

bmb+f - Förderschwerpunkt

Astroteilchenphysik

Großgeräte der physikalischen Grundlagenforschung

Searches for Magnetic Monopoles with IceCube

Anna Pollmann for the IceCube Collaboration

Magnetic Monopoles

• elemental magnetic charge (Dirac)

 $g_D = e / 2 a \approx 68.5 e$

- with huge mass created
 - shortly after the Big Bang (GUT) 10^{13} GeV ≤ M_{MM} ≤ 10^{19} GeV
 - in intermediate stages of symmetry breaking (IMM) $10^7 \text{ GeV} \leq M_{MM} \leq 10^{13} \text{ GeV}$
 - at accelerators (electroweak and other) $M_{MM} \sim \text{TeV}, \ \Phi \sim 10^{-22} \text{ cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$
- ionization power

 $E_{dep} \sim g^2$ (Muons: ~ Z² / β^2)

acceleration in magnetic fields for

 $M_{MM} \leq 10^{14} \text{ GeV to } E_{kin} \leq 10^{15} \text{ GeV}$

• trapping around galaxy, sun, Earth

 $v \sim 10^{-3}$ / 10^{-4} / 10^{-5} c

Monopole detection at relativistic speeds

Cherenkov radiation

Direct

- a charge with velocity > 0.75 c
- Cherenkov light originates from a cone

Indirect

- a charge knocks electrons off their atoms
- electrons are energetic enough to emit Cherenkov light
- diffuse Cherenkov light around track

Monopole Signatures in IceCube

Rackground

Monopole Signatures in IceCube

Background

Monopole Signatures in IceCube

EPJ C76 (2016) 133

Selection variables

- number of sensors recording a hit
- speed

.

- · direction
- gap within the hits

EPJ C76 (2016) 133

Selection variables

- number of sensors recording a hit
- speed

•

- direction
- gap within the hits

EPJ C76 (2016) 133

Selection variables

- number of sensors recording a hit
- speed
- direction
- gap within the hits

EPJ C76 (2016) 133

Selection variables

- number of sensors recording a hit
- speed
- · direction
- gap within the hits

Analysis scheme

- simple selection criteria, followed by machine learning
- blind analysis based on background and signal simulation
- background rate of ≤ 3 events / year predicted

EPJ C76 (2016) 133

Analysis scheme

EPJ C76 (2016) 133

- simple selection criteria, followed by machine learning
- blind analysis based on background and signal simulation
- background rate of ≤ 3 events / year predicted
- unblinding: analysis applied on one year of data revealed 3 events
- 1 & 2: obvious background shape -> muon (neutrino)
- 3: too dim

Analysis scheme

EPJ C76 (2016) 133

- simple selection criteria, followed by machine learning
- blind analysis based on background and signal simulation
- background rate of ≤ 3 events / year predicted
- unblinding: analysis applied on one year of data revealed 3 events
- 1 & 2: obvious background shape -> muon (neutrino)
- 3: too dim

Limits

Slow monopole interaction

- decay of proton -> electromagnetic cascade
- depends on the gauge group, only for massive MM
- speed dependent cross section

 $\sigma_{CAT} = \sigma_0 / \beta$

theoretical estimation

 $10^{-21} \,\mathrm{cm}^2 \le \sigma_{CAT} \le 10^{-27} \,\mathrm{cm}^2$

- free mean path $\lambda = 1 / \sigma_{CAT}$
- IceCube: $10^{-3} \leq \beta \leq 10^{-2}$
- typical event length
 - ~ milli seconds
- PMT noise and muons as background

- decay of proton -> electromagnetic cascade
- depends on the gauge group, only for massive MM
- speed dependent cross section

 $\sigma_{CAT} = \sigma_0 / \beta$

theoretical estimation

 $10^{-21} \,\mathrm{cm}^2 \le \sigma_{CAT} \le 10^{-27} \,\mathrm{cm}^2$

- free mean path $\lambda = 1 / \sigma_{CAT}$
- IceCube: $10^{-3} \leq \beta \leq 10^{-2}$
- typical event length
 - ~ milli seconds
- PMT noise and muons as background

Monopole signal

- decay of proton -> electromagnetic cascade
- depends on the gauge group, only for massive MM
- speed dependent cross section

 $\sigma_{CAT} = \sigma_0 / \beta$

theoretical estimation

 $10^{-21} \,\mathrm{cm}^2 \le \sigma_{CAT} \le 10^{-27} \,\mathrm{cm}^2$

- free mean path $\lambda = 1 / \sigma_{CAT}$
- IceCube: $10^{-3} \leq \beta \leq 10^{-2}$
- typical event length
 - ~ milli seconds
- PMT noise and muons as background

Monopole signal + Air shower

- reconstruction: search for independent local coincidences
- triplets are 3 pairs of hits fulfilling certain conditions
 - duration
 - angle
 - speed
- event selection: triplets should be consistent with a straight particle track

Monopole signal + Air shower + Noise

- reconstruction: search for independent local coincidences
- triplets are 3 pairs of hits fulfilling certain conditions
 - duration
 - angle
 - speed
- event selection: triplets should be consistent with a straight particle track

Reconstructed monopole signal

- reconstruction: search for independent local coincidences
- triplets are 3 pairs of hits fulfilling certain conditions
 - duration
 - angle
 - speed
- event selection: triplets should be consistent with a straight particle track

- reconstruction: search for independent local coincidences
- triplets are 3 pairs of hits fulfilling certain conditions
 - duration
 - angle
 - speed
- event selection: triplets should be consistent with a straight particle track

- 1 year of data: 2012/2013
- 5 years available

New challenge: distinguish fast monopoles from astrophysical neutrinos

μ-neutrino 2.6 ± 0.3 PeV

Simulation of a monopole with 0.99 *c*

New search at low speeds

Luminescence as new detection method:

- isotropic light emission after electronic excitation
- experimental measurement of light yield

- data taking > 1 year
- enabling new monopole
 parameter space < 0.5 c

Arxiv:1610:06397

Summary

- IceCube's large volume provides best sensitivities to intermediate / high mass magnetic monopoles
- non-relativisitic searches $10^{13} \text{ GeV} \leq M_{MM} \leq 10^{19} \text{ GeV}$
- relativistic searches $10^8 \text{ GeV} \le M_{MM} \le 10^{14} \text{ GeV}$
- new searches extending to lower masses
- ongoing analyses at all channels

IceCube - Highly relativistic

- speed distribution instead of distinct speeds
- indirect Cherenkov light included
- challenge: separation from astrophysical neutrinos
- later: ultra relativistic speeds incl. radiative losses from monopoles
- explicit limits for

 $g = n \cdot g_D$

with

- n = 1: Dirac charge
- n = 2: many GUTs
- n = 3: *d* instead of e^{-} as elemental electric charge
- n = 6: Dyons have $2g_D$ (Schwinger)

Sensitivity

- 1 year of data: 2012/2013
- 4 years available

IceCube · Iow relativistic · Iuminescence

Light Yield of Monopoles

 $\begin{array}{l} v &= 0.6 \ c \\ dN/dE &= 2 \ \gamma/MeV \\ \tau &= 5000 \ ns \end{array}$

Indirect Cherenkov Light

Indirect Cherenkov Light

+

Luminescence

IceCube · Iow relativistic · Iuminescence

Light Yield of Monopoles

 $\begin{array}{l} v &= 0.6 \ c \\ dN/dE &= 2 \ \gamma/MeV \\ \tau &= 5000 \ ns \end{array}$

Indirect Cherenkov Light

Indirect Cherenkov Light

+

Luminescence

Monopole - Electron Cross Section

Mott

- Rutherford for monopoles
- quantum mechanical correction
- magneto-static
- semi-classical

KYG

- electrodynamic
- quantum field theory

Interaction - The k factor

$$T_{\max} = \frac{2m_e c^2 \beta^2 \gamma^2}{1 + \frac{2\gamma m_e}{M} + \left(\frac{m_e}{M}\right)^2}$$

$$T(b) \propto rac{1}{b_{
m min}^2 + b^2}$$

 $T_m = k \cdot T_{\text{max}}$ with k = 0.69

Event Selection - Sensitivity optimisation

- Feldman Cousins with uncertainties
- cut at BDT score 0.47 to gain statistics and stability

Event Selection - Sensitivity optimisation

Monopoles

Interaction - Energy loss

Event Selection - After Pull-Validation

Results

The Pull-validation process

Large scale water Cherenkov Neutrino Telescopes

Principle of monopole searches at v-Telescopes

- simulation of monopoles according to theories
 - Dirac charge
 - arbitrary mass / no propagation through Earth
- light production
- discrimination from background
 - speed
 - light yield
 - angular distribution

- down-going monopole vertically from north to south
- up-going monopole vertically from south to north
- solid: v/c = 0.76
- dotted: $\gamma = 10$

Large scale water Cherenkov Neutrino Telescopes

KM3NeT and BAIKAL

www.universetoday.com/wp-content/uploads/ 2011/12/km3net-geometry-cylinder-example.jpg www.lifefoc.com/photos/server4/lake_baikal_ice_in_winter.jpg upload.wikimedia.org/wikiversity/en/thumb/ 3/3b/Baikal_array.gif/200px-Baikal_array.gif