Skyrmions with low binding energies

Martin Speight (Leeds)
joint with
Derek Harland, Ben Maybee (Leeds)
Mike Gillard (Loughborough)
Elliot Kirk (Durham)

1st APCTP-TRIUMF Joint Workshop on Understanding Nuclei from Different Theoretical Approaches September 14-19, 2018 APCTP, Pohang, Korea

The (extended) Skyrme model

$$U: \mathbb{R}^3 \to SU(2), \ U(\infty) = \mathbb{I}_2, \ L_i = U^{\dagger} \partial_i U$$

$$B(U) = \frac{1}{2\pi^2} \int_{\mathbb{R}^3} \underbrace{\frac{\varepsilon_{ijk}}{12} tr(L_i L_j L_k)}_{\mathbb{R}^3} \in \mathbb{Z}$$

The (extended) Skyrme model

$$U: \mathbb{R}^3 \to SU(2), \ U(\infty) = \mathbb{I}_2, \ L_i = U^{\dagger} \partial_i U$$

$$B(U) = \frac{1}{2\pi^2} \int_{\mathbb{R}^3} \underbrace{\frac{\varepsilon_{ijk}}{12} tr(L_i L_j L_k)}_{\mathscr{B}} \in \mathbb{Z}$$

$$E(U) = \underbrace{-\frac{1}{4} \int_{\mathbb{R}^3} \operatorname{tr}(L_i L_i)}_{E_2} \underbrace{-\frac{1}{8} \int_{\mathbb{R}^3} \operatorname{tr}([L_i, L_j][L_i, L_j])}_{E_4}$$

The (extended) Skyrme model

$$U: \mathbb{R}^3 \to SU(2), \ U(\infty) = \mathbb{I}_2, \ L_i = U^{\dagger} \partial_i U$$

$$B(U) = \frac{1}{2\pi^2} \int_{\mathbb{R}^3} \underbrace{\frac{\varepsilon_{ijk}}{12} tr(L_i L_j L_k)}_{\mathscr{R}} \in \mathbb{Z}$$

$$E(U) = \underbrace{-\frac{1}{4} \int_{\mathbb{R}^3} tr(L_i L_i)}_{E_2} \underbrace{-\frac{1}{8} \int_{\mathbb{R}^3} tr([L_i, L_j][L_i, L_j])}_{E_4} + \underbrace{\int_{\mathbb{R}^3} V(U)}_{E_0} \underbrace{+\frac{1}{2} \int_{\mathbb{R}^3} \mathscr{B}^2}_{E_6}$$

E minimizer of charge *B*: classical model of nucleon number *B* nucleus

The binding energy problem $(E = E_2 + E_4)$

Classical binding energy =
$$\frac{BE(U_1)-E(U_B)}{E(U_1)}$$

В	Element	B.E. (Skyrme)	B.E. (experiment)
4	He	0.3639	0.0301
7	Li	0.7811	0.0414
9	Be	1.0123	0.0615
11	В	1.2792	0.0807
12	C	1.4277	0.0981
14	N	1.6815	0.1114
16	O	1.9646	0.1359
19	F	2.3684	0.1570
20	Ne	2.5045	0.1710

Naive quantization makes the problem worse

• Faddeev showed that $E = E_2 + E_4$ has a topological lower bound:

$$E \ge const \times B$$

• Faddeev showed that $E = E_2 + E_4$ has a topological lower bound:

$$E \geq const \times B$$

- What if we find a Skyrme energy with a bound like this which is attained for each B?
- Then $E(U_B) \equiv B \times E(U_1)$ so $B.E. \equiv 0!$
- Call such a model "BPS"

• Faddeev showed that $E = E_2 + E_4$ has a topological lower bound:

$$E \ge const \times B$$

- What if we find a Skyrme energy with a bound like this which is attained for each B?
- Then $E(U_B) \equiv B \times E(U_1)$ so $B.E. \equiv 0!$
- Call such a model "BPS"
- Now perturb the BPS model by adding $\varepsilon(E_2 + E_4)$, ε small (for example)
- Hopefully get a "near BPS" Skyrme model with small positive BEs

• Faddeev showed that $E = E_2 + E_4$ has a topological lower bound:

$$E \geq const \times B$$

- What if we find a Skyrme energy with a bound like this which is attained for each B?
- Then $E(U_B) \equiv B \times E(U_1)$ so $B.E. \equiv 0!$
- Call such a model "BPS"
- Now perturb the BPS model by adding $\varepsilon(E_2 + E_4)$, ε small (for example)
- Hopefully get a "near BPS" Skyrme model with small positive BEs
- Two implementations of this idea
 - perturbed $E_6 + E_0$ model (Adam, Sanchez-Guillen, Wereszczynski)
 - perturbed $E_4 + E_0$ model (Harland)

The ASW model $(E_6 + E_0)$

- $U: M \to N$, Ω =volume form on N $(M = \mathbb{R}^3, N = SU(2) = S^3)$
- Potential $V = \frac{1}{2}W^2$ where $W : N \to \mathbb{R}$ has $W(\mathbb{I}_2) = 0$

$$E(U) = \frac{1}{2} \int_{M} (|U^*\Omega|^2 + W(U)^2)$$

The ASW model $(E_6 + E_0)$

- $U: M \to N$, Ω =volume form on N $(M = \mathbb{R}^3, N = SU(2) = S^3)$
- Potential $V = \frac{1}{2}W^2$ where $W : N \to \mathbb{R}$ has $W(\mathbb{I}_2) = 0$

$$E(U) = \frac{1}{2} \int_{M} (|U^*\Omega|^2 + W(U)^2)$$

Energy bound

$$0 \leq \frac{1}{2} \int_{M} (*U^{*}\Omega - W(U))^{2} = E - \int_{M} U^{*}(W\Omega)$$
$$= E - \underbrace{\langle W \rangle Vol(N)}_{C} B$$

• So $E \ge CB$ with equality iff $U^*\Omega = *W(U)$

$$U: M \to N,$$
 $U^*\Omega = *W(U)$

$$U:M o N,$$
 $U^*\Omega=*W(U)$ $U:M' o N',$ $U^*\left(\frac{\Omega}{W}\right)=*1=$ volume form on M

$$N' = N \setminus W^{-1}(0)$$
 =punctured target space,
 $M' = U^{-1}(N')$ = "support" of U

• BPS skyrmions are **volume preserving** maps $M' \to (N', \Omega/W)$

$$U:M o N,$$
 $U^*\Omega=*W(U)$ $U:M' o N',$ $U^*\left(rac{\Omega}{W}
ight)=*1=$ volume form on M

$$N' = N \setminus W^{-1}(0)$$
 =punctured target space,
 $M' = U^{-1}(N')$ = "support" of U

- BPS skyrmions are **volume preserving** maps $M' \rightarrow (N', \Omega/W)$
- Come in ∞ -dim families, $U \circ \psi$, where $\psi : M \to M$ is any volume preserving map. Cf Liquid drop model.

$$U:M o N,$$
 $U^*\Omega=*W(U)$ $U:M' o N',$ $U^*\left(rac{\Omega}{W}
ight)=*1=$ volume form on M

$$N' = N \setminus W^{-1}(0)$$
 =punctured target space,
 $M' = U^{-1}(N')$ = "support" of U

- BPS skyrmions are **volume preserving** maps $M' \rightarrow (N', \Omega/W)$
- Come in ∞ -dim families, $U \circ \psi$, where $\psi : M \to M$ is any volume preserving map. Cf Liquid drop model.
- ullet Compactons? Depends on W. Support of U_1 has

$$Vol = \int_{N'} \frac{\Omega}{W}$$

$$U^*\Omega = *W(U)$$

• B = 1 Hedgehog (assume W = W(tr U), preserves chiral symmetry)

$$U_H(r\mathbf{n}) = \cos f(r) + i \sin f(r)\mathbf{n} \cdot \tau$$
 $f(0) = \pi, f(\infty) = 0$

1st order ODE for f.

$$U^*\Omega = *W(U)$$

• B = 1 Hedgehog (assume W = W(tr U), preserves chiral symmetry)

$$U_H(r\mathbf{n}) = \cos f(r) + i \sin f(r)\mathbf{n} \cdot \tau$$
 $f(0) = \pi, f(\infty) = 0$

1st order ODE for f.

Charge B solutions (ASW, Bonenfant, Marleau)

$$\psi_B: \mathbb{R}^3 \backslash \mathbb{R}_z \to \mathbb{R}^3 \backslash \mathbb{R}_z, \qquad \psi_B(r, \theta, \varphi) = (B^{-1/3}r, \theta, B\varphi)$$

 $U_B = U_H \circ \psi_B$. Conical singularity along \mathbb{R}_z

Perturbation

- $E_6 + E_0$ is irredeemably sick (e.g. EL eqn isn't an evolution eqn)
- Need $E = E_6 + E_0 + \varepsilon E_2$

Perturbation

- $E_6 + E_0$ is irredeemably sick (e.g. EL eqn isn't an evolution eqn)
- Need $E = E_6 + E_0 + \varepsilon E_2$
- Pion mass? Linearize about vacuum $U = \mathbb{I}_2 + i\pi \cdot \tau + \cdots$

$$V(U) = \frac{1}{2}m^2|\pi|^2 + \cdots$$

$$E_{lin} = \int_{M} \left(\frac{\varepsilon}{2} \partial_{i} \pi \cdot \partial_{i} \pi + \frac{m^{2}}{2} |\pi|^{2} \right)$$

Klein-Gordon triplet of mass $m/\sqrt{\varepsilon}$

Perturbation

- $E_6 + E_0$ is irredeemably sick (e.g. EL eqn isn't an evolution eqn)
- Need $E = E_6 + E_0 + \varepsilon E_2$
- Pion mass? Linearize about vacuum $U = \mathbb{I}_2 + i\pi \cdot \tau + \cdots$

$$V(U) = \frac{1}{2}m^2|\pi|^2 + \cdots$$

$$E_{lin} = \int_{M} \left(\frac{\varepsilon}{2} \partial_{i} \pi \cdot \partial_{i} \pi + \frac{m^{2}}{2} |\pi|^{2} \right)$$

Klein-Gordon triplet of mass $m/\sqrt{\varepsilon}$

- Better choose V with m = 0, else pions are heavier than nucleons!
- $V_{\pi} = \operatorname{tr}(\mathbb{I}_2 U)$ no good
- $W = [\operatorname{tr}(\mathbb{I}_2 U)]/2$ is OK. Compacton at $\varepsilon = 0$

- Numerics (Harland, Gillard, JMS):
 - Start at $\varepsilon = 1$, minimize using conjugate gradient method.
 - Reduce ε , repeat
 - Check integrality of B and Derrick scaling identities

$$E(U(\lambda \mathbf{x})) = \lambda^3 E_6 + \varepsilon \lambda^{-1} E_2 + \lambda^{-3} E_0$$

$$\Rightarrow 0 = 3E_6 - \varepsilon E_2 - 3E_0$$

- Numerics (Harland, Gillard, JMS):
 - Start at $\varepsilon = 1$, minimize using conjugate gradient method.
 - Reduce ε , repeat
 - Check integrality of B and Derrick scaling identities

$$E(U(\lambda \mathbf{x})) = \lambda^3 E_6 + \varepsilon \lambda^{-1} E_2 + \lambda^{-3} E_0$$

$$\Rightarrow 0 = 3E_6 - \varepsilon E_2 - 3E_0$$

- Numerics become unstable at $\varepsilon \approx 0.2$.
- B.E.s decrease with ε , but still too large

- Numerics (Harland, Gillard, JMS):
 - Start at $\varepsilon = 1$, minimize using conjugate gradient method.
 - Reduce ε , repeat
 - Check integrality of B and Derrick scaling identities

$$E(U(\lambda \mathbf{x})) = \lambda^3 E_6 + \varepsilon \lambda^{-1} E_2 + \lambda^{-3} E_0$$

$$\Rightarrow 0 = 3E_6 - \varepsilon E_2 - 3E_0$$

- Numerics become unstable at $\varepsilon \approx 0.2$.
- B.E.s decrease with ε , but still too large
- B=1,2 have axial symmetry: can push ε much further

$$\frac{2E(1)-E(2)}{2E(1)}\approx 0.01$$

requires $\varepsilon = 0.014$, way too small for 3D numerics

Numerical results $E = E_6 + E_0 + \overline{\varepsilon E_2}$

$$\mathscr{B} = 0.5\mathscr{B}_{max}$$

Left $\varepsilon = 1$, right $\varepsilon = 0.2$

Covergence to BPS skyrmions? B = 4

$$E(U) = E_6(U) + E_0(U) + \varepsilon E_2(U)$$

- E(U) should be stationary for all smooth variations U_t of U
- Choose $U_t = U \circ \psi_t$, ψ_t a curve through Id in SDiff(M)

$$E(U) = E_6(U) + E_0(U) + \varepsilon E_2(U)$$

- E(U) should be stationary for all smooth variations U_t of U
- Choose $U_t = U \circ \psi_t$, ψ_t a curve through Id in SDiff(M)
- E_6 and E_0 are *SDiff* invariant! So E_2 must be stationary for these variations: geometric language, $U: M \to N$ must be **restricted harmonic**

$$E(U) = E_6(U) + E_0(U) + \varepsilon E_2(U)$$

- E(U) should be stationary for all smooth variations U_t of U
- Choose $U_t = U \circ \psi_t$, ψ_t a curve through Id in SDiff(M)
- E_6 and E_0 are *SDiff* invariant! So E_2 must be stationary for these variations: geometric language, $U: M \to N$ must be **restricted harmonic**
- Strain tensor $\mathscr{D}_{ij} = -\frac{1}{2}\operatorname{tr}(L_iL_j)$, or better $\mathscr{D} = \mathscr{D}_{ij}dx_idx_j$

$$E(U) = E_6(U) + E_0(U) + \varepsilon E_2(U)$$

- E(U) should be stationary for all smooth variations U_t of U
- Choose $U_t = U \circ \psi_t$, ψ_t a curve through Id in SDiff(M)
- E_6 and E_0 are *SDiff* invariant! So E_2 must be stationary for these variations: geometric language, $U: M \to N$ must be **restricted harmonic**
- Strain tensor $\mathcal{D}_{ij} = -\frac{1}{2} \operatorname{tr}(L_i L_j)$, or better $\mathcal{D} = \mathcal{D}_{ij} dx_i dx_j$
- U restricted harmonic iff div 𝒯 is exact

$$\partial_i \partial_k \mathscr{D}_{kj} dx_i \wedge dx_j = 0$$

$$E(U) = E_6(U) + E_0(U) + \varepsilon E_2(U)$$

- E(U) should be stationary for all smooth variations U_t of U
- Choose $U_t = U \circ \psi_t$, ψ_t a curve through *Id* in *SDiff* (*M*)
- E_6 and E_0 are *SDiff* invariant! So E_2 must be stationary for these variations: geometric language, $U: M \to N$ must be **restricted harmonic**
- Strain tensor $\mathcal{D}_{ij} = -\frac{1}{2} \operatorname{tr}(L_i L_j)$, or better $\mathcal{D} = \mathcal{D}_{ij} dx_i dx_j$
- U restricted harmonic iff div 𝒯 is exact

$$\partial_i \partial_k \mathscr{D}_{kj} dx_i \wedge dx_j = 0$$

- True for all $\varepsilon > 0$. So if $U \stackrel{\varepsilon \to 0}{\longrightarrow} U_{BPS}$, this should be RH also
- Bad news: $U_B = U_H \circ \psi_B$ isn't (failure gets worse as B increases)

$$E = -\frac{1}{16} \int_{\mathbb{R}^3} \operatorname{tr}([L_i, L_j][L_i, L_j]) + \int_{\mathbb{R}^3} V(U)$$

$$E = -\frac{1}{16} \int_{\mathbb{R}^3} \operatorname{tr}([L_i, L_j][L_i, L_j]) + \int_{\mathbb{R}^3} V(U)$$

Harland's energy bound:

$$E \geq \underbrace{4(2\pi^2)\langle V^{1/4}\rangle}_{C} B$$

Proof uses AM-GM and Hölder inequalities

$$E = -\frac{1}{16} \int_{\mathbb{R}^3} \operatorname{tr}([L_i, L_j][L_i, L_j]) + \int_{\mathbb{R}^3} V(U)$$

• Harland's energy bound:

$$E \geq \underbrace{4(2\pi^2)\langle V^{1/4}\rangle}_{C} B$$

Proof uses AM-GM and Hölder inequalities

• Crucial step (Manton): rewrite E_4 in terms of eigenvalues of \mathscr{D}

$$E_4 = \int_M (\lambda_1^2 \lambda_2^2 + \lambda_2^2 \lambda_3^2 + \lambda_3^2 \lambda_1^2)$$

$$E=-rac{1}{16}\int_{\mathbb{R}^3} \operatorname{tr}([L_i,L_j][L_i,L_j])+\int_{\mathbb{R}^3} V(U)$$

• Harland's energy bound:

$$E \geq \underbrace{4(2\pi^2)\langle V^{1/4}\rangle}_{C} B$$

Proof uses AM-GM and Hölder inequalities

• Crucial step (Manton): rewrite E_4 in terms of eigenvalues of ${\mathscr D}$

$$E_4 = \int_M (\lambda_1^2 \lambda_2^2 + \lambda_2^2 \lambda_3^2 + \lambda_3^2 \lambda_1^2)$$

Bound attained iff

$$\lambda_1^2 = \lambda_2^2 = \lambda_3^2 = V^{1/2}$$

everywhere: $U: \mathbb{R}^3 \to S^3$ must be conformal with conformal factor $\sqrt{V(U)}$

• Essentially unique solution: $U: \mathbb{R}^3 \to S^3$ is inverse stereographic projection, and

$$V(U) = V_{quartic}(U) = \left(rac{1}{2}\operatorname{tr}(\mathbb{I}_2 - U)
ight)^4$$

• Bound only saturated for B = 1. For $B \ge 2$, E(U) > CB, so model is **unbound**

$$E_{\varepsilon}(U) = E_4 + (1 - \varepsilon)E_0^{quartic} + \varepsilon(E_2 + E_0^{pion})$$

• $\varepsilon=0$ Harland's unbound model, $\varepsilon=1$ usual model with massive pions

$$E_{\varepsilon}(U) = E_4 + (1 - \varepsilon)E_0^{quartic} + \varepsilon(E_2 + E_0^{pion})$$

- $\varepsilon=0$ Harland's unbound model, $\varepsilon=1$ usual model with massive pions
- Numerics: minimize using conjugate gradient method, start at $\varepsilon=1$, reduce ε
- Get "realistic" binding energies for $\varepsilon \approx 0.05$, easily accessible to numerics

$$E_{\varepsilon}(U) = E_4 + (1 - \varepsilon)E_0^{quartic} + \varepsilon(E_2 + E_0^{pion})$$

- arepsilon arepsilon = 0 Harland's unbound model, arepsilon = 1 usual model with massive pions
- Numerics: minimize using conjugate gradient method, start at $\varepsilon=1$, reduce ε
- Get "realistic" binding energies for $\varepsilon \approx 0.05$, easily accessible to numerics
- Skyrmions are **lightly bound**: B = 1 units occupying subsets of FCC lattice in maximally attractive internal orientation

$$E_{\varepsilon}(U) = E_4 + (1 - \varepsilon)E_0^{quartic} + \varepsilon(E_2 + E_0^{pion})$$

- $\varepsilon=0$ Harland's unbound model, $\varepsilon=1$ usual model with massive pions
- Numerics: minimize using conjugate gradient method, start at $\varepsilon=1$, reduce ε
- Get "realistic" binding energies for $\varepsilon \approx 0.05$, easily accessible to numerics
- Skyrmions are **lightly bound**: B = 1 units occupying subsets of FCC lattice in maximally attractive internal orientation
- Many nearly degenerate local minima
- Minima tend to have much less symmetry than in usual $E_2 + E_4$ model

Lightly bound skyrmions

$$\mathscr{B} = 0.1\mathscr{B}_{max}$$

Lightly bound skyrmions

Classical binding energies: summary

Point skyrmion model

General unit skyrmion

$$U(\mathbf{x}) = U_H(R(\mathbf{x} - \mathbf{x}_0))$$
 position \mathbf{x}_0 , orientation $R \in SO(3)$

- Interaction energy of Skyrmion pair at (\mathbf{x}_1, R_1) , (\mathbf{x}_2, R_2) depends only on $\mathbf{X} = \mathbf{x}_1 \mathbf{x}_2$ and $R = R_1^{-1} R_2$
- Assumption/approximation

$$V_{int} = V_0(|\mathbf{X}|) + V_1(|\mathbf{X}|) \operatorname{tr} R + V_2(|\mathbf{X}|) \frac{\mathbf{X} \cdot R\mathbf{X}}{|\mathbf{X}|^2}$$

• Find V_0 , V_1 , V_2 by fitting to classical scattering solutions

Point skyrmion model

General unit skyrmion

$$U(\mathbf{x}) = U_H(R(\mathbf{x} - \mathbf{x}_0))$$
 position \mathbf{x}_0 , orientation $R \in SO(3)$

- Interaction energy of Skyrmion pair at (\mathbf{x}_1, R_1) , (\mathbf{x}_2, R_2) depends only on $\mathbf{X} = \mathbf{x}_1 \mathbf{x}_2$ and $R = R_1^{-1}R_2$
- Assumption/approximation

$$V_{int} = V_0(|\mathbf{X}|) + V_1(|\mathbf{X}|) \operatorname{tr} R + V_2(|\mathbf{X}|) \frac{\mathbf{X} \cdot R\mathbf{X}}{|\mathbf{X}|^2}$$

- Find V_0 , V_1 , V_2 by fitting to classical scattering solutions
- Very simple point particle approximation to Skyrme energy

$$E_{pp}(\mathbf{x}_1, \dots, \mathbf{x}_B, R_1, \dots, R_B) = BE(U_H) + \sum_{1 \le a \le b \le B} V_{int}(|\mathbf{x}_a - \mathbf{x}_b|, R_a^{-1}R_b)$$

• Does remarkably well: for $1 \le B \le 8$ reproduces all local minima, with correct energy ordering **except** reverses 6a and 6b

Point skyrmion model (H+G+JMS+Maybee+Kirk)

Point skyrmion model

- Let it loose on $9 \le B \le 23$
- Can automate rigid body quantization procedure (not entirely trivial)
- Results modest: binding energies get inflated (as usual), spin/isospin predictions often unphysical

Point skyrmion model: rigid body quantization

	l	Colour	Classical	Symmetry			Quantum	Experiment
Name	Bonds	count	energy	group	- 1	J	energy	
2a	1	1,1,0,0	-0.310	D ₂	0	1	3.813	$^{2}{\rm H}_{1}$
3a	3	1,1,1,0	-0.931	C ₃	1/2	1/2	1.106	$^3\mathrm{He}_2$
4a	6	1,1,1,1	-1.862	Ť	Ó	Ó	-1.862	⁴ He ₂
5a	8	2,1,1,1	-2.338	1	1/2	1/2	-1.167	-
5b	8	2,2,1,0	-2.185	C_4	1/2	3/2	-0.700	$^5\mathrm{He}_2$
6a	12	2,2,2,0	-3.229	ō	2	1	4.275	
6b	11*	2,2,1,1	-3.117	D_2	0	1	-2.973	⁶ Li ₃
6c	11*	2,2,1,1	-3.046	1	0	0	-3.046	
7a	15	2,2,2,1	-4.057	C ₃	1/2	1/2	-3.210	
8a	18	2,2,2,2	-4.889	D_3	0	0	-4.889	$^8\mathrm{Be_4}$
8b	18	2,2,2,2	-4.869	C_2	0	1	-4.769	
9a	21	3,2,2,2	-5.664	C_3	1/2	1/2	-5.024	
9b	21	3,2,2,2	-5.598	1	1/2	1/2	-4.956	
10a	25	3,3,2,2	-6.443	D_2	Ó	1	-6.352	
10b	24*	4,2,2,2	-6.442	T	0	0	-6.442	
11a	28	3,3,3,2	-7.261	1	1/2	1/2	-6.736	
12a	31*	3,3,3,3	-8.081	C_2	0	0	-8.081	$^{12}{ m C}_{6}$
12b	32	3,3,3,3	-8.066	1	0	0	-8.066	
13a	36	4,3,3,3	-9.016	C ₃	1/2	1/2	-8.575	$^{13}\mathrm{C}_{6}$
14a	39*	4,4,3,3	-9.821	1	Ó	Ó	-9.821	
15a	43*	4,4,4,3	-10.653	1	1/2	1/2	-10.272	¹⁵ N ₇
15b	42**	4,4,4,3	-10.627	1	1/2	1/2	-10.247	15 N ₇
15c	43*	4,4,4,3	-10.584	1	1/2	1/2	-10.202	15 N ₇
16a	48	4,4,4,4	-11.771	T	Ó	Ó	-11.771	¹⁶ O ₈
17a	51*	5,4,4,4	-12.563	C ₃	1/2	1/2	-12.228	- 0
18a	54**	5,5,4,4	-13.356	C_2	ó	Ó	-13.356	
18b	56	6,4,4,4	-13.340	C_4	0	0	-13.340	
19a	60	5,5,5,4	-14.251	C ₃	1/2	1/2	-13.951	¹⁹ F ₉
19b	60	7,4,4,4	-14.244	0	1/2	1/2	-13.946	19 _{F0}
19c	58**	5,5,5,4	-14.178	1	1/2	1/2	-13.879	_ ¹⁹ F₀
19d	59*	5554	-14 164	1	1/2	1/2	-13 864	19 E

Summary

- Near BPS model $(E_6 + E_0 + \varepsilon E_2)$
 - Skyrmions seem to keep conventional symmetries
 - Has (approx) SDiff invariance: liquid drop model
 - Need $\varepsilon \approx 0.014$ to get realistic B.E.s, much too small for reliable numerics
 - No idea what limit BPS skyrmions actually are. $U_H \circ \psi_B$ certainly wrong.

Summary

- Near BPS model $(E_6 + E_0 + \varepsilon E_2)$
 - Skyrmions seem to keep conventional symmetries
 - Has (approx) SDiff invariance: liquid drop model
 - Need $\varepsilon \approx 0.014$ to get realistic B.E.s, much too small for reliable numerics
 - No idea what limit BPS skyrmions actually are. $U_H \circ \psi_B$ certainly wrong.
- Lightly bound model $(E_4 + E_0 + \varepsilon(E_2 + E_0^{\pi} E_0))$
 - Numerically tractable at very low ε
 - $\varepsilon \approx 0.05$ yields realistic B.E.s
 - Skyrmions resemble molecules, subsets of FCC lattice
 - Lose symmetries, many nearly degenerate minima
 - Simple and reliable point particle model
 - Has inspired new initial data for conventional model at high B
 (Manton et al)
 - Good laboratory for more advanced quantization techniques

Summary: other approaches

• **Loosely** bound model (Gudnason): $E = E_4 + E_0 + \varepsilon(E_2 + E_0^{\pi})$ but with

$$E_0 = \int_M [\operatorname{tr}(\mathbb{I}_2 - U)]^2$$
 instead of $E_0 = \int_M [\operatorname{tr}(\mathbb{I}_2 - U)]^4$.

Gets low classical B.E. without losing as much symmetry as lightly bound model.

Summary: other approaches

• **Loosely** bound model (Gudnason): $E = E_4 + E_0 + \varepsilon (E_2 + E_0^{\pi})$ but with

$$E_0 = \int_M [\operatorname{tr}(\mathbb{I}_2 - U)]^2$$
 instead of $E_0 = \int_M [\operatorname{tr}(\mathbb{I}_2 - U)]^4$.

Gets low classical B.E. without losing as much symmetry as lightly bound model.

- Holography (Sutcliffe):
 - Interpret pure YM on M^4 as Skyrme model (on \mathbb{R}^3) coupled to infinite tower of vector mesons
 - Get near BPS theory by truncating meson tower
 - N = 1 modest reduction in B.E.s
 - N = 2 a lot better (Sutcliffe, Naya)
 - Price: extremely complicated numerical problem
 - Advantage: vector meson coupling interesting for other reasons