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FIG. 1. Schematic diagram for the EPR pair case we are dis-
cussing with two measurements at Alice and Bob’s locations.
The AdS blackhole is present in the finite temperature case,
which we briefly discuss in the last section.

Here cos ✓AB = ~nA·~nB depends on the cross angle of the
measurements. And from (3) we have

h s|C| si = � cos ✓AB � cos ✓AB0 � cos ✓A0B + cos ✓A0B0 .
(6)

In particular, if we fix the direction of A and A0, as
well as the angle between B and B0 as ⇡/2

✓A = 0, ✓A0 =
⇡

2
, ✓B0 = ✓B � ⇡

2
, (7)

then we have the relation depended on the direction of
B,B0,

h s|C| si = �2
p
2 cos

�
✓B � ⇡

4

�
(8)

For 0 < ✓B < ⇡/2, the Bell inequality |hCi|  2 can be
violated, and we reach the maximal violation at ✓B =
⇡/4, with an extra factor of

p
2. Now we will see what is

the formula of Bell inequality in the holographic model
of EPR pair in the next section.

III. HOLOGRAPHIC EPR

It is proposed in [7] that an entangled color singlet
quark anti-quark (q-q̄) pair in SYM, can be described by
an open string with both of its endpoints attached to the
boundary of AdS5. The string connecting the pair is dual
to the color fluxtube between two quarks, with a Coulom-
bic potential 1/r as demanded by the scale invariance of
boundary theory. Unlike in a confining theory, the pair
can separate arbitrarily far from each others.

Numerical solutions of the string shapes with di↵erent
boundary behaviors can be found in [13–15], and an ana-
lytic solution for an accelerating string was found in [16].

In the analytic solution the open string is also accelerated
on the Poincáre patch of the AdS5

ds2 =
R2

w2

⇥� dt2 + dw2 + (dx2 + dy2 + dz2)
⇤
, (9)

with the AdS radius R and extra dimension w. The string
solution in the AdS5 bulk is given by

z2 = t2 + b2 � w2. (10)

The quark and anti-quark live on the AdS boundary w =
0. They are accelerating along the direction of z, and
moving with the solution z = ±p

t2 + b2. Thus, the two
entangled particles are out of causal contact with each
others, and the physics of entanglement in a single EPR
pair can be captured by the geometry of an ER bridge
on the string worldsheet in AdS5.
String fluctuations.— To consider the string fluctua-

tions, we transform the solution to the co-moving space-
time (⌧, r, x, y, z̃) of the accelerating quarks via

z = b
p
1� ũ exp

⇣ z̃
b

⌘
cosh

⌧

b
,

t = b
p
1� ũ exp

⇣ z̃
b

⌘
sinh

⌧

b
,

w = b
p
ũ exp

⇣ z̃
b

⌘
. (11)

This frame is an accelerating frame with a constant ac-
celeration a = 1/b. And it only maps the upper part of
the string (0 < w < b) into the proper frame of the accel-
erating quark with 0 < ũ < 1. Plug this transformation
(11) in (10), one finds the string configuration becomes
z̃ = 0. And the metric (9) becomes

ds2 =
R2

b2ũ

h
� f (ũ) d⌧2 +

b2

4ũ

dũ2

f (ũ)
+ dz̃2

+
�
dx2 + dy2

�
exp (�2z̃/b)

i
, (12)

where f(ũ) = 1 � ũ. The event horizon ũ = 1 separates
the string into two causally disconnected parts. Further-
more, the Hawking temperature TH = 1

2⇡b matches with
the Rindler temperature TU = a

2⇡ .
Let (⌧, ũ) be the new worldsheet coordinates in the

current frame. The fluctuations in x, y, z̃ directions are
symmetric along the string trajectory z̃ = 0. Thus, we
consider the string fluctuation as Xµ = (b⌧̃ , ũ, b�̃i(⌧, ũ)),

with i = x, y, z̃. When �̃i ⌧ 1, the action of string be-
comes

S ' �T0R
2

Z
d⌧̃dũ

2ũ3/2

 
1 + 2ũf

X

i

�̃02i � 1

2f

X

i

˙̃
�2i

!
.

(13)

The equations of motion for the fluctuations on the string
are

@ũ

 
2ũf

�̃0i
u03/2

!
� @⌧̃

 
˙̃
�i

2fu03/2

!
= 0. (14)
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FIG. 1. Schematic diagram for the EPR pair case we are dis-
cussing with two measurements at Alice and Bob’s locations.
The AdS blackhole is present in the finite temperature case,
which we briefly discuss in the last section.
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For 0 < ✓B < ⇡/2, the Bell inequality |hCi|  2 can be
violated, and we reach the maximal violation at ✓B =
⇡/4, with an extra factor of

p
2. Now we will see what is

the formula of Bell inequality in the holographic model
of EPR pair in the next section.
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boundary theory. Unlike in a confining theory, the pair
can separate arbitrarily far from each others.

Numerical solutions of the string shapes with di↵erent
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In the analytic solution the open string is also accelerated
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, (9)
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The quark and anti-quark live on the AdS boundary w =
0. They are accelerating along the direction of z, and
moving with the solution z = ±p

t2 + b2. Thus, the two
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pair can be captured by the geometry of an ER bridge
on the string worldsheet in AdS5.
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This frame is an accelerating frame with a constant ac-
celeration a = 1/b. And it only maps the upper part of
the string (0 < w < b) into the proper frame of the accel-
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2ũf

�̃0i
u03/2

!
� @⌧̃

 
˙̃
�i

2fu03/2

!
= 0. (14)

2
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The AdS blackhole is present in the finite temperature case,
which we briefly discuss in the last section.
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2ũf

�̃0i
u03/2

!
� @⌧̃

 
˙̃
�i

2fu03/2

!
= 0. (14)

2
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The AdS blackhole is present in the finite temperature case,
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violated, and we reach the maximal violation at ✓B =
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and take the measurements along the (x, y) plane, i.e.
nA = (cos ✓A, sin ✓A, 0) etc., it is straightforward to show

Gs
AB ⌘ h s|AsBs| si = � cos ✓AB . (5)

Here cos ✓AB = ~nA·~nB depends on the cross angle of the
measurements. And from (3) we have

h s|Cs| si = � cos ✓AB � cos ✓AB0 � cos ✓A0B + cos ✓A0B0 .
(6)

In particular, if we fix the direction of A and A0, as
well as the angle between B and B0 as ⇡/2

✓A = 0, ✓A0 =
⇡

2
, ✓B0 = ✓B � ⇡

2
, (7)

then we have the relation depended on the direction of
B,B0,

h s|Cs| si = �2
p
2 cos

�
✓B � ⇡

4

�
(8)

For 0<✓B<⇡/2, the Bell inequality |hCsi|  2 can be
violated, and we reach the maximal violation at ✓B =
⇡/4, with an extra factor of

p
2. Now we will see what is

the formula of Bell inequality in the holographic model
of EPR pair in the next section.

III. HOLOGRAPHIC EPR AND BELL
INEQUALITY

In Ref. [9], it is proposed that an entangled color sin-
glet quark anti-quark (q-q̄) pair in SYM can be described
by an open string with both of its endpoints attached to
the boundary of AdS5. The string connecting the pair is
dual to the color fluxtube between the two quarks, with a
1/r Coulomb potential as required by the scale invariance
of boundary theory. Note that there is no confinement
in this theory, therefore the pair can separate arbitrarily
far away from each other.

Numerical solutions of the string shapes with di↵erent
boundary behaviors can be found in [17–19], and an ana-
lytic solution for an accelerating string was found in [10].
In the analytic solution the open string is also accelerated
on the Poincáre patch of the AdS5

ds2 =
L2

w2

⇥
� dt2 + dw2 + (dx2 + dy2 + dz2)

⇤
, (9)

with the AdS radius L and extra dimension w. The string
solution in the AdS5 bulk is given by

z2 = t2 + b2 � w2. (10)

The quark and anti-quark live on the AdS boundary
w = 0. They are accelerating along the ±z direction, re-
spectively, with the solution z = ±

p
t2 + b2. Therefore,

the two entangled particles are out of causal contact with
each others. The question is, is the physics of entangle-
ment in a single EPR pair captured by the geometry of
an ER bridge on the string worldsheet in AdS5?

FIG. 1. Schematic diagram for the quark(q)-antiquark(q̄)
EPR pair in holography. The left(right) world volume hori-
zon depicts the horizon seen by q(q̄) in its co-moving frame.
The Bell Inequality test is performed by spin measurements
at Alice and Bob’s locations. The AdS blackhole is present
only in the finite temperature case, which we briefly discuss
in the last section.

String fluctuations.— To consider the string fluctua-
tions, we transform the solution to the co-moving space-
time (⌧̃ , r̃, x, y, z̃) of the accelerating quarks via

|z| = b
p
1� r̃ez̃ cosh ⌧̃ ,

t = b
p
1� r̃ez̃ sinh ⌧̃ ,

w = b
p
r̃ez̃. (11)

These two frames, which cover the regions z � 0 and
z  0 separately, are accelerating frames with a constant
acceleration a = 1/b along opposite directions of z. And
(11) only maps the upper part of the string (0 < w < b)
into the proper frames of the accelerating quarks with
0 < r̃ < 1. Plug this transformation (11) in the string
solution (10), the metric (9) becomes

ds2 =
L2

b2r̃

h
� f(r̃)b2d⌧̃2 +

b2

4r̃

dr̃2

f(r̃)
+ b2dz̃2

+ e�2z̃
�
dx2 + dy2

� i
, (12)

where f(r̃) = 1�r̃. The event horizon r̃ = 1 separates the
string into two causally disconnected parts. Furthermore,
the Hawking temperature TH = 1

2⇡b matches with the
Unruh temperature TU = a

2⇡ [10, 20].
Let (⌧̃ , r̃) be the new worldsheet coordinates in the cur-

rent frame. The spin measurement of the quarks can be
carried out by the Stern-Gerlach type experiment which
applied a magnetic field gradience to generate a force
that acts on the spins of the quarks. This introduces
fluctuations to the world lines of quarks which then prop-
agate to introduce fluctuations to the world sheet of the
string. Thus, we can consider the string fluctuation as
Xµ = (⌧̃ , r̃, �̃i(⌧̃ , r̃)), with i = x, y, z̃. When �̃i ⌧ 1, the
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Nambo-Goto action of string becomes

S ' �T0L
2

Z
d⌧̃dr̃

2r̃3/2

 
1 + 2r̃f

X

i

�̃02i � 1

2f

X

i

˙̃
�2i

!
,

(13)

and T0 is the tension of string. The equations of motion
for the fluctuations on the string are

@r̃

⇣2f �̃0i
r̃1/2

⌘
� @⌧̃

⇣ ˙̃
�i

2f r̃3/2

⌘
= 0. (14)

Performing a Fourier transform, and assigning i to x, y

�̃i(r̃, ⌧̃) =

Z
d!

2⇡
e�i!⌧̃ �̃i(!)Y!(r̃), (15)

where �̃i(!) is defined as the Fourier transform of fluctu-
ation on the boundary. Following [21–23], one can com-
pute the retarded Green’s function from the kinetic part
of the action by using the AdS/CFT correspondence.

Constructing Bell’s inequality.— The retarded Green’s
function of the quark under e↵ective random force Fi can
be defined as iGij

R(⌧) = ✓(⌧)[F i(⌧),Fj(0)]i, where i, j
label the x, y, z̃ directions [10]. In the AdS/CFT corre-
spondence, F i(⌧) is the operator conjugate to the fluc-
tuations �i(⌧), where the units have been restored with
⌧ = b⌧̃ , �i = b�̃i. In the low frequency limit ! ! 0, it can
be obtained analytically as

Gij
R(!) = �2T0L

2

b2r̃1/2
f(r̃)Y�!(r̃)@r̃Y!(r̃)�

ij
��
r̃!0

= �a2
p
�

2⇡
i!�ij +O(!2), (16)

and we have used the fact that T0L
2 =

p
�

2⇡ .
What we need for Bell measurements are

iGij
AB(⌧, x) = hF i
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B are separately defined on
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Keldysh propagator is examined in Ref. [22] and found
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The
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� factor is consistent with the observation that

the entanglement entropy of the entangled pair is of or-
der

p
� [9]. It is also interesting that this SK correlator

does not vanish when the quarks are separated at long
distance. This is consistent with the non-local nature of
entanglement. However, the SK correlator vanishes when
the acceleration a becomes zero, which seems to indicate
the system cannot describe the entanglement between
free particles. This is because the particles always expe-
riences the 1/r potential in holography, so they never act
like free particles. Thus, we can only approach the free
particle limit after we identify the spin correlation with
the normalized operators as in the following Eq.(20) in
which a dependence cancels.
To study the correlators, we normalize the operators

such that only the dependence on the spin wave function
remains:

AF = (cos ✓AFx
A + sin ✓AFy

A)/hF
x
AFx

Bi1/2,
BF = (cos ✓BFx

B + sin ✓BFy
B)/hF

x
AFx

Bi1/2, (20)
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Together with the similar normalization of the operators
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For example, when ✓AB = ✓AB0 = ✓A0B = ⇡/4, and
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In this derivation, we see the bulk string fluctuations,
which come from classical gravity, reproduce the quan-
tum entanglement of an EPR pair on the boundary. If
this derivation is correct, then there is no information
propagating from quark to anti-quark through the string
or vice versa since the quark pairs are not in causal
contact. The entanglement is encoded in the fact that
Green’s function is non-vanishing outside the horizon
which is a familiar, yet mysterious, feature in (both clas-
sical and quantum) field theory. Somehow the behaviors
of the SK correlators outside the two horizons need to be
correlated otherwise when they are extended insides the
horizons the two extensions will not match. At this level
of understanding, entanglement is still a mysterious phe-
nomenon. However, our work does lend further support
to the intriguing ER=EPR conjecture.
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model of a casually disconnected EPR pair. The CHSH
form of Bell inequality were computed using holographic
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manifestation of quantum entanglement in Bell inequal-
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tum entanglement of an EPR pair on the boundary. If
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propagating from quark to anti-quark through the string
or vice versa since the quark pairs are not in causal
contact. The entanglement is encoded in the fact that
Green’s function is non-vanishing outside the horizon
which is a familiar, yet mysterious, feature in (both clas-
sical and quantum) field theory. Somehow the behaviors
of the SK correlators outside the two horizons need to be
correlated otherwise when they are extended insides the
horizons the two extensions will not match. At this level
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nomenon. However, our work does lend further support
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be defined as iGij
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rose diagram, corresponding to the boundary of di↵erent
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does not vanish when the quarks are separated at long
distance. This is consistent with the non-local nature of
entanglement. However, the SK correlator vanishes when
the acceleration a becomes zero, which seems to indicate
the system cannot describe the entanglement between
free particles. This is because the particles always expe-
riences the 1/r potential in holography, so they never act
like free particles. Thus, we can only approach the free
particle limit after we identify the spin correlation with
the normalized operators as in the following Eq.(20) in
which a dependence cancels.
To study the correlators, we normalize the operators

such that only the dependence on the spin wave function
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lation formulation become
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✓A0B0 = 3⇡/4, we can reach the maximum value 2
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2.

In this derivation, we see the bulk string fluctuations,
which come from classical gravity, reproduce the quan-
tum entanglement of an EPR pair on the boundary. If
this derivation is correct, then there is no information
propagating from quark to anti-quark through the string
or vice versa since the quark pairs are not in causal
contact. The entanglement is encoded in the fact that
Green’s function is non-vanishing outside the horizon
which is a familiar, yet mysterious, feature in (both clas-
sical and quantum) field theory. Somehow the behaviors
of the SK correlators outside the two horizons need to be
correlated otherwise when they are extended insides the
horizons the two extensions will not match. At this level
of understanding, entanglement is still a mysterious phe-
nomenon. However, our work does lend further support
to the intriguing ER=EPR conjecture.

IV. CONCLUSION AND DISCUSSIONS

We have studied the Bell inequality in a holographic
model of a casually disconnected EPR pair. The CHSH
form of Bell inequality were computed using holographic
Schwinger-Keldysh correlators. We have shown that the
manifestation of quantum entanglement in Bell inequal-
ity can be reproduced, through duality, from a purely

3

Nambo-Goto action of string becomes

S ' �T0L
2

Z
d⌧̃dr̃

2r̃3/2

 
1 + 2r̃f

X

i

�̃02i � 1

2f

X

i

˙̃
�2i

!
,

(13)

and T0 is the tension of string. The equations of motion
for the fluctuations on the string are
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where �̃i(!) is defined as the Fourier transform of fluctu-
ation on the boundary. Following [21–23], one can com-
pute the retarded Green’s function from the kinetic part
of the action by using the AdS/CFT correspondence.

Constructing Bell’s inequality.— The retarded Green’s
function of the quark under e↵ective random force Fi can
be defined as iGij

R(⌧) = ✓(⌧)[F i(⌧),Fj(0)]i, where i, j
label the x, y, z̃ directions [10]. In the AdS/CFT corre-
spondence, F i(⌧) is the operator conjugate to the fluc-
tuations �i(⌧), where the units have been restored with
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What we need for Bell measurements are

iGij
AB(⌧, x) = hF i
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j
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In holography, F i
A and Fj

B are separately defined on
the causally disconnected left and right wedges of Pen-
rose diagram, corresponding to the boundary of di↵erent
patches of the AdS space. This o↵-diagonal Schwinger-
Keldysh propagator is examined in Ref. [22] and found
to be related to the retarded Green’s function,
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For fluctuations coming from two causally separated
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which indicates that the spatial correlator Gij
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The
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the entanglement entropy of the entangled pair is of or-
der

p
� [9]. It is also interesting that this SK correlator

does not vanish when the quarks are separated at long
distance. This is consistent with the non-local nature of
entanglement. However, the SK correlator vanishes when
the acceleration a becomes zero, which seems to indicate
the system cannot describe the entanglement between
free particles. This is because the particles always expe-
riences the 1/r potential in holography, so they never act
like free particles. Thus, we can only approach the free
particle limit after we identify the spin correlation with
the normalized operators as in the following Eq.(20) in
which a dependence cancels.
To study the correlators, we normalize the operators

such that only the dependence on the spin wave function
remains:

AF = (cos ✓AFx
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The mixed measurements for correlators in CHSH corre-
lation formulation become
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Together with the similar normalization of the operators
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For example, when ✓AB = ✓AB0 = ✓A0B = ⇡/4, and
✓A0B0 = 3⇡/4, we can reach the maximum value 2
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2.

In this derivation, we see the bulk string fluctuations,
which come from classical gravity, reproduce the quan-
tum entanglement of an EPR pair on the boundary. If
this derivation is correct, then there is no information
propagating from quark to anti-quark through the string
or vice versa since the quark pairs are not in causal
contact. The entanglement is encoded in the fact that
Green’s function is non-vanishing outside the horizon
which is a familiar, yet mysterious, feature in (both clas-
sical and quantum) field theory. Somehow the behaviors
of the SK correlators outside the two horizons need to be
correlated otherwise when they are extended insides the
horizons the two extensions will not match. At this level
of understanding, entanglement is still a mysterious phe-
nomenon. However, our work does lend further support
to the intriguing ER=EPR conjecture.
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pute the retarded Green’s function from the kinetic part
of the action by using the AdS/CFT correspondence.
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function of the quark under e↵ective random force Fi can
be defined as iGij
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label the x, y, z̃ directions [10]. In the AdS/CFT corre-
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riences the 1/r potential in holography, so they never act
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✓A0B0 = 3⇡/4, we can reach the maximum value 2
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which come from classical gravity, reproduce the quan-
tum entanglement of an EPR pair on the boundary. If
this derivation is correct, then there is no information
propagating from quark to anti-quark through the string
or vice versa since the quark pairs are not in causal
contact. The entanglement is encoded in the fact that
Green’s function is non-vanishing outside the horizon
which is a familiar, yet mysterious, feature in (both clas-
sical and quantum) field theory. Somehow the behaviors
of the SK correlators outside the two horizons need to be
correlated otherwise when they are extended insides the
horizons the two extensions will not match. At this level
of understanding, entanglement is still a mysterious phe-
nomenon. However, our work does lend further support
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and T0 is the tension of string. The equations of motion
for the fluctuations on the string are
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where �̃i(!) is defined as the Fourier transform of fluctu-
ation on the boundary. Following [21–23], one can com-
pute the retarded Green’s function from the kinetic part
of the action by using the AdS/CFT correspondence.

Constructing Bell’s inequality.— The retarded Green’s
function of the quark under e↵ective random force Fi can
be defined as iGij

R(⌧) = ✓(⌧)[F i(⌧),Fj(0)]i, where i, j
label the x, y, z̃ directions [10]. In the AdS/CFT corre-
spondence, F i(⌧) is the operator conjugate to the fluc-
tuations �i(⌧), where the units have been restored with
⌧ = b⌧̃ , �i = b�̃i. In the low frequency limit ! ! 0, it can
be obtained analytically as

Gij
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and we have used the fact that T0L
2 =

p
�

2⇡ .
What we need for Bell measurements are

iGij
AB(⌧, x) = hF i

A(⌧, x)F
j
B(0)i. (17)

In holography, F i
A and Fj

B are separately defined on
the causally disconnected left and right wedges of Pen-
rose diagram, corresponding to the boundary of di↵erent
patches of the AdS space. This o↵-diagonal Schwinger-
Keldysh propagator is examined in Ref. [22] and found
to be related to the retarded Green’s function,

Gij
AB(!) =
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For fluctuations coming from two causally separated
quarks of an EPR pair along x, y directions, and in the
low frequency limit ! ! 0,

iGxx
AB = iGyy

AB =

p
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2⇡2
, iGxy

AB = iGyx
AB = 0. (19)

which indicates that the spatial correlator Gij
AB / �ij .

The
p
� factor is consistent with the observation that

the entanglement entropy of the entangled pair is of or-
der

p
� [9]. It is also interesting that this SK correlator

does not vanish when the quarks are separated at long
distance. This is consistent with the non-local nature of
entanglement. However, the SK correlator vanishes when
the acceleration a becomes zero, which seems to indicate
the system cannot describe the entanglement between
free particles. This is because the particles always expe-
riences the 1/r potential in holography, so they never act
like free particles. Thus, we can only approach the free
particle limit after we identify the spin correlation with
the normalized operators as in the following Eq.(20) in
which a dependence cancels.
To study the correlators, we normalize the operators

such that only the dependence on the spin wave function
remains:

AF = (cos ✓AFx
A + sin ✓AFy

A)/hF
x
AFx

Bi1/2,
BF = (cos ✓BFx
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The mixed measurements for correlators in CHSH corre-
lation formulation become

hAFBF i = cos(✓A � ✓B) ⌘ cos ✓AB . (21)

Together with the similar normalization of the operators
A0

F and B0
F , the CHSH correlation formulations becomes

hCF i = hAFBF i+ hAFB
0
F i+ hA0

FBF i � hA0
FB

0
F i

= cos ✓AB + cos ✓AB0+ cos ✓A0B � cos ✓A0B0. (22)

For example, when ✓AB = ✓AB0 = ✓A0B = ⇡/4, and
✓A0B0 = 3⇡/4, we can reach the maximum value 2

p
2.

In this derivation, we see the bulk string fluctuations,
which come from classical gravity, reproduce the quan-
tum entanglement of an EPR pair on the boundary. If
this derivation is correct, then there is no information
propagating from quark to anti-quark through the string
or vice versa since the quark pairs are not in causal
contact. The entanglement is encoded in the fact that
Green’s function is non-vanishing outside the horizon
which is a familiar, yet mysterious, feature in (both clas-
sical and quantum) field theory. Somehow the behaviors
of the SK correlators outside the two horizons need to be
correlated otherwise when they are extended insides the
horizons the two extensions will not match. At this level
of understanding, entanglement is still a mysterious phe-
nomenon. However, our work does lend further support
to the intriguing ER=EPR conjecture.

IV. CONCLUSION AND DISCUSSIONS

We have studied the Bell inequality in a holographic
model of a casually disconnected EPR pair. The CHSH
form of Bell inequality were computed using holographic
Schwinger-Keldysh correlators. We have shown that the
manifestation of quantum entanglement in Bell inequal-
ity can be reproduced, through duality, from a purely
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2

FIG. 1. Schematic diagram for the EPR pair case we are dis-
cussing with two measurements at Alice and Bob’s locations.
The AdS blackhole is present in the finite temperature case,
which we briefly discuss in the last section.

Here cos ✓AB = ~nA·~nB depends on the cross angle of the
measurements. And from (3) we have

h s|C| si = � cos ✓AB � cos ✓AB0 � cos ✓A0B + cos ✓A0B0 .
(6)

In particular, if we fix the direction of A and A0, as
well as the angle between B and B0 as ⇡/2

✓A = 0, ✓A0 =
⇡

2
, ✓B0 = ✓B � ⇡

2
, (7)

then we have the relation depended on the direction of
B,B0,

h s|C| si = �2
p
2 cos

�
✓B � ⇡

4

�
(8)

For 0 < ✓B < ⇡/2, the Bell inequality |hCi|  2 can be
violated, and we reach the maximal violation at ✓B =
⇡/4, with an extra factor of

p
2. Now we will see what is

the formula of Bell inequality in the holographic model
of EPR pair in the next section.

III. HOLOGRAPHIC EPR

It is proposed in [7] that an entangled color singlet
quark anti-quark (q-q̄) pair in SYM, can be described by
an open string with both of its endpoints attached to the
boundary of AdS5. The string connecting the pair is dual
to the color fluxtube between two quarks, with a Coulom-
bic potential 1/r as demanded by the scale invariance of
boundary theory. Unlike in a confining theory, the pair
can separate arbitrarily far from each others.

Numerical solutions of the string shapes with di↵erent
boundary behaviors can be found in [13–15], and an ana-
lytic solution for an accelerating string was found in [16].

In the analytic solution the open string is also accelerated
on the Poincáre patch of the AdS5

ds2 =
R2

w2

⇥� dt2 + dw2 + (dx2 + dy2 + dz2)
⇤
, (9)

with the AdS radius R and extra dimension w. The string
solution in the AdS5 bulk is given by

z2 = t2 + b2 � w2. (10)

The quark and anti-quark live on the AdS boundary w =
0. They are accelerating along the direction of z, and
moving with the solution z = ±p

t2 + b2. Thus, the two
entangled particles are out of causal contact with each
others, and the physics of entanglement in a single EPR
pair can be captured by the geometry of an ER bridge
on the string worldsheet in AdS5.
String fluctuations.— To consider the string fluctua-

tions, we transform the solution to the co-moving space-
time (⌧, r, x, y, z̃) of the accelerating quarks via

z = b
p
1� ũ exp

⇣ z̃
b

⌘
cosh
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b
,

t = b
p
1� ũ exp
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b
,

w = b
p
ũ exp

⇣ z̃
b

⌘
. (11)

This frame is an accelerating frame with a constant ac-
celeration a = 1/b. And it only maps the upper part of
the string (0 < w < b) into the proper frame of the accel-
erating quark with 0 < ũ < 1. Plug this transformation
(11) in (10), one finds the string configuration becomes
z̃ = 0. And the metric (9) becomes

ds2 =
R2

b2ũ

h
� f (ũ) d⌧2 +

b2

4ũ

dũ2

f (ũ)
+ dz̃2

+
�
dx2 + dy2

�
exp (�2z̃/b)

i
, (12)

where f(ũ) = 1 � ũ. The event horizon ũ = 1 separates
the string into two causally disconnected parts. Further-
more, the Hawking temperature TH = 1

2⇡b matches with
the Rindler temperature TU = a

2⇡ .
Let (⌧, ũ) be the new worldsheet coordinates in the

current frame. The fluctuations in x, y, z̃ directions are
symmetric along the string trajectory z̃ = 0. Thus, we
consider the string fluctuation as Xµ = (b⌧̃ , ũ, b�̃i(⌧, ũ)),

with i = x, y, z̃. When �̃i ⌧ 1, the action of string be-
comes
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The equations of motion for the fluctuations on the string
are
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We study the Bell inequality in holographic model of the Einstein-Podolsky-Rosen (EPR) pair. It
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correlation in the EPR pair. We conclude that the Bell inequality can be reproduced from the bulk
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I. INTRODUCTION

Bell inequalities play an important role in quantum
physics. Correlation in local classical theories is bounded
by the Bell inequality, which can be violated only by the
presence of the entanglement in quantum theories. The
violation of Bell inequality in the entangled Einstein-
Podolsky-Rosen (EPR) pair, indicates that two parti-
cles have an “instant interaction”, without the local
hidden variables [1–4]. Recently, there are also some
discussions about Bell inequality in cosmology, to test
whether the origins of fluctuations are classical or quan-
tum mechanical.[5, 12]

Recently, Maldacena and Susskind [6] proposed the
ER=EPR conjecture, which stated that the quantum
entanglement of the EPR pair is related to the non-
traversable Einstein-Rosen (ER) bridge. It is very inter-
esting to see the role of Bell inequality in this paradigm,
such as whether the classical bulk geometry can produce
the quantum behavior in Bell inequality of the EPR pair.

In this paper, we study the Bell inequality in a par-
ticular holographic model of the EPR pair proposed
by Jensen and Karch [7], based on the Anti-de Sit-
ter/Conformal Field Theory(AdS/CFT) correspondence
[8]. Two particles of the boundary EPR pair are con-
nected by a string in the AdS background of the bulk,
where an ER bridge lives on the string worldsheet. Var-
ious studies of related models can also be found in [9–
11, 20]. Two particles in the EPR pair on the boundary
are treated as probe particles in N=4 supersymmetric
Young-Mills theory (SYM), thus do not change the AdS
geometry. We will use the CHSH formulations of the Bell
inequality [2], and identify the holographic Schwinger-
Keldysh(SK) correlator as the correlated measurements
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between two causally disconnected EPR particles. We
discuss the physical interpretation of the Bell Inequality
in both bulk and dual boundary theories.

II. BELL INEQUALITY

As reviewed in [12], we start with the CHSH corre-
lation parametrizations of Bell inequality [2]. The en-
tangled states made of a pair of spins are detected by
Alice and Bob, respectively. The operators correspond
to measuring the spin along various axes with outcomes
of eigenvalues ±1. Performing the operations A and A0
on the first particle at Alice’s location, and operations B
and B0 on the second particle at Bob’s location. With
the Pauli matrices ~� = (�x,�y,�z), and normalized 3-
vector ~n = (nx, ny, nz) to indicate the spatial direction
of the measurement, we have the following operators

As = ~nA·~�, A0
s = ~nA0 ·~�, (1)

Bs = ~nB ·~�, B0
s = ~nB0 ·~�. (2)

Then the CHSH correlation formulation is introduced as

hCsi = hAsBsi+ hAsB
0
si+ hA0

sBsi � hA0
sB

0
si, (3)

which is a linear combination of crossed expectation val-
ues of the measurements.
In a local classical theory with hidden variables the for-

mula is bounded by the Bell inequality |hCi|  2. While
in quantum mechanics, this inequality can be violated,
with a higher bound |hCi|  2

p
2 [3]. For example, if we

choose the entanglement state of a spin singlet

| si = 1p
2

�|"i ⌦ |#i � |#i ⌦ |"i�, (4)

and take the measurements along the (x, y) plane, i.e.
nA = (cos ✓A, sin ✓A, 0) etc., it is straightforward to show

Gs
AB ⌘ h s|AB| si = � cos ✓AB . (5)
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ticular holographic model of the EPR pair proposed
by Jensen and Karch [7], based on the Anti-de Sit-
ter/Conformal Field Theory(AdS/CFT) correspondence
[8]. Two particles of the boundary EPR pair are con-
nected by a string in the AdS background of the bulk,
where an ER bridge lives on the string worldsheet. Var-
ious studies of related models can also be found in [9–
11, 20]. Two particles in the EPR pair on the boundary
are treated as probe particles in N=4 supersymmetric
Young-Mills theory (SYM), thus do not change the AdS
geometry. We will use the CHSH formulations of the Bell
inequality [2], and identify the holographic Schwinger-
Keldysh(SK) correlator as the correlated measurements
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between two causally disconnected EPR particles. We
discuss the physical interpretation of the Bell Inequality
in both bulk and dual boundary theories.

II. BELL INEQUALITY

As reviewed in [12], we start with the CHSH corre-
lation parametrizations of Bell inequality [2]. The en-
tangled states made of a pair of spins are detected by
Alice and Bob, respectively. The operators correspond
to measuring the spin along various axes with outcomes
of eigenvalues ±1. Performing the operations A and A0
on the first particle at Alice’s location, and operations B
and B0 on the second particle at Bob’s location. With
the Pauli matrices ~� = (�x,�y,�z), and normalized 3-
vector ~n = (nx, ny, nz) to indicate the spatial direction
of the measurement, we have the following operators

A = ~nA·~�, A0 = ~nA0 ·~�, (1)

B = ~nB ·~�, B0 = ~nB0 ·~�. (2)

Then the CHSH correlation formulation is introduced as

hCi = hABi+ hAB0i+ hA0Bi � hA0B0i, (3)

which is a linear combination of crossed expectation val-
ues of the measurements.
In a local classical theory with hidden variables the for-

mula is bounded by the Bell inequality |hCi|  2. While
in quantum mechanics, this inequality can be violated,
with a higher bound |hCi|  2

p
2 [3]. For example, if we

choose the entanglement state of a spin singlet

| si = 1p
2

�|"i ⌦ |#i � |#i ⌦ |"i�, (4)

and take the measurements along the (x, y) plane, i.e.
nA = (cos ✓A, sin ✓A, 0) etc., it is straightforward to show

Gs
AB ⌘ h s|AB| si = � cos ✓AB . (5)
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discuss the physical interpretation of the Bell Inequality
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the Pauli matrices ~� = (�x,�y,�z), and normalized 3-
vector ~n = (nx, ny, nz) to indicate the spatial direction
of the measurement, we have the following operators
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s = ~nA0 ·~�, (1)

Bs = ~nB ·~�, B0
s = ~nB0 ·~�. (2)

Then the CHSH correlation formulation is introduced as

hCsi = hAsBsi+ hAsB
0
si+ hA0

sBsi � hA0
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0
si, (3)

which is a linear combination of crossed expectation val-
ues of the measurements.
In a local classical theory with hidden variables the for-

mula is bounded by the Bell inequality |hCi|  2. While
in quantum mechanics, this inequality can be violated,
with a higher bound |hCi|  2
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2 [3]. For example, if we

choose the entanglement state of a spin singlet

| si = 1p
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and take the measurements along the (x, y) plane, i.e.
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I. INTRODUCTION

Bell inequalities play an important role in quantum
physics. Correlations in local classical theories are
bounded by the Bell inequality, which can be violated
only by the presence of the non-local entanglement in
quantum theories. The violation of Bell inequality in
the entangled Einstein-Podolsky-Rosen (EPR) pair, indi-
cates that two particles have an “instant interaction”, in
contrast to theories of hidden variables to preserve strict
locality [1–4]. There are also some discussions about Bell
inequality in cosmology, to measure whether the origins
of fluctuations are classical or quantum mechanical [5, 6].

Recently, Maldacena and Susskind proposed the
ER=EPR conjecture [7, 8] which stated that the quan-
tum entanglement of the EPR pair is related to the non-
traversable Einstein-Rosen (ER) bridge. It would be very
interesting to further investigate how Bell inequality is
realized in this paradigm, such as whether the classical
bulk geometry can produce the quantum behavior in Bell
inequality of the EPR pair.

In this paper, we study the Bell inequality in a par-
ticular holographic model of the EPR pair proposed by
Jensen and Karch [9] (see also [10]), based on the Anti-
de Sitter/Conformal Field Theory(AdS/CFT) correspon-
dence [11]. Two particles of the boundary EPR pair are
connected by a string in the AdS background of the bulk,
where an ER bridge lives on the string worldsheet. Var-
ious studies of related models can also be found in [12–
16]. The two particles in the EPR pair on the boundary
are treated as probe particles in N=4 supersymmetric
Young-Mills theory (SYM). Thus, they do not change
the AdS geometry. We will use the CHSH formulations
of the Bell inequality [2], and identify the holographic
Schwinger-Keldysh(SK) correlator as the measurement of
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correlation between the two causally disconnected EPR
particles. We discuss the physical interpretation of the
Bell Inequality in both the bulk and the dual boundary
theories.

II. BELL INEQUALITY

The essence of Bell Inequality is captured in the CHSH
correlation parametrizations [2] which is reviewed here
briefly. The entangled states made of a pair of spin 1/2
particles (the generalization to particles of higher spin
is straight forward) are detected by two observers, Al-
ice and Bob, respectively. The operators correspond to
measuring the spin along various axes with outcomes of
eigenvalues ±1. Performing the operations A and A0 on
the first particle at Alice’s location, and operations B
and B0 on the second particle at Bob’s location. With
the Pauli matrices ~� = (�x,�y,�z), and normalized 3-
vector ~n = (nx, ny, nz) to indicate the spatial direction
of the measurement, we have the following operators

As = ~nA·~�, A0
s = ~nA0 ·~�, (1)

Bs = ~nB ·~�, B0
s = ~nB0 ·~�. (2)

Then the CHSH correlation formulation is introduced as

hCsi = hAsBsi+ hAsB
0
si+ hA0

sBsi � hA0
sB

0
si, (3)

which is a linear combination of crossed expectation val-
ues of the measurements.
In a local classical theory with hidden variables the for-

mula is bounded by the Bell inequality |hCsi|  2. While
in quantum mechanics, this inequality can be violated,
with a higher bound |hCsi|  2

p
2 [3] (see also [5]). For

example, if we choose the entanglement state of a spin
singlet

| si =
1p
2

�
|"i ⌦ |#i � |#i ⌦ |"i

�
, (4)
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Nambo-Goto action of string becomes
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and T0 is the tension of string. The equations of motion
for the fluctuations on the string are

@r̃

⇣2f �̃0i
r̃1/2

⌘
� @⌧̃

⇣ ˙̃
�i

2f r̃3/2

⌘
= 0. (14)

Performing a Fourier transform, and assigning i to x, y

�̃i(r̃, ⌧̃) =

Z
d!

2⇡
e�i!⌧̃ �̃i(!)Y!(r̃), (15)

where �̃i(!) is defined as the Fourier transform of fluctu-
ation on the boundary. Following [21–23], one can com-
pute the retarded Green’s function from the kinetic part
of the action by using the AdS/CFT correspondence.

Constructing Bell’s inequality.— The retarded Green’s
function of the quark under e↵ective random force Fi can
be defined as iGij

R(⌧) = ✓(⌧)[F i(⌧),Fj(0)]i, where i, j
label the x, y, z̃ directions [10]. In the AdS/CFT corre-
spondence, F i(⌧) is the operator conjugate to the fluc-
tuations �i(⌧), where the units have been restored with
⌧ = b⌧̃ , �i = b�̃i. In the low frequency limit ! ! 0, it can
be obtained analytically as

Gij
R(!) = �2T0L

2

b2r̃1/2
f(r̃)Y�!(r̃)@r̃Y!(r̃)�

ij
��
r̃!0

= �a2
p
�

2⇡
i!�ij +O(!2), (16)

and we have used the fact that T0L
2 =

p
�

2⇡ .
What we need for Bell measurements are

iGij
AB(⌧, x) = hF i

A(⌧, x)F
j
B(0)i. (17)

In holography, F i
A and Fj

B are separately defined on
the causally disconnected left and right wedges of Pen-
rose diagram, corresponding to the boundary of di↵erent
patches of the AdS space. This o↵-diagonal Schwinger-
Keldysh propagator is examined in Ref. [22] and found
to be related to the retarded Green’s function,

Gij
AB(!) =

2ie�!/2TU

1� e�!/TU
ImGij

R (!) . (18)

For fluctuations coming from two causally separated
quarks of an EPR pair along x, y directions, and in the
low frequency limit ! ! 0,

iGxx
AB = iGyy

AB =

p
�a3

2⇡2
, iGxy

AB = iGyx
AB = 0. (19)

which indicates that the spatial correlator Gij
AB / �ij .

The
p
� factor is consistent with the observation that

the entanglement entropy of the entangled pair is of or-
der

p
� [9]. It is also interesting that this SK correlator

does not vanish when the quarks are separated at long
distance. This is consistent with the non-local nature of
entanglement. However, the SK correlator vanishes when
the acceleration a becomes zero, which seems to indicate
the system cannot describe the entanglement between
free particles. This is because the particles always expe-
riences the 1/r potential in holography, so they never act
like free particles. Thus, we can only approach the free
particle limit after we identify the spin correlation with
the normalized operators as in the following Eq.(20) in
which a dependence cancels.
To study the correlators, we normalize the operators

such that only the dependence on the spin wave function
remains:

AF = (cos ✓AFx
A + sin ✓AFy

A)/hF
x
AFx

Bi1/2,
BF = (cos ✓BFx

B + sin ✓BFy
B)/hF

x
AFx

Bi1/2, (20)

The mixed measurements for correlators in CHSH corre-
lation formulation become

hAFBF i = cos(✓A � ✓B) ⌘ cos ✓AB . (21)

Together with the similar normalization of the operators
A0

F and B0
F , the CHSH correlation formulations becomes

hCF i = hAFBF i+ hAFB
0
F i+ hA0

FBF i � hA0
FB

0
F i

= cos ✓AB + cos ✓AB0+ cos ✓A0B � cos ✓A0B0. (22)

For example, when ✓AB = ✓AB0 = ✓A0B = ⇡/4, and
✓A0B0 = 3⇡/4, we can reach the maximum value 2

p
2.

In this derivation, we see the bulk string fluctuations,
which come from classical gravity, reproduce the quan-
tum entanglement of an EPR pair on the boundary. If
this derivation is correct, then there is no information
propagating from quark to anti-quark through the string
or vice versa since the quark pairs are not in causal
contact. The entanglement is encoded in the fact that
Green’s function is non-vanishing outside the horizon
which is a familiar, yet mysterious, feature in (both clas-
sical and quantum) field theory. Somehow the behaviors
of the SK correlators outside the two horizons need to be
correlated otherwise when they are extended insides the
horizons the two extensions will not match. At this level
of understanding, entanglement is still a mysterious phe-
nomenon. However, our work does lend further support
to the intriguing ER=EPR conjecture.

IV. CONCLUSION AND DISCUSSIONS

We have studied the Bell inequality in a holographic
model of a casually disconnected EPR pair. The CHSH
form of Bell inequality were computed using holographic
Schwinger-Keldysh correlators. We have shown that the
manifestation of quantum entanglement in Bell inequal-
ity can be reproduced, through duality, from a purely

3

Nambo-Goto action of string becomes

S ' �T0L
2

Z
d⌧̃dr̃

2r̃3/2

 
1 + 2r̃f

X

i

�̃02i � 1

2f

X

i

˙̃
�2i

!
,

(13)

and T0 is the tension of string. The equations of motion
for the fluctuations on the string are

@r̃

⇣2f �̃0i
r̃1/2

⌘
� @⌧̃

⇣ ˙̃
�i

2f r̃3/2

⌘
= 0. (14)

Performing a Fourier transform, and assigning i to x, y

�̃i(r̃, ⌧̃) =

Z
d!

2⇡
e�i!⌧̃ �̃i(!)Y!(r̃), (15)

where �̃i(!) is defined as the Fourier transform of fluctu-
ation on the boundary. Following [21–23], one can com-
pute the retarded Green’s function from the kinetic part
of the action by using the AdS/CFT correspondence.

Constructing Bell’s inequality.— The retarded Green’s
function of the quark under e↵ective random force Fi can
be defined as iGij

R(⌧) = ✓(⌧)[F i(⌧),Fj(0)]i, where i, j
label the x, y, z̃ directions [10]. In the AdS/CFT corre-
spondence, F i(⌧) is the operator conjugate to the fluc-
tuations �i(⌧), where the units have been restored with
⌧ = b⌧̃ , �i = b�̃i. In the low frequency limit ! ! 0, it can
be obtained analytically as

Gij
R(!) = �2T0L

2

b2r̃1/2
f(r̃)Y�!(r̃)@r̃Y!(r̃)�

ij
��
r̃!0

= �a2
p
�

2⇡
i!�ij +O(!2), (16)

and we have used the fact that T0L
2 =

p
�

2⇡ .
What we need for Bell measurements are

iGij
AB(⌧, x) = hF i

A(⌧, x)F
j
B(0)i. (17)

In holography, F i
A and Fj

B are separately defined on
the causally disconnected left and right wedges of Pen-
rose diagram, corresponding to the boundary of di↵erent
patches of the AdS space. This o↵-diagonal Schwinger-
Keldysh propagator is examined in Ref. [22] and found
to be related to the retarded Green’s function,

Gij
AB(!) =

2ie�!/2TU

1� e�!/TU
ImGij

R (!) . (18)

For fluctuations coming from two causally separated
quarks of an EPR pair along x, y directions, and in the
low frequency limit ! ! 0,

iGxx
AB = iGyy

AB =

p
�a3

2⇡2
, iGxy

AB = iGyx
AB = 0. (19)

which indicates that the spatial correlator Gij
AB / �ij .

The
p
� factor is consistent with the observation that

the entanglement entropy of the entangled pair is of or-
der

p
� [9]. It is also interesting that this SK correlator

does not vanish when the quarks are separated at long
distance. This is consistent with the non-local nature of
entanglement. However, the SK correlator vanishes when
the acceleration a becomes zero, which seems to indicate
the system cannot describe the entanglement between
free particles. This is because the particles always expe-
riences the 1/r potential in holography, so they never act
like free particles. Thus, we can only approach the free
particle limit after we identify the spin correlation with
the normalized operators as in the following Eq.(20) in
which a dependence cancels.
To study the correlators, we normalize the operators

such that only the dependence on the spin wave function
remains:

AF = (cos ✓AFx
A + sin ✓AFy

A)/hF
x
AFx

Bi1/2,
BF = (cos ✓BFx

B + sin ✓BFy
B)/hF

x
AFx

Bi1/2, (20)

The mixed measurements for correlators in CHSH corre-
lation formulation become

hAFBF i = cos(✓A � ✓B) ⌘ cos ✓AB . (21)

Together with the similar normalization of the operators
A0

F and B0
F , the CHSH correlation formulations becomes

hCF i = hAFBF i+ hAFB
0
F i+ hA0

FBF i � hA0
FB

0
F i

= cos ✓AB + cos ✓AB0+ cos ✓A0B � cos ✓A0B0. (22)

For example, when ✓AB = ✓AB0 = ✓A0B = ⇡/4, and
✓A0B0 = 3⇡/4, we can reach the maximum value 2

p
2.

In this derivation, we see the bulk string fluctuations,
which come from classical gravity, reproduce the quan-
tum entanglement of an EPR pair on the boundary. If
this derivation is correct, then there is no information
propagating from quark to anti-quark through the string
or vice versa since the quark pairs are not in causal
contact. The entanglement is encoded in the fact that
Green’s function is non-vanishing outside the horizon
which is a familiar, yet mysterious, feature in (both clas-
sical and quantum) field theory. Somehow the behaviors
of the SK correlators outside the two horizons need to be
correlated otherwise when they are extended insides the
horizons the two extensions will not match. At this level
of understanding, entanglement is still a mysterious phe-
nomenon. However, our work does lend further support
to the intriguing ER=EPR conjecture.

IV. CONCLUSION AND DISCUSSIONS

We have studied the Bell inequality in a holographic
model of a casually disconnected EPR pair. The CHSH
form of Bell inequality were computed using holographic
Schwinger-Keldysh correlators. We have shown that the
manifestation of quantum entanglement in Bell inequal-
ity can be reproduced, through duality, from a purely

3

Nambo-Goto action of string becomes

S ' �T0L
2

Z
d⌧̃dr̃

2r̃3/2

 
1 + 2r̃f

X

i

�̃02i � 1

2f

X

i

˙̃
�2i

!
,

(13)

and T0 is the tension of string. The equations of motion
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ation on the boundary. Following [21–23], one can com-
pute the retarded Green’s function from the kinetic part
of the action by using the AdS/CFT correspondence.
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be defined as iGij
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label the x, y, z̃ directions [10]. In the AdS/CFT corre-
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B are separately defined on
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rose diagram, corresponding to the boundary of di↵erent
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Keldysh propagator is examined in Ref. [22] and found
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The
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� factor is consistent with the observation that

the entanglement entropy of the entangled pair is of or-
der

p
� [9]. It is also interesting that this SK correlator

does not vanish when the quarks are separated at long
distance. This is consistent with the non-local nature of
entanglement. However, the SK correlator vanishes when
the acceleration a becomes zero, which seems to indicate
the system cannot describe the entanglement between
free particles. This is because the particles always expe-
riences the 1/r potential in holography, so they never act
like free particles. Thus, we can only approach the free
particle limit after we identify the spin correlation with
the normalized operators as in the following Eq.(20) in
which a dependence cancels.
To study the correlators, we normalize the operators

such that only the dependence on the spin wave function
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A0

F and B0
F , the CHSH correlation formulations becomes

hCF i = hAFBF i+ hAFB
0
F i+ hA0

FBF i � hA0
FB

0
F i

= cos ✓AB + cos ✓AB0+ cos ✓A0B � cos ✓A0B0. (22)
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In this derivation, we see the bulk string fluctuations,
which come from classical gravity, reproduce the quan-
tum entanglement of an EPR pair on the boundary. If
this derivation is correct, then there is no information
propagating from quark to anti-quark through the string
or vice versa since the quark pairs are not in causal
contact. The entanglement is encoded in the fact that
Green’s function is non-vanishing outside the horizon
which is a familiar, yet mysterious, feature in (both clas-
sical and quantum) field theory. Somehow the behaviors
of the SK correlators outside the two horizons need to be
correlated otherwise when they are extended insides the
horizons the two extensions will not match. At this level
of understanding, entanglement is still a mysterious phe-
nomenon. However, our work does lend further support
to the intriguing ER=EPR conjecture.
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tum entanglement of an EPR pair on the boundary. If
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or vice versa since the quark pairs are not in causal
contact. The entanglement is encoded in the fact that
Green’s function is non-vanishing outside the horizon
which is a familiar, yet mysterious, feature in (both clas-
sical and quantum) field theory. Somehow the behaviors
of the SK correlators outside the two horizons need to be
correlated otherwise when they are extended insides the
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ation on the boundary. Following [21–23], one can com-
pute the retarded Green’s function from the kinetic part
of the action by using the AdS/CFT correspondence.

Constructing Bell’s inequality.— The retarded Green’s
function of the quark under e↵ective random force Fi can
be defined as iGij
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label the x, y, z̃ directions [10]. In the AdS/CFT corre-
spondence, F i(⌧) is the operator conjugate to the fluc-
tuations �i(⌧), where the units have been restored with
⌧ = b⌧̃ , �i = b�̃i. In the low frequency limit ! ! 0, it can
be obtained analytically as

Gij
R(!) = �2T0L

2

b2r̃1/2
f(r̃)Y�!(r̃)@r̃Y!(r̃)�

ij
��
r̃!0

= �a2
p
�

2⇡
i!�ij +O(!2), (16)

and we have used the fact that T0L
2 =

p
�

2⇡ .
What we need for Bell measurements are

iGij
AB(⌧, x) = hF i
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the acceleration a becomes zero, which seems to indicate
the system cannot describe the entanglement between
free particles. This is because the particles always expe-
riences the 1/r potential in holography, so they never act
like free particles. Thus, we can only approach the free
particle limit after we identify the spin correlation with
the normalized operators as in the following Eq.(20) in
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✓A0B0 = 3⇡/4, we can reach the maximum value 2
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In this derivation, we see the bulk string fluctuations,
which come from classical gravity, reproduce the quan-
tum entanglement of an EPR pair on the boundary. If
this derivation is correct, then there is no information
propagating from quark to anti-quark through the string
or vice versa since the quark pairs are not in causal
contact. The entanglement is encoded in the fact that
Green’s function is non-vanishing outside the horizon
which is a familiar, yet mysterious, feature in (both clas-
sical and quantum) field theory. Somehow the behaviors
of the SK correlators outside the two horizons need to be
correlated otherwise when they are extended insides the
horizons the two extensions will not match. At this level
of understanding, entanglement is still a mysterious phe-
nomenon. However, our work does lend further support
to the intriguing ER=EPR conjecture.
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and T0 is the tension of string. The equations of motion
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where �̃i(!) is defined as the Fourier transform of fluctu-
ation on the boundary. Following [21–23], one can com-
pute the retarded Green’s function from the kinetic part
of the action by using the AdS/CFT correspondence.

Constructing Bell’s inequality.— The retarded Green’s
function of the quark under e↵ective random force Fi can
be defined as iGij

R(⌧) = ✓(⌧)[F i(⌧),Fj(0)]i, where i, j
label the x, y, z̃ directions [10]. In the AdS/CFT corre-
spondence, F i(⌧) is the operator conjugate to the fluc-
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In holography, F i
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does not vanish when the quarks are separated at long
distance. This is consistent with the non-local nature of
entanglement. However, the SK correlator vanishes when
the acceleration a becomes zero, which seems to indicate
the system cannot describe the entanglement between
free particles. This is because the particles always expe-
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like free particles. Thus, we can only approach the free
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✓A0B0 = 3⇡/4, we can reach the maximum value 2
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In this derivation, we see the bulk string fluctuations,
which come from classical gravity, reproduce the quan-
tum entanglement of an EPR pair on the boundary. If
this derivation is correct, then there is no information
propagating from quark to anti-quark through the string
or vice versa since the quark pairs are not in causal
contact. The entanglement is encoded in the fact that
Green’s function is non-vanishing outside the horizon
which is a familiar, yet mysterious, feature in (both clas-
sical and quantum) field theory. Somehow the behaviors
of the SK correlators outside the two horizons need to be
correlated otherwise when they are extended insides the
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of understanding, entanglement is still a mysterious phe-
nomenon. However, our work does lend further support
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be defined as iGij
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label the x, y, z̃ directions [10]. In the AdS/CFT corre-
spondence, F i(⌧) is the operator conjugate to the fluc-
tuations �i(⌧), where the units have been restored with
⌧ = b⌧̃ , �i = b�̃i. In the low frequency limit ! ! 0, it can
be obtained analytically as

Gij
R(!) = �2T0L

2

b2r̃1/2
f(r̃)Y�!(r̃)@r̃Y!(r̃)�

ij
��
r̃!0

= �a2
p
�

2⇡
i!�ij +O(!2), (16)

and we have used the fact that T0L
2 =

p
�

2⇡ .
What we need for Bell measurements are

iGij
AB(⌧, x) = hF i

A(⌧, x)F
j
B(0)i. (17)

In holography, F i
A and Fj

B are separately defined on
the causally disconnected left and right wedges of Pen-
rose diagram, corresponding to the boundary of di↵erent
patches of the AdS space. This o↵-diagonal Schwinger-
Keldysh propagator is examined in Ref. [22] and found
to be related to the retarded Green’s function,

Gij
AB(!) =

2ie�!/2TU

1� e�!/TU
ImGij

R (!) . (18)

For fluctuations coming from two causally separated
quarks of an EPR pair along x, y directions, and in the
low frequency limit ! ! 0,

iGxx
AB = iGyy

AB =

p
�a3

2⇡2
, iGxy

AB = iGyx
AB = 0. (19)

which indicates that the spatial correlator Gij
AB / �ij .

The
p
� factor is consistent with the observation that

the entanglement entropy of the entangled pair is of or-
der

p
� [9]. It is also interesting that this SK correlator
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distance. This is consistent with the non-local nature of
entanglement. However, the SK correlator vanishes when
the acceleration a becomes zero, which seems to indicate
the system cannot describe the entanglement between
free particles. This is because the particles always expe-
riences the 1/r potential in holography, so they never act
like free particles. Thus, we can only approach the free
particle limit after we identify the spin correlation with
the normalized operators as in the following Eq.(20) in
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✓A0B0 = 3⇡/4, we can reach the maximum value 2
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In this derivation, we see the bulk string fluctuations,
which come from classical gravity, reproduce the quan-
tum entanglement of an EPR pair on the boundary. If
this derivation is correct, then there is no information
propagating from quark to anti-quark through the string
or vice versa since the quark pairs are not in causal
contact. The entanglement is encoded in the fact that
Green’s function is non-vanishing outside the horizon
which is a familiar, yet mysterious, feature in (both clas-
sical and quantum) field theory. Somehow the behaviors
of the SK correlators outside the two horizons need to be
correlated otherwise when they are extended insides the
horizons the two extensions will not match. At this level
of understanding, entanglement is still a mysterious phe-
nomenon. However, our work does lend further support
to the intriguing ER=EPR conjecture.

IV. CONCLUSION AND DISCUSSIONS

We have studied the Bell inequality in a holographic
model of a casually disconnected EPR pair. The CHSH
form of Bell inequality were computed using holographic
Schwinger-Keldysh correlators. We have shown that the
manifestation of quantum entanglement in Bell inequal-
ity can be reproduced, through duality, from a purely
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riences the 1/r potential in holography, so they never act
like free particles. Thus, we can only approach the free
particle limit after we identify the spin correlation with
the normalized operators as in the following Eq.(20) in
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