Strangeness in neutron star equation of state and cooling

in collaboration with Yeunhwan Lim, Kyujin Kwak & Chang Ho Hyun

PRC 89, 055804 (2014)

IJPME 24, 1550100 (2015)

IJMPE 26, 1750015 (2017)

arXiv:1608.02078

Chang-Hwan LeePusan National University

Contents

- 1. Motivation
- 2. NS EOS with strangeness
 - hyperons
 - kaons
- 3. NS Cooling with strangeness

Properties of Neutron Star

Infinite nuclear matter / mean field approaches

Physics of Dense Matter

Strong interactions mediated by gluons with color charges

- Chiral perturbation theory
- QCD effective models
- Color superconductivity
- Color-flavor locking
- AdS/QCD

Nuclear matter is not an ideal gas

F. Weber 2005

- still uncertain due to the nature of strong interactions
- introduction of 3 body forces
- exotic states with strangeness
-

Maximum Mass of Neutron Stars

Neutron Star-White Dwarf Binaries

1.97 solar mass NS: Nature 467 (2010) 1081

2.01 solar mass NS: Science 340 (2013) 6131

Role of strangeness

- dense matter with u & d quarks: p(uud) + n(udd)
- s-quark can reduce pressure of dense matter via neutrino emission
- reduce maximum mass of neutron stars

There are possibilities of NS EOS with strangeness

Neutron Star EOS with Strangeness

 $\Lambda^0(uds)$: 1116 MeV

 $K^-(\bar{u}s)$: 495 MeV

Maximum NS mass

Possibilities with Repulsive Lambda-Lambda interactions

NS mass with kaons

Data: Steiner et al. ApJ 722, 33 (2010)

prefer smaller Sigma_KN (larger chemical potential)

NS mass with strangeness

- In general, strangeness reduces maximum NS mass
- But, there still remain possibilities for the strangeness with repulsive Lambda-Lambda interaction or smaller Sigma_KN

With Lambda hyperons

SLy4	SkI4	SGI
$1.15 \sim 1.85$	$1.47 \sim 1.97 \ 1$	$44 \sim 2.04$

With kaon condensation

consistent with 2 Msun NS

a_3m_s SLy4 SkI4 SGI -134 $1.94 \sim 1.99$ $2.00 \sim 2.06$ $2.12 \sim 2.19$ -178 $1.74 \sim 1.83$ $1.84 \sim 1.90$ $1.95 \sim 2.03$ -222 $1.49 \sim 1.79$ $1.64 \sim 1.85$ $1.75 \sim 1.93$				
$-178\ 1.74 \sim 1.83\ 1.84 \sim 1.90\ 1.95 \sim 2.03$	a_3m_s	SLy4	SkI4	SGI
	-134	$1.94 \sim 1.9$	$9\ 2.00 \sim 2.06$	$2.12 \sim 2.19$
$-222\ 1.49 \sim 1.79\ 1.64 \sim 1.85\ 1.75 \sim 1.93$	-178	$1.74 \sim 1.83$	$31.84 \sim 1.90$	$1.95 \sim 2.03$
	-222	$1.49 \sim 1.79$	$9\ 1.64 \sim 1.85$	$1.75 \sim 1.93$

NS cooling with Strangeness

Q) Can **NS EOS with strangeness** be consistent with both **NS maximum mass & NS cooling**?

Neutron Star Cooling

depends on

- particle fraction
- elements in the envelope
- nuclear superfluidity
- •

arXiv:1501.04397

Cooling Mechanism

- Photon emission : mostly on the surface
- Neutrino emission : entire region, major energy loss

Name	Process	Emissivity ^b (erg cm ⁻³ s ⁻¹)	
Modified Urca (neutron branch)	$n+n \rightarrow n+p+e^- + \bar{\nu}_e$ $n+p+e^- \rightarrow n+n+\nu_e$	\sim 2×10 ²¹ \mathcal{R} T_9^8	Slow
Modified Urca (proton branch)	$p+n \rightarrow p+p+e^-+\bar{\nu}_e \ p+p+e^- \rightarrow p+n+\nu_e$	$\sim 10^{21} \mathcal{R} T_9^8$	Slow
Bremsstrahlung	$egin{aligned} n+n & ightarrow n+n+var{v} \ n+p & ightarrow n+p+var{v} \ p+p & ightarrow p+p+var{v} \end{aligned}$	$\sim 10^{19} \mathcal{R} T_9^8$	Slow
Cooper pair formations	$egin{aligned} n+n & ightarrow [nn] + var{v} \ p+p & ightarrow [pp] + var{v} \end{aligned}$	$\sim 5 \times 10^{21} \mathcal{R} T_9^7 \\ \sim 5 \times 10^{19} \mathcal{R} T_9^7$	
Direct Urca	$egin{aligned} n & ightarrow p + e^- + ar{ u}_e \ p + e^- & ightarrow n + u_e \end{aligned}$	$\sim 10^{27} \mathcal{R} T_9^6$	Fast
π^- condensate K^- condensate	$n+<\pi^-> \to n+e^-+\bar{\nu}_e$ $n+< K^-> \to n+e^-+\bar{\nu}_e$	$\sim 10^{26} \mathcal{R} T_9^6$ $\sim 10^{25} \mathcal{R} T_9^6$	Fast Fast

9 mm 1 1 c - r = 4.1

Cooling with strangeness

$$egin{aligned} \Lambda
ightarrow p + l + ar{
u}_l \ p + l
ightarrow \Lambda +
u_l \ , \end{aligned}$$

$$n + \langle K^- \rangle \to n + l + \bar{\nu}_l$$

$$A \to p + l + \bar{\nu}_l \ + l \to \Lambda + \nu_l ,$$
 $Q_{\Lambda} = 4.0 \times 10^{27} \frac{m_{\Lambda}^* m_p^*}{m_{\Lambda} m_p} \left(\frac{n_e}{n_0}\right)^{1/3} R T_9^6 \ imes \Theta_t \, \mathrm{erg} \, \mathrm{cm}^{-3} \, \mathrm{s}^{-1} ,$

$$n + \langle K^- \rangle \to n + l + \bar{\nu}_l$$

$$Q_K = 2.5 \times 10^{26} \frac{m_n^{*2}}{m_n^2} \left(\frac{n_e}{n_0}\right)^{1/3} T_9^6 \,\theta_K^2 \times \tan^2 \theta_C \, \mathrm{erg} \, \mathrm{cm}^{-3} \, \mathrm{s}^{-1} \,,$$

$$n \to p + e^- + \bar{\nu}_e$$
$$p + e^- \to n + \nu_e$$

Role of nucleon direct Urca (without strangeness)

	SLy4	SkI4
$M_{ m max}$	2.07 (-)	2.19 (1.63)

maximum mass without strangeness (critical mass for nucleon direct Urca)

Without direct Urca

With direct Urca

Cooling with hyperons (Skyrme force model SkI4)

without hyperons (sudden drop between 1.6~1.7)

with hyperons (sudden drop between 1.5~1.6)

Cooling with hyperons

NS mass : $1.0 - 2.0 M_{\odot}$

- abrupt drop: ingnition of direct URCA
- stiffer EoS allows early direct Urca
- no calculated-curve can explain middle-age data
- require real fine-tuning to explain the data

Sudden drop between 1.5~1.6

Q) Whether masses of all neutron stars with temperature estimation lie in such a narrow mass range?

Negligible contribution with kaons

density for nucleon direct Urca < density for kaon condensation

Nucleon direct Urca is the dominant neutrino emission process

Discussion

- Strangeness in NS seems to be still alive.
- Cooling requires real fine tuning of the parameters in the theory.
- New observations (X-ray, GW, ..) & experiments (RAON in Korea, ...)
 will be able to provide important clues for NS EOS.