

Search for Sphaleron from Ultra-High-Energy Cosmic rays and Neutrinos

Yongsoo Jho

Yonsei University

[arXiv: 1707:xxxxx, to be appear]

A brief introduction of EW Sphaleron

@ Electroweak "theta-vacua"

$$\Delta N_f = \frac{g^2}{16\pi^2} \int d^4x \operatorname{Tr} \left[W_{\mu\nu} \tilde{W}^{\mu\nu} \right] = \int d^4x \ \partial_{\mu} K^{\mu}$$

generally non-vanishing Chern-Simons Number

$$\pi_3(SU(2)) = \mathbb{Z}$$

We will focus on sphaleron.

EN Sphaleron Events in High-Energy Cosmic rays

o Cross section of the Sphaleron event

$$\sigma(\Delta N_f = \pm 1) = \sum_{m_W^2} \sum_{ab} \int dE \frac{d\lambda_{ab}}{dE} \exp\left(\frac{8\pi}{\alpha_W} S(E)\right)$$

Instanton Tunneling
Probability
between neighbor vacua

There are some debates for actual cross section above the threshold E

EW Sphaleron Events in High-Energy Cosmic rays

o Cross section of the Sphaleron event

$$\sigma(\Delta N_f = \pm 1) = \sum_{m_W^2} \sum_{ab} \int dE \frac{d\lambda_{ab}}{dE} \exp\left(\frac{8\pi}{\alpha_W} S(E)\right)$$

Overall factor (can be tested by experiment)

depends on initial and final state configurations

Energy spectrum with

PDF convolution

(Uncertainty

at small x and high E region)

EW Sphaleron Cross section in UHECR

o Cross Section for pp and vN collisions

For Sphaleron,
We set p=1
here.

OHE NEULTINO Cross sections

New Physics Search with UHE Neutrinos

- © Q: Did we reached the sensitivity for observing UHE neutrino event from SM CC+NC or New Physics(such as Microscopic BH, or EW Sphaleron)?
- © Q: Can we identifying New Physics UHE neutrino Event from ordinary CC+NC UHE neutrino event?

OHE MEULTINO EVENL TOLE

$$\frac{dN}{dt} = N_A \int_0^1 dy \int_0^\infty dE_{\nu} \left(Att_{\nu}^f(E_{\nu}) \right) \frac{d\phi_{\nu}^f(E_{\nu})}{dE_{\nu}} M_{eff}(E_{\nu}) \frac{d\sigma_{int}^f(E_{\nu}, y)}{dy}$$

Neutrino

Attenuation and
Regeneration while
going through the
Earth

Mostly GZK neutrino from the interaction between

SM or NP

UHE Cosmic rays and CMB photon

Neutrino Attenuation in the Earth with NP contribution

$$\begin{split} \frac{\partial}{\partial X} \left(\frac{d\phi_{\nu_{\ell}}^f(E_{\nu}, X)}{dE_{\nu}} \right) &= -N_A \, \left(\sigma_{\nu_{\ell}}^{\text{NC}}(E_{\nu}) + \sigma_{\nu_{\ell}}^{\text{CC}}(E_{\nu}) \right) \, \frac{d\phi_{\nu_{\ell}}^f(E_{\nu}, X)}{dE_{\nu}} \\ &+ N_A \, \int_0^1 \, \frac{dy}{1-y} \, \frac{d\sigma_{\nu_{\ell}}^{\text{NC}}(E_{\nu}/(1-y), y)}{dy} \, \frac{d\phi_{\nu_{\ell}}^f(E_{\nu}/(1-y), X)}{dE_{\nu}} \end{split}$$

- Attenuation at High E only contribute O(1) correction
- But Earth-Skimming region it can be important.

UHE neutrino Event With SM CC+NC interactions

We've reached the floor (for SM CC+NC interaction case.)

UHE neutrino Event Spectrum With SM CC+NC interactions

UHE NEULTINO EVENT With NP interactions

Many parameter space of New Physics are still within GZK neutrino flux uncertainty band

UHE neutrino Event Spectrum With NP interactions

How to identify NP-induced process?

- Actually, any arbitrary initial and final state is possible if Total Charge conserved (or equivalently, if Total Isospin conserved)
- 12 LH fermion numbers should have same difference

$$L_1=L_2=L_3$$
 Doublets $=\Delta q_1=\Delta q_1=\Delta q_1=\Delta q_1$ should be included $=\Delta q_2=\Delta q_2=\Delta q_2=\Delta q_2$ $=\Delta q_3=\Delta q_3=N=\int d^4x\;\partial_\mu K^\mu$

EVENT COLOCIES

- o Shower (8 jets + 2 neutrinos, or electron)
- "Q"-Event = Shower + Muon Track (for 8~9 jets
 + 1 muon + 1 neutrinos)
- "Double-bang" Event = Shower + Tau decay (for 8~9 jets + 1 tau + 1 neutrinos)

NP Event Cate for each cases

Event spectrum SMCC+NCvs.NP

Extensive Air Shower Event Analysis

Execusive Air Shower

e Longitudinal Development

Atmospheric Interaction Depth $X = \int_{x_0}^{x_f} \rho(x) \ dx$

$$N(X) = N_{max} \left(\frac{X - X_0}{X_{max} - X_0} \right)^{\frac{X_{max} - X_0}{\lambda}} \exp\left(\frac{X_{max} - X}{\lambda} \right)$$

We use Gaisser-Hillas function as a generic fitting for EAS

we use

- our own MC generator for Parton Level Event generator
- PYTHIA8 for primary hadronization
- AIRES 2.8.4 package for cascade simultion in Air Shower
 - SYBILL 2.1 for hadronic interaction

Execusive Air Shower

e Longitudinal Development

Similar to Heavy Nuclei case

(smaller Xmax values)

Low Altitude

High Altitude

Extensive Air

o Average Energies after primary harmonization

Energetic $y+\pi^{\pm}+K^{\pm}$ muons and $e^{-}+e^{+}$ neutrinos from $\mu^{-}+\mu^{+}$ v_{e} \bar{v}_{e} process

Pions and photons from ordinary QCD Shower

CONCLUSION

- Non-Resonance type New Physics above 0(100) PeV neutrinos energies can be tested in large volume neutrino telescopes.
- Ourcertainty of UHE neutrino flux is quite large, and new physics contribution still can hide in them. Future Experiments, They can be tested further.
- Exotic event topologies might be helpful to identify NP event in the neutrino detector and ground CR detector array.

Thank you