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Neutron Stars
structure and observables



structure and observables

neutron star structure from nuclear physics

http://www.astroscu.unam.mx/neutrones/NS-Picture/NStar/

- liquid core: 99% of mass

- core/crust with inner structure (phases): paste, lasagne, meat ball→ Coulomb force



structure and observables

neutron star masses



TOV approach
(self) gravitating (nuclear) matter



neutron stars in TOV approach
the canonical approach to neutron stars

- Einstein eqs

Gµν =
κ2

2
Tµν

- prescribed energy-momentum tensor - perfect fluid

Tρσ = (p + ρ)uρuσ − pgρσ

spherically symmetric metric

ds2 = A(r)dt2 − B(r)dr2 − r2(dθ2 + sin2 θdφ2)

TOV equations

TOV1 : M′ = 4πr2ρ, B(r) ≡
(

1− κ2

8π
M(r)

r

)−1

TOV2 : rp′ = (ρ+ p)

(
1
2

(1− B)− κ2

4
r2Bp

)
(

A′

A
=

1
r

(B− 1) +
κ2

2
rBp

)

to close the system: equation of state (EoS)

p = p(ρ, ...)



neutron stars in TOV approach

EoS → input from nuclear physics
EFTs for nuclear matter - no perfect fluid

→ mean-field approximation
examples

- Walecka model
- NJL model
- Skyrme model

mean-field EoS
algebraic EoS p = ρ(p)
constant densities ρ = const .

typically combined EoS
→ for different phases (densities)

How non-mean-field affects TOV?
Can we do gravitating nuclear matter in a full FT+GR?
→ we need an effective model (action) of nuclear matter
→ couple it to gravity
→ find nuclear stars
→ verify the universality of EoS

solvable nuclear matter action in a thermodynamical limit (perf.
fluid)
→ the BPS Skyrme model: low B.E. + perfect fluid



neutron stars in TOV approach

T. Klähn et al, Phys. Rev. C74 (2006) 035802

9

radius to

M < 2.2 M⊙(1000 Hz/νmax)(1 + 0.75j)

R < 19.5 km(1000 Hz/νmax)(1 + 0.2j) .
(17)

Here j ≡ cJ/GM2 (where J is the stellar angular mo-
mentum) is the dimensionless spin parameter, which is
typically 0.1-0.2 for these systems. There is also a limit
on the radius for any given mass.
These limits imply that for any given source, the ob-

served νmax means that the mass and radius must fall
inside an allowed “wedge”. Therefore, any allowed EoS
must have some portion of its corresponding mass-radius
curve fall inside this wedge. The wedge becomes smaller
for higher νmax, therefore the highest frequency ever ob-
served (1330 Hz, for 4U 0614+091; see [68]) places the
strongest of such constraints on the EoS. Note, though,
that another NS could in principle have a greater mass
and thus be outside this wedge, but an EoS ruled out
by one star is ruled out for all, since all NS have the
same EoS. As can be seen from Fig. 5, the current con-
straints from this argument do not rule out any of the
EoS we consider. However, because higher frequencies
imply smaller wedges, future observation of a QPO with
a frequency ∼ 1500− 1600 Hz would rule out the stiffest
of our EoS. This would therefore be a complementary re-
striction to those posed by RX J1856.5-3754 (discussed
below) and the implied high masses for some specific NSs,
which both argue against the softest EoS.
If one has evidence for a particular source that a given

frequency is actually close to the orbital frequency at
the ISCO, then the mass is known (modulo slight uncer-
tainty about the spin parameter). This was first claimed
for 4U 1820–30 [69], but complexities in the source phe-
nomenology have made this controversial. More recently,
careful analysis of Rossi X-ray Timing Explorer data for
4U 1636–536 and other sources [11] has suggested that
sharp and reproducible changes in QPO properties are
related to the ISCO. If so, this implies that several NSs
in low-mass X-ray binaries have gravitational masses be-
tween 1.9M⊙ and possibly 2.1M⊙ [11]. In Fig. 5 we
display the estimated mass 2.0 ± 0.1M⊙ for 4U 1636–
536, which would eliminate NLρ and NLρδ as the softest
proposed EoS even in the weak interpretation, and allow
only DBHF, DD and D3C in the strong one, see Tab. IV.

5. Mass-Radius relation constraint from RX J1856

After the discovery of the nearby isolated NS RX
J1856.5-3754 (hereafter short: RX J1856) the analysis
of its thermal radiation using the apparent blackbody
spectrum with a temperature T∞ = 57 eV [70] yielded
a lower limit for the photospheric radius R∞ of this ob-
ject. The distance of RX J1856 was initially estimated
to be 60 pc. Since R∞ crucially depends on this quan-
tity a very small value of R∞ ≈ 8 km was derived which
could not have been explained even with RX J1856 be-
ing a self-bound strange quark star [70]. The true stellar

radius R is given by R∞ = R(1 − R/RS)
−1/2, with the

Schwarzschild radius RS = 2GM/R. New measurements
predict a distance of at least 117 pc, which results in
R∞ = 16.8 km and turns RX J1856 from the formerly
smallest known NS into the largest one [13]. The result-
ing lower bound in the mass radius plane is shown in
Fig. 5. There are three ways to interpret this result:

A) RX J1856 belongs to compact stars with typical
masses M ∼ 1.4M⊙ and would thus have to have
a radius exceeding 14 km (see Fig. 2). None of the
examined EsoS can meet this requirement.

B) RX J1856 has a typical radius of R ∼ 12 − 13
km, implying that the EoS has to be rather stiff
at high density in order to allow for configurations
with masses above ∼ 2 M⊙. In the present work
this condition would be fulfilled for DBHF, DD and
D3C. This M > 1.6 M⊙ explanation implies that
the object is very massive and it is not a typical
NS since most of NSs have M < 1.5 M⊙, as follows
from population synthesis models.

C) RX J1856 is an exotic object with a small mass
∼ 0.2 M⊙, which would be possible for all EsoS
considered here. No such object has been observed
yet, but some mechanisms for their formation and
properties have been discussed in the literature [71].

6 8 10 12 14 16
R [km]

0

0.5

1

1.5

2

2.5

M
  [

M
so

l]

NLρ
NLρδ
DBHF (Bonn A)
DD
D

3
C

KVR
KVOR
DD-F

RX J1856

ca
usal

ity
 lim

it

4U 0614 +09

4U 1636 -536

FIG. 5: Mass-Radius constraints from thermal radiation of
the isolated NS RX J1856.5-3754 (grey hatched region) and
from QPOs in the LMXBs 4U 0614+09 (green hatched area)
and 4U 1636-536 (orange hatched region) which shall be re-
garded as separate conditions to the EsoS. For the mass of
4U 1636-536 a mass of 2.0 ± 0.1 M⊙ is obtained, so that the
weak QPO constraint would exclude the NLρ and NLρδ EsoS
whereas the strong one would leave only DBHF, DD and D3C.

It cannot be excluded, however, that the distance mea-
surement could be revised by a future analysis. If the



the solitonic Skyrme model
beyond the mean-field limit



solitonic Skyrme model

the Skyrme framework Skyrme (61)

pionic EFT of

baryons and nuclei→ emergent objects: solitons
extended, non-perturbative

nuclear matter
with applications to neutron stars
→ complementary to lattice

support form Nc →∞ limit t’Hooft (83), Witten (84)

chiral effective meson/baryon theory
primary d.o.f. are mesons
baryons (nuclei) are realized as solitons

simplest case (two flavors): U(x) = ei~π~σ ∈ SU(2)
~π - pions
topological charge = baryon number

U : R3 ∪ {∞} ∼= S3 3 ~x → U(~x) ∈ SU(2) ∼= S3

π3(S3) = Z

what is the proper action?



solitonic Skyrme model
Lorentz inv., standard Hamiltonian, max. first time derivative squared

L = L2 + L4 + L0 + L6

sextic term

L6 = −BµBµ, Bµ =
1

24π2
Tr (εµνρσLνLρLσ)

- topological i.e., the baryon current squared
- coherent i.e., "many"-body interaction
- short range repulsive interaction
- leading at high density/pressure Adam, Haberichter, Wereszczynski (15)

- perfect fluid Adam, Naya, Sanchez-Guillen, Speight, Wereszczynski (14)

ideal for nuclear star liquid core

higher order terms? Gudnason (17)



the Skyrme model in the BPS limit

the BPS Skyrme model: λπ , λ2, λ4 → 0 limit

LBPS = λ6L6 + L0

BPS zero (classical) BE
perfect fluid field theory for any B

Physically well motivated idealization of the nuclear matter

solvablity
very simple solvable model which covers the main features of
nuclear matter

the leading part in high density regime
should capture the leading contribution to the bulk observables of NS
liquid core of NS



the Skyrme model in a BPS limit - binding energies

BPS Skyrme model - classical aspects

topological bound ASW(10) PLB, Speight (10)

E06 =

∫
d3x

(
λ2π4B2

0 + µ2U
)

=

∫
d3x

(
λπ2B0 ± µ

√
U
)2
∓
∫

d3xλµπ2
√
UB0

≥
∫

d3xλµπ2
√
UB0 = 2π2λµ <

√
U >S3 |B|

- the bound is saturated⇒ BPS equation

λπ2B0 ± µ
√
U = 0

- exact, analytical solutions for any topological charge
- classically zero binding energy E = λµC|B|



the Skyrme model in a BPS limit binding energies
BPS Skyrme model - quantum aspects

Binding energy per nucleon: BPS model (blue), Weizsäcker’s formula (red), experimental values

(solid line)

axially symmetric solutions⇒ exact result
weakly depend on the potential

Heavy atomic nuclei (binding energies) can be described by a
solitonic model Adam, Naya, Ssanchez, Wereszczynski (2013) PRL



the Skyrme model in a BPS limit perfect fluid

SDiff symmetries
energy-momentum tensor of a perfect fluid

T 00 = λ2π2B2
0 + ν2U ≡ ε

T ij = δij
(
λ2π2B2

0 − ν2U
)
≡ δij P

local thermodynamical quantities

BPS eq. = zero pressure condition
e-m. conservation: ∂µTµν = 0
static: ∂i T ij = 0⇒ ∂j P = 0 ⇒ P = const .

constant pressure equation is a first integral of static EL eq.

λ2π4B2
0 − ν2U = P > 0

λπ2B0 = ±ν
√
U + P̃, P̃ ≡ (P/ν2)

static non-BPS solutions with P > 0



perfect fluid - exact thermodynamics

energy density EoS
ε− P = 2ν2U

non-barotropic chiral fluid ε 6= ε(P)

the step-function potential ε = P + 2ν2

no potential ε = P

high pressure limit - potential independent

ε = P

on-shell EoS
ε = ε(P, ~x)

beyond mean-field thermodynamics:
P = const . but ε 6= const .



Neutron Stars in the Skyrme model
beyond the mean-field limit



the BPS Skyrme model with gravity Adam, Naya, Sanchez, Vazquez, Wereszczynski (15)

S06 =

∫
d4x |g| 12

(
−λ2π4|g|−1gρσBρBσ − µ2U

)
energy-momentum tensor

Tρσ = −2|g|− 1
2

δ

δgρσ
S06

= 2λ2π4|g|−1BρBσ −
(
λ2π4|g|−1gπωBπBω − µ2U

)
gρσ

the energy-momentum tensor of a perfect fluid

Tρσ = (p + ρ)uρuσ − pgρσ

where the four-velocity uρ = Bρ/
√

gσπBσBπ and

ρ = λ2π4|g|−1gρσBρBσ + µ2U

p = λ2π4|g|−1gρσBρBσ − µ2U
for a static case with diagonal metric uρ = (

√
g00, 0, 0, 0)

T 00 = ρg00 , T ij = −pg ij .

flat space case⇒ pressure must be constant

In general, ρ and p arbitrary functions of the space-time coordinates,
⇒ no universal equation of state p = p(ρ) valid for all solutions



the BPS Skyrme model with gravity
Einstein equations

static, spherically symmetric metric (Schwarzschild coordinates)

ds2 = A(r)dt2 − B(r)dr2 − r2(dθ2 + sin2 θdφ2)

axially symmetric ansatz for the Skyrme field with baryon number B

U = eiξ~n·~τ

ξ = ξ(r), ~n = (sin θ cos Bφ, sin θ sin Bφ, cos θ)

are compatible with the Einstein equations

Gρσ =
κ2

2
Tρσ

FT + GR with full backreaction ↔ TOV: fix EoS



Einstein equations

1
r

B′

B
= − 1

r2
(B− 1) +

κ2

2
Bρ

r (Bp)′ =
1
2

(1− B)B(ρ+ 3p) +
κ2

2
µ2r2B2U(h)p

A′

A
=

1
r

(B− 1) +
κ2

2
rBp

A, B and ξ are functions of r ⇒ p and ρ are functions of r
h = (1− cos ξ)/2

ρ =
4B2λ2

Br4
h(1− h)h2

r + µ2U(h), p = ρ− 2µ2U(h)

eliminate r ⇒ on-shell EoS p = p(ρ)
except Θ-step-function potential⇒ off-shell EoS ρ = p + 2µ2

axially symmetric ansatz is the correct one because gravity
straightens out all deviations from spherical symmetry



parameters fitting
two parameters in the model λ and µ

chose a potential
U2
π , Uπ = 1− cos ξ

Ustep =

{
sin4 ξ ξ ∈

[
0, π2

]
1 ξ ∈

[
π
2 , π

]
m ≡ λµ has the dimensions of mass (energy)
fit to the binding energy of nucleon of infinite nuclear matter

Eb = 16.3 MeV

l ≡ (λ/µ)1/3 has the dimensions of length
fit to the nuclear saturation density

n0 = 0.153fm−3

particular potentials

U2
π : λ2 = 15.49 MeVfm3, µ2 = 141.22 MeVfm−3

Ustep : λ2 = 23.60 MeVfm3, µ2 = 121.08 MeVfm−3



results: mass-radius relation I
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results: mass-radius relation II
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maximal mass
U = Θ → Mmax = 4.1
Ustep → Mmax = 3.29
Uπ → Mmax = 3.34
U2
π → Mmax = 2.15

→ compatible with exp. data
→ compatible with M = 2.5 v.difficult for other EFT

M − R curve qualitatively different
→ EoS approaches the max. stiff EoS
→ light NS: crust important

full FT vs. mean-field
→ quantitatively differ
→ true Mmax is lower than predicted by MF



results: mass-radius relation
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results: the double pulsar J0737-3093

1.1

1.12

1.14

1.16

1.18

1.2

1.22

1.24

1.26

1.28

1.3 1.32 1.34 1.36 1.38 1.4 1.42 1.44 1.46 1.48 1.5

M
/M

�

n/n�

U = 2h
U = 4h2

Mean-EoS U = Θ(h)



results: local energy density
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results: local pressure
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results: local Equation of State
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no unique EoS
→ on-shell EoS: polytropic

p ∼ a εb

→ where a(B), b(B)

inverse TOV questionable
→ inhomogeneities important

role of the potential?



Beyond the BPS Skyrme limit
crust



model independent crust
crust crystal/solid part

mass: Mcrust = 1%M
radius: light NS - important

important for many phenomena: pulsar glitches
X-ray burst
gamma-ray flares of magnetars
torsional oscillations

cooling

crust EoS→ complicated, model dependent, small number
↓

in Skyrme model: L240 + ED



model independent crust
approx. Mcrust � M Zdunik, Fortin, Haensel (16)

hydrostatic equilibrium TOV in the crust: 0 < P < Pcc

dP
dr

= −
(
ρ+

P
c2

)(
1− 2Gm(r)

rc2

)−1 (Gm(r)

r2
+ 4πGr

P
c2

)
⇓ m(r) = M, 4πr2P

mc2 � 1

dP
c2ρ+ P

= −GM
c2

dr
r2(1− 2GM/rc2)

→ χ(P) =
∫ P

0
dP′

c2ρ+P′ solely by the EoS of the crust
but

χ[P(r)] =
1
2

ln
1− rg/R
1− rg/r

, rg = 2GM/c2

→ baryon chemical potential µ = dρ
dn or µ = P+ρc2

n

dP
c2ρ+ P

=
dµ
µ
⇒ χ(P) = ln

µ(P)

µ0

µ0 = µ(P = 0) = 930.4MeV



model independent crust
- only knowledge of µcc = µ(Pcc) required
- rest follow from the core properties

mass-radius

R =
Rcore

1−
(
µ2

cc
µ2

0
− 1
)(

Rcorec2

2GM − 1
)

the crust thickness

l = φRcore
1− 2GM/Rcorec2

1− φ(1− 2GM/Rcorec2)

φ =

(
µ2

cc

µ2
0
− 1

)
Rcorec2

2GM



model independent crust



BPS Skyrme with the crust Θ-step-function potential
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summary

neutron stars in the Skyrme Model
the BPS Skyrme model limit = liquid core

→ very promising Mmax ,Rmax ,M(R)

→ non-barotropic nuclear fluid
→ the inverse TOV?

beyond the BPS limit
→ crust (model independent results)
→ core/crust: phases→ pasta, lasagne, meat ball

the Skyrme model - unified EFT for nuclear matter at all scales
from B = 1 to B ∼ 1058



perfect fluid - exact thermodynamics

particle (baryon) density EoS
ρB = B0

generically non-constant (beyond MF)

ρB =
ν

λπ2

√
U +

P
ν2

on-shell
ρB = ρB(P, ~x)

no universal ε = ε(P), ρB = ρB(P)

universal relation - off-shell and non-MF

ε+ P = 2λ2π4ρ2
B

baryon chemical potential

definition: ε+ P = ρµ ⇒ µB = 2λ2π4ρB

off-shell
universal, potential independent
non-MF (local)



perfect fluid - exact thermodynamics

generically exact (non-mean field) thermodynamics
ε, ρB non-constant generically non-constant
non-barotropic fluid
no universal EoS

mean-field limit
MF averages ε̄, ρ̄B

ε̄ =
E06

V
, ρ̄ =

B
V

universal (geometrical) EoS
E06, V , ε̄, ρ̄B
- known as functions of P FT pressure
- no need for solutions!
- only U matters

E06(P) = Bπ2λµ

〈
2U + P/µ√
U + P/µ

〉
, V (P) = Bπ2 λ

µ

〈
1√

U + P/µ

〉
FT pressure is the pressure

P = −dE06

dV
micro (FT) thermodynamics = macro thermodynamics
comparison full vs. mean-field


