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Skyrme Model
I Skyrme field is an SU(2)-valued field

U(x) = σ(x)1 + iπ(x) · τ .
(1 = unit matrix, τ = Pauli matrices.) σ(x) and π(x) are
sigma and pion fields satisfying σ2 + π · π = 1.

I Vacuum (boundary condition at spatial infinity) is U = 1.
I Baryon number (Atomic number) is an integral involving

the L(SU(2))-valued “current” Ri = (∂iU)U−1.

B = − 1
24π2

∫
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εijk Tr(RiRjRk )d3x ,

and is a (positive) integer, constant in time.
I The Skyrme energy is
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I Skyrmions are energy minima and low-lying saddle points
for each B. They are free to rotate as rigid bodies in space
and isospace (pion space).

I Quantizing the orientational degrees of freedom of the
B = 1 Skyrmion gives nucleon states with spin and isospin
1/2. Delta resonance states have spin and isospin 3/2
[Adkins, Nappi and Witten].

I Vibrational degrees of freedom are now recognised as
important, and can lead to break-up into Skyrmion
subclusters. Some modes are essentially harmonic; others
connect energy minima via saddle points (sphalerons) and
need nonlinear treatment.

I One must identify saddle points and their unstable modes
in order to construct a vibrational manifold. Tunnelling
between minima goes through (under) saddle points.



I Skyrmions are found by numerical energy minimisation.
Initial configurations are made using multi-layer “rational
map” ansatz or crystal chunks. The “half-Skyrmion” crystal
condenses into B = 4 alpha particle cubes. Also very
useful is the FCC “Skyrmion crystal” realised in the
lightly-bound model. This has tetrahedrally symmetric
crystal chunks.

I Visualising Skyrmions – the Runge colour sphere records
the normalised (unit-vector) pion field π/|π|. The colours
are superposed on a constant energy density surface.

I Figures by R. Battye and P. Sutcliffe, D. Feist, P.H.C. Lau,
C.J. Halcrow, J.I. Rawlinson, D. Harland.



B = 1 Skyrmion (two different orientations)



B = 4 Skyrmion



B = 7 Skyrmion and its deformation into clusters



B = 8 Skyrmion
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B = 12 Skyrmion with D3h symmetry



B = 12 Skyrmion with D4h symmetry



B = 32 Skyrmion



I Some recent work uses the lightly-bound model,
developed in Leeds [D. Harland, J.M. Speight et al.].
Skyrmions resemble clusters of B = 1 Skyrmions at points
of an FCC lattice.

I The FCC clusters relax to solutions of the standard
Skyrme model with similar shapes – sometimes with
enhanced symmetry (e.g. B = 4).

I We have found many solutions up to B = 85.
I Basic structural units in the FCC lattice are alternating

B = 4 tetrahedra and B = 6 octahedra, sharing faces.



B = 6 (Saddle-Point) Octahedral Skyrmion



B = 16 Skyrmion



Ball and Stick Model of B = 16 Skyrmion



B = 20 Skyrmion



B = 35 Skyrmion



B = 38 (Truncated Octahedral) Skyrmion



B = 40 Skyrmion



B = 40 Skyrmion (another view)



B = 56 Skyrmion [Lau]



B = 56 Skyrmion [Halcrow]



B = 84 Skyrmion



B = 85 Skyrmion



Skyrmions as SU(4) Weight Clusters

I A useful set of compact, convex, tetrahedrally symmetric
FCC clusters are the weight diagrams of SU(4) (C.J.
Halcrow, NSM and J.I. Rawlinson).

I The SU(4) root lattice is FCC, and each weight diagram is
in one of its FCC cosets (labelled by quadrality).

I Put B = 1 Skyrmions at the weight locations (in four
distinct orientations) to create a lightly-bound Skyrmion.
Relaxation gives a standard Skyrmion.

I B is the cluster number, the number of weights without
multiplicity.



Rigid Body Quantization

I The basic quantization idea is to treat these clusters as
rigid bodies free to rotate in space and isospace (and also
move through space). The cluster symmetries restrict the
allowed spin/isospin/parity combinations.

I A simple consequence of tetrahedral symmetry is that
states with isospin 0 (N = Z ) and baryon number a
multiple of 4 have spin/parity 0+, 3−, 4+, 6±, 7−, 8+, ....
Spin 1 and spin 2 excitations require vibrational motion.

I This spectrum is typical of the magic nuclei, e.g.
Oxygen-16 and Calcium-40, and tetrahedral clusters
representing these are in our list. Shell model also allows
for (tetrahedral) deformation from spherical core shape in
magic nuclei.

I Rigid body quantization has some further success, e.g. for
B = 38, but certainly doesn’t describe all low-energy
states.



Quantum States of 12C

I A simple approach by P.H.C. Lau and NSM combines the
distinct states arising from the rigid body quantization of
the D3h-symmetric B = 12 Skyrmion (triangle) and the
D4h-symmetric Skyrmion (chain).

I This gives a ground state band (0+, 2+, 3−, 4±, 5−, ...) and
a Hoyle state band (0+, 2+, 4+, ...). The Hoyle state band
has smaller E v. J(J + 1) slope.

I However, this approach suppresses the dynamical
relationship between triangle and chain, and the
intermediate “bent arm”, and fails to capture vibrational
states, starting with 1−.

I J.I. Rawlinson has considered the bending mode
connecting triangle to chain, and has quantized this
coupled to rotations. Quantization takes place on a graph
in the shape space of triangles.
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Isosceles triangle of three alpha-particles. s is related to
bending angle.
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Vibrational Quantum States of 16O
I Vibrational modes of tetrahedron of alpha particles

classified as A (breather), E (towards square) and F
(towards equilateral triangle). Skyrme model predicts E
mode has lowest frequency. Coupling to rotations gives
rovibrational states.

I C.J. Halcrow, C. King and NSM have constructed an E
vibrational surface of D2-symmetric configurations. Surface
itself has Oh symmetry and allows for four alpha particles
in a tetrahedron, square or bent rhomb. Quantum states on
surface are interpreted as multiple E-phonons. Model
explains splitting of 2+ and 2− single-phonon E states,
which are degenerate in other models.

I Model explains many states of Oxygen-16 (maybe all) up
to 20 MeV, provide A and F phonons included (C.J.
Halcrow thesis, C. King thesis). Electromagnetic transition
strengths (C.J. Halcrow, in progress) are needed to confirm
assignment of states.



B=16 E-mode deformation from tetrahedron to square



Rolling Motion and Spin-Orbit Coupling

I Spin-orbit coupling is an important strong-interaction effect
in nuclear physics. Can be understood in the Skyrme
model because the potential energy of a Skyrmion
depends on its orientation.

I A B = 1 Skyrmion moving over a nuclear surface prefers to
roll rather than slip or anti-roll. Why is this?

I D. Harland and NSM see this effect classically using the
lightly-bound model, and have also calculated the quantum
mechanical correlation of spin and momentum. The effect
is non-perturbative and needs a quite strong interaction
potential.

I This analysis extends the earlier 2D model of rolling cogs
by C.J. Halcrow and NSM to 3D.
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Coloured disc on a fixed coloured rail.



A Skyrmion above a half-filled lattice of Skyrmions (Leeds
colouring scheme).



The path of a rolling Skyrmion. The sense of spin (about the
red-green axis) is unambiguous.



Conclusions
I Based on insight from rational maps, the FCC crystal in the

lightly-bound Skyrme model, weight diagrams of SU(4),
and the clustering of alpha-particle cubes, we have
(numerically) found Skyrmions in the standard Skyrme
model for many B values. Skyrmions often have
tetrahedral or cubic symmetry.

I The Skyrme model has produced good spectra for
Carbon-12 and Oxygen-16, allowing for rotations and
shape changes. A vibrational manifold (or its
approximation by a graph) is essential for understanding
the spectrum.

I Spin-orbit coupling can be modelled for a B = 1 Skyrmion
rolling over a hexagonally-symmetric surface of the FCC
Skyrmion crystal. What about rolling motion over the
surface of a tetrahedrally symmetric cluster?

I Further work needed on Coulomb and other E.M. effects,
and on weak decays.


