceleration \implies Equation of state \implies w = Pressure/Density $< -\frac{1}{3}$ $\overline{3}$.
- **Observationally** \implies $w_{\text{inf}} \approx -1$ and also currently $w_{\text{DE},0} \approx -1$.

Dark Energy:

Simplest candidate can be Λ.

Fine tuning problem =⇒ $\rho_{\Lambda,obs}$ $\rho_{\Lambda,\text{theo}}$ $= 10^{-120}$

Cosmic Coincidence $\Longrightarrow |\rho_{\Lambda} \approx \rho_{\rm m0}|$.

Alternatives =⇒ Make DE dynamical =⇒ Modification of gravity.

Inflation:

 $\mathcal{L} = \partial_{\mu}\phi\partial^{\mu}\phi + V(\phi)$. ϕ is a scalar field.

5 / 20

Tracker

Scalar field tracks the background during the radiation and matter era and take over matter at recent past \implies Late time solution is an attractor for a wide range of initial conditions

P. J. Steinhardt, L. -M. Wang and I. Zlatev, PRD 59, 123504 (1999)

Figure: Schematic diagram of tracker behavior

- All paths are converging to a common evolutionary track.
- Not all potential can give rise to tracker behavior \implies A limitation.

•
$$
\Gamma > 1
$$
 where $\Gamma = \frac{V''V}{V'^2}$.

- Runaway potentials like $\frac{1}{\phi^n}$ or exponential potential $\mathrm{e}^{\mathrm{M} / \phi}$ can give rise to tracker solution.
- Field's EoS goes towards -1 .

Φ

Figure: Schematic diagram of inverse power law potential, a runaway potential.

- Steep nature of the potential is $needed \implies Field's evolution freezes$ due to the large Hubble damping coming from the background and energy density becomes comparable with the background energy density \implies Field starts evolving and follow the background up to recent past.
- Some potentials which reduce to inverse power law and exponential nature asymptotically can also give tracker solution \implies Example: Double exponential or cos hyperbolic potential.

P. J. E. Peebles and A. Vilenkin, PRD 59, 063505 (1999)

What is it?

A unified description of inflation and late time cosmic acceleration:

P. J. E. Peebles and A. Vilenkin, PRD 59, 063505 (1999)

What is it?

A unified description of inflation and late time cosmic acceleration:

• Scalar field behaves like inflaton at early epochs ⇒ Inflation.

P. J. E. Peebles and A. Vilenkin, PRD 59, 063505 (1999)

What is it?

A unified description of inflation and late time cosmic acceleration:

- Scalar field behaves like inflaton at early epochs \implies Inflation.
- **•** Same scalar field behaves like quintessence field at the late times \implies Late time cosmic acceleration.

Quintessential Inflation

Figure: Schematic diagram of an effective potential which can give quintessential inflation.

Figure: Schematic diagram of an effective potential which can give quintessential inflation.

Problems

- **1** Find out a suitable potential.
- **2** Scalar field survives until late times \implies potential is typically of a run-away type \Longrightarrow One requires an alternative mechanism of reheating e.g., instant preheating.
- **3** Long kinetic regime enhances the amplitude of relic gravitational waves \implies violates nucleosynthesis constraints at the commencement of radiative regime.

CASE II: With noncanonical scalar field: Variable gravity

C. Wetterich, PRD 89, 024005 (2014)

In the Einstien frame, let us consider:

- A noncanonical kinetic term of a scalar field.
- A nonminimal coupling between massive neutrinos and noncanonical scalar field.

Which lead to the following action,

C. Wetterich, PRD 89, 024005 (2014) MWH, R. Myrzakulov, M. Sami and E. N. Saridakis, PRD 90, 023512 (2014)

$$
S = \int d^4x \sqrt{-g} \left[-\frac{M_{\rm Pl}^2}{2} R + \left[\frac{k^2(\phi)}{2} \partial^\mu \phi \partial_\mu \phi \right] + V(\phi) \right] + S_m + S_r
$$

$$
+ S_\nu (C^2 g_{\alpha\beta}; \Psi_\nu),
$$

$$
k^2(\phi) = \left(\frac{\alpha^2 - \tilde{\alpha}^2}{\tilde{\alpha}^2}\right) \frac{1}{1 + \beta^2 e^{\alpha \phi / M_{\rm Pl}}} + 1,
$$

$$
C^2(\phi) = A e^{2\tilde{\gamma}\alpha \phi / M_{\rm Pl}}, \qquad V(\phi) = M_{\rm Pl}^4 e^{-\alpha \phi / M_{\rm Pl}},
$$

where $\beta \implies$ can be fixed from inflation.

Canonical Form of the Action

Let us consider the transformation,

$$
\sigma = \mathbb{k}(\phi),
$$

$$
k^2(\phi) = \left(\frac{\partial \mathbb{k}}{\partial \phi}\right)^2
$$

The action becomes,

$$
S_E = \int d^4x \sqrt{g} \left[-\frac{M_{\rm Pl}^2}{2} R + \frac{1}{2} \partial^{\mu} \sigma \partial_{\mu} \sigma + V(\mathbb{k}^{-1}(\sigma)) \right] + S_m + S_r + S_{\nu} (\mathcal{C}^2 g_{\alpha \beta}; \Psi_{\nu}).
$$

 $\implies \sigma$ is the canonical scalar field.

Figure: 1σ (yellow) and 2σ (light yellow) contours for Planck 2015 results, and 1σ (grey) and 2σ (light grey) contours for Planck 2013 results, on $n_s - r$ plane. Additionally, we depict the predictions of our scenario, for $\tilde{\alpha} \rightarrow 0$ and e-folding N varying between 55 and 70.

C. Q. Geng, MWH, R. Myrzakulov, M. Sami and E. N. Saridakis, PRD 92, no. 2, 023522 (2015)

Let us consider the following action,

$$
\mathcal{S} = \int d^4x \sqrt{-g} \left[\frac{M_{\rm Pl}^2}{2} R - \frac{1}{2} \partial^\mu \phi \partial_\mu \phi - V(\phi) \right] + \mathcal{S}_{\rm m} + \mathcal{S}_{\rm r} + \mathcal{S}_{\nu} \left(\mathcal{C}^2 g_{\alpha\beta}, \Psi_{\nu} \right) ,
$$

C. Q. Geng, MWH, R. Myrzakulov, M. Sami and E. N. Saridakis, PRD 92, no. 2, 023522 (2015)

Let us consider the following action,

$$
S = \int d^4x \sqrt{-g} \left[\frac{M_{\rm Pl}^2}{2} R - \frac{1}{2} \partial^\mu \phi \partial_\mu \phi - V(\phi) \right] + S_{\rm m} + S_{\rm r} + S_{\nu} \left(C^2 g_{\alpha\beta}, \Psi_{\nu} \right) ,
$$

$$
C^{2}(\phi) = Ae^{2\gamma\phi/M_{\rm Pl}}, \qquad V(\phi) = V_0 e^{-\lambda\phi^{n}/M_{\rm Pl}^{n}},
$$

C. Q. Geng, MWH, R. Myrzakulov, M. Sami and E. N. Saridakis, PRD 92, no. 2, 023522 (2015)

Let us consider the following action,

$$
S = \int d^4x \sqrt{-g} \left[\frac{M_{\rm Pl}^2}{2} R - \frac{1}{2} \partial^\mu \phi \partial_\mu \phi - V(\phi) \right] + S_{\rm m} + S_{\rm r} + S_{\nu} \left(C^2 g_{\alpha\beta}, \Psi_{\nu} \right) ,
$$

$$
\mathcal{C}^2(\phi) = A e^{2\gamma\phi/M_{\rm Pl}}, \qquad \qquad V(\phi) = V_0 e^{-\lambda\phi^n/M_{\rm Pl}^n},
$$

C. Q. Geng, MWH, R. Myrzakulov, M. Sami and E. N. Saridakis, PRD 92, no. 2, 023522 (2015)

Let us consider the following action,

$$
S = \int d^4x \sqrt{-g} \left[\frac{M_{\rm Pl}^2}{2} R - \frac{1}{2} \partial^\mu \phi \partial_\mu \phi - V(\phi) \right] + S_{\rm m} + S_{\rm r} + S_\nu \left(C^2 g_{\alpha\beta}, \Psi_\nu \right) ,
$$

 $\mathcal{C}^2(\phi) = A e^{2\gamma \phi/M_{\rm Pl}}$ $V(\phi) = V_0 e^{-\lambda \phi^n / M_{\rm Pl}^n},$

\n $\begin{array}{r}\n 1.0 \\ 0.8 \\ \hline\n 0.0 \\ \hline\n 0.0 \\ 0.0\n \end{array}$ \n	\n $\begin{array}{r}\n 1.1 \\ \hline\n 1.1 \\ \hline\n 1.1 \\ \hline\n 0.2 \\ \hline\n 0.3 \\ \hline\n 0.4 \\ \hline\n 0.0 \\ 0.0\n \end{array}$ \n
\n $\begin{array}{r}\n 1.0 \\ \hline\n 0.1 \\ \hline\n 0.2 \\ \hline\n 0.4 \\ \hline\n 0.0 \\ \hline\n 0.0$	

Figure: We depict the predictions of our scenario, for varying λ (between 10⁻⁶ and 10^{-3}), and n being 4 or 6, with the e-folding value $\dot{\cal N}$ being 50 or 70.

13 / 20

Figure: We depict the predictions of our scenario, for varying n (between 4 and 20), and λ being 10^{-4} or 10^{-5} , with the e-folding value $\mathcal N$ being 50 or 70.

Effect of Neutrinos Coupled with Scalar Field

 $\ddot{\phi} + 3H\dot{\phi} + V'(\phi) = f(\phi)$

• Non-minimal coupling modifies the EoM of scalar field $\Rightarrow \tilde{\gamma}\alpha\left(\rho_{\nu} - 3p_{\nu}\right).$

 $p_{\nu}=\frac{1}{2}$ $\frac{1}{3}\rho_{\nu} \Longrightarrow$ Neutrinos behave like radiation \implies No modification.

• Modification comes into play only when neutrinos become nonrelativistic $\implies p_{\nu} = 0$ \implies Effective potential forms $\implies V_{\text{eff}} = V(\phi) + f(\phi)$ where $f(\phi)$ is a growing function.

Effect of Neutrinos Coupled with Scalar Field

 $\ddot{\phi} + 3H\dot{\phi} + V'(\phi) = f(\phi)$

• Non-minimal coupling modifies the EoM of scalar field \Rightarrow $\tilde{\gamma} \alpha (\rho_{\nu} - 3p_{\nu}).$

 $p_{\nu}=\frac{1}{2}$ $\frac{1}{3}\rho_{\nu} \Longrightarrow$ Neutrinos behave like radiation \implies No modification.

• Modification comes into play only when neutrinos become nonrelativistic $\implies p_{\nu} = 0$ \implies Effective potential forms $\implies V_{\text{eff}} = V(\phi) + f(\phi)$ where $f(\phi)$ is a growing function.

Figure: Schematic diagram of an effective potential.

Effect of Neutrinos Coupled with Scalar Field

 $\ddot{\phi} + 3H\dot{\phi} + V'(\phi) = f(\phi)$

• Non-minimal coupling modifies the EoM of scalar field $\Rightarrow \tilde{\gamma} \alpha (\rho_{\nu} - 3p_{\nu}).$

 $p_\nu=\frac{1}{2}$ $\frac{1}{3}\rho_{\nu} \Longrightarrow$ Neutrinos behave like radiation \implies No modification.

• Modification comes into play only when neutrinos become nonrelativistic $\implies p_{\nu} = 0$ \implies Effective potential forms $\implies V_{\text{eff}} = V(\phi) + f(\phi)$ where $f(\phi)$ is a growing function.

Figure: Schematic diagram of an effective potential.

Dark Energy Scale

Effective potential for exponential potential

$$
V_{\text{eff}}(\phi) = V(\phi) + \hat{\rho}_{\nu} e^{(\tilde{\gamma} \alpha \phi / M_{\text{Pl}})}.
$$

where $\hat{\rho}_\nu = \rho_\nu e^{-(\tilde{\gamma} \alpha \phi / M_{\rm Pl})}$ is independent of ϕ .

Effective potential at the minimum,

$$
V_{\text{eff,min}} = (1 + \tilde{\gamma}) \rho_{\nu}(\phi_{\text{min}}).
$$

 $\Rightarrow \rho_{DE} \approx V_{\text{eff,min}} \sim \rho_{\nu} \Rightarrow$ Sets dark energy scale through neutrino mass scale.

Postinflaionary dynamics

Figure:

 $\gamma=$ 800, $\ \lambda=10^{-8}$, $n=6\,$, $z_{\rm eq}=$ 2.55 and $z_{\text{dur}} = 3$.

Figure: $\gamma=$ 800, $\ \lambda=10^{-8}$, $n=6\,$, $z_{\rm eq}=$ 2.55 and $z_{\text{dur}} = 3$.

- Quintessential inflation is a unified model of inflation and dark energy.
- Large tensor to scalar ratio can be achieved for noncanonical case.
- Small tensor to scalar ratio can be achieved for canonical case with potential steeper than exponential.
- Due the steep behavior of the potential tracker behavior is achieved during the post-inflationary era.
- Nonminimal coupling between massive neutrino and scalar field can give dark energy.

THANK YOU

