Skyrmions with low binding energies

Martin Speight (Leeds) joint with
Derek Harland, Ben Maybee (Leeds)
Mike Gillard (Loughborough)
Elliot Kirk (Durham)

1st APCTP-TRIUMF Joint Workshop on Understanding Nuclei from Different Theoretical Approaches September 14-19, 2018 APCTP, Pohang, Korea

$$
\begin{aligned}
& U: \mathbb{R}^{3} \rightarrow S U(2), U(\infty)=\mathbb{I}_{2}, L_{i}=U^{\dagger} \partial_{i} U \\
& B(U)=\frac{1}{2 \pi^{2}} \int_{\mathbb{R}^{3}} \underbrace{\frac{\varepsilon_{i j k}}{12} \operatorname{tr}\left(L_{i} L_{j} L_{k}\right)}_{\mathscr{B}} \in \mathbb{Z}
\end{aligned}
$$

$$
\begin{aligned}
& U: \mathbb{R}^{3} \rightarrow S U(2), U(\infty)=\mathbb{I}_{2}, L_{i}=U^{\dagger} \partial_{i} U \\
& B(U)=\frac{1}{2 \pi^{2}} \int_{\mathbb{R}^{3}} \underbrace{\frac{\varepsilon_{i j k}}{12} \operatorname{tr}\left(L_{i} L_{j} L_{k}\right)}_{\mathscr{B}} \in \mathbb{Z}
\end{aligned}
$$

$$
E(U)=\underbrace{-\frac{1}{4} \int_{\mathbb{R}^{3}} \operatorname{tr}\left(L_{i} L_{i}\right)}_{E_{2}} \underbrace{-\frac{1}{8} \int_{\mathbb{R}^{3}} \operatorname{tr}\left(\left[L_{i}, L_{j}\right]\left[L_{i}, L_{j}\right]\right)}_{E_{4}}
$$

$$
\begin{aligned}
& U: \mathbb{R}^{3} \rightarrow S U(2), U(\infty)=\mathbb{I}_{2}, L_{i}=U^{\dagger} \partial_{i} U \\
& B(U)=\frac{1}{2 \pi^{2}} \int_{\mathbb{R}^{3}} \underbrace{\frac{\varepsilon_{i j k}}{12} \operatorname{tr}\left(L_{i} L_{j} L_{k}\right)}_{\mathscr{B}} \in \mathbb{Z}
\end{aligned}
$$

$$
E(U)=\underbrace{-\frac{1}{4} \int_{\mathbb{R}^{3}} \operatorname{tr}\left(L_{i} L_{i}\right)}_{E_{2}} \underbrace{-\frac{1}{8} \int_{\mathbb{R}^{3}} \operatorname{tr}\left(\left[L_{i}, L_{j}\right]\left[L_{i}, L_{j}\right]\right)}_{E_{4}} \underbrace{+\int_{\mathbb{R}^{3}} V(U)}_{E_{0}} \underbrace{+\frac{1}{2} \int_{\mathbb{R}^{3}} \mathscr{B}^{2}}_{E_{6}}
$$

E minimizer of charge B : classical model of nucleon number B nucleus

Classical binding energy $=\frac{B E\left(U_{1}\right)-E\left(U_{B}\right)}{E\left(U_{1}\right)}$

B	Element	B.E. (Skyrme)	B.E. (experiment)
4	He	0.3639	0.0301
7	Li	0.7811	0.0414
9	Be	1.0123	0.0615
11	B	1.2792	0.0807
12	C	1.4277	0.0981
14	N	1.6815	0.1114
16	O	1.9646	0.1359
19	F	2.3684	0.1570
20	Ne	2.5045	0.1710

Naive quantization makes the problem worse

- Faddeev showed that $E=E_{2}+E_{4}$ has a topological lower bound:

$$
E \geq \text { const } \times B
$$

Unfortunately (?) it's never attained

- Faddeev showed that $E=E_{2}+E_{4}$ has a topological lower bound:

$$
E \geq \text { const } \times B
$$

Unfortunately (?) it's never attained

- What if we find a Skyrme energy with a bound like this which is attained for each B ?
- Then $E\left(U_{B}\right) \equiv B \times E\left(U_{1}\right)$ so $B . E$. $\equiv 0$!
- Call such a model "BPS"
- Faddeev showed that $E=E_{2}+E_{4}$ has a topological lower bound:

$$
E \geq \text { const } \times B
$$

Unfortunately (?) it's never attained

- What if we find a Skyrme energy with a bound like this which is attained for each B ?
- Then $E\left(U_{B}\right) \equiv B \times E\left(U_{1}\right)$ so $B . E$. $\equiv 0$!
- Call such a model "BPS"
- Now perturb the BPS model by adding $\varepsilon\left(E_{2}+E_{4}\right), \varepsilon$ small (for example)
- Hopefully get a "near BPS" Skyrme model with small positive BEs
- Faddeev showed that $E=E_{2}+E_{4}$ has a topological lower bound:

$$
E \geq \text { const } \times B
$$

Unfortunately (?) it's never attained

- What if we find a Skyrme energy with a bound like this which is attained for each B ?
- Then $E\left(U_{B}\right) \equiv B \times E\left(U_{1}\right)$ so $B . E$. $\equiv 0$!
- Call such a model "BPS"
- Now perturb the BPS model by adding $\varepsilon\left(E_{2}+E_{4}\right), \varepsilon$ small (for example)
- Hopefully get a "near BPS" Skyrme model with small positive BEs
- Two implementations of this idea
- perturbed $E_{6}+E_{0}$ model (Adam, Sanchez-Guillen, Wereszczynski)
- perturbed $E_{4}+E_{0}$ model (Harland)
- $U: M \rightarrow N, \Omega=$ volume form on N
$\left(M=\mathbb{R}^{3}, N=S U(2)=S^{3}\right)$
- Potential $V=\frac{1}{2} W^{2}$ where $W: N \rightarrow \mathbb{R}$ has $W\left(\mathbb{I}_{2}\right)=0$

$$
E(U)=\frac{1}{2} \int_{M}\left(\left|U^{*} \Omega\right|^{2}+W(U)^{2}\right)
$$

- $U: M \rightarrow N, \Omega=$ volume form on N $\left(M=\mathbb{R}^{3}, N=S U(2)=S^{3}\right)$
- Potential $V=\frac{1}{2} W^{2}$ where $W: N \rightarrow \mathbb{R}$ has $W\left(\mathbb{I}_{2}\right)=0$

$$
E(U)=\frac{1}{2} \int_{M}\left(\left|U^{*} \Omega\right|^{2}+W(U)^{2}\right)
$$

- Energy bound

$$
\begin{aligned}
0 & \leq \frac{1}{2} \int_{M}\left(* U^{*} \Omega-W(U)\right)^{2}=E-\int_{M} U^{*}(W \Omega) \\
& =E-\underbrace{\langle W\rangle \operatorname{Vol}(N)}_{C} B
\end{aligned}
$$

- So $E \geq C B$ with equality iff $U^{*} \Omega=* W(U)$
$U: M \rightarrow N, \quad U^{*} \Omega=* W(U)$

$$
\begin{aligned}
U: M \rightarrow N, & U^{*} \Omega=* W(U) \\
U: M^{\prime} \rightarrow N^{\prime}, & U^{*}\left(\frac{\Omega}{W}\right)=* 1=\text { volume form on } M
\end{aligned}
$$

$$
N^{\prime}=N \backslash W^{-1}(0)=\text { punctured target space, }
$$

$$
M^{\prime}=U^{-1}\left(N^{\prime}\right)=\text { "support" of } U
$$

$$
\begin{aligned}
U: M \rightarrow N, & U^{*} \Omega=* W(U) \\
U: M^{\prime} \rightarrow N^{\prime}, & U^{*}\left(\frac{\Omega}{W}\right)=* 1=\text { volume form on } M
\end{aligned}
$$

$N^{\prime}=N \backslash W^{-1}(0)=$ punctured target space,
$M^{\prime}=U^{-1}\left(N^{\prime}\right)=$ "support" of U

- BPS skyrmions are volume preserving maps

$$
M^{\prime} \rightarrow\left(N^{\prime}, \Omega / W\right)
$$

$$
\begin{aligned}
U: M \rightarrow N, & U^{*} \Omega=* W(U) \\
U: M^{\prime} \rightarrow N^{\prime}, & U^{*}\left(\frac{\Omega}{W}\right)=* 1=\text { volume form on } M
\end{aligned}
$$

$N^{\prime}=N \backslash W^{-1}(0)=$ punctured target space,
$M^{\prime}=U^{-1}\left(N^{\prime}\right)=$ "support" of U

- BPS skyrmions are volume preserving maps

$$
M^{\prime} \rightarrow\left(N^{\prime}, \Omega / W\right)
$$

- Come in ∞-dim families, $U \circ \psi$, where $\psi: M \rightarrow M$ is any volume preserving map. Cf Liquid drop model.

$$
\begin{aligned}
U: M \rightarrow N, & U^{*} \Omega=* W(U) \\
U: M^{\prime} \rightarrow N^{\prime}, & U^{*}\left(\frac{\Omega}{W}\right)=* 1=\text { volume form on } M
\end{aligned}
$$

$N^{\prime}=N \backslash W^{-1}(0)=$ punctured target space,

$$
M^{\prime}=U^{-1}\left(N^{\prime}\right)=\text { "support" of } U
$$

- BPS skyrmions are volume preserving maps

$$
M^{\prime} \rightarrow\left(N^{\prime}, \Omega / W\right)
$$

- Come in ∞-dim families, $U \circ \psi$, where $\psi: M \rightarrow M$ is any volume preserving map. Cf Liquid drop model.
- Compactons? Depends on W. Support of U_{1} has

$$
\mathrm{Vol}=\int_{N^{\prime}} \frac{\Omega}{W}
$$

$$
U^{*} \Omega=* W(U)
$$

- $B=1$ Hedgehog (assume $W=W(\operatorname{tr} U)$, preserves chiral symmetry)

$$
U_{H}(r \mathbf{n})=\cos f(r)+i \sin f(r) \mathbf{n} \cdot \tau \quad f(0)=\pi, f(\infty)=0
$$

1st order ODE for f.

$$
U^{*} \Omega=* W(U)
$$

- $B=1$ Hedgehog (assume $W=W(\operatorname{tr} U)$, preserves chiral symmetry)

$$
U_{H}(r \mathbf{n})=\cos f(r)+i \sin f(r) \mathbf{n} \cdot \tau \quad f(0)=\pi, f(\infty)=0
$$

1st order ODE for f.

- Charge B solutions (ASW, Bonenfant, Marleau)

$$
\begin{aligned}
& \psi_{B}: \mathbb{R}^{3} \backslash \mathbb{R}_{z} \rightarrow \mathbb{R}^{3} \backslash \mathbb{R}_{z}, \quad \psi_{B}(r, \theta, \varphi)=\left(B^{-1 / 3} r, \theta, B \varphi\right) \\
& U_{B}=U_{H} \circ \psi_{B} . \text { Conical singularity along } \mathbb{R}_{z}
\end{aligned}
$$

- $E_{6}+E_{0}$ is irredeemably sick (e.g. EL eqn isn't an evolution eqn)
- Need $E=E_{6}+E_{0}+\varepsilon E_{2}$
- $E_{6}+E_{0}$ is irredeemably sick (e.g. EL eqn isn't an evolution eqn)
- Need $E=E_{6}+E_{0}+\varepsilon E_{2}$
- Pion mass? Linearize about vacuum $U=\mathbb{I}_{2}+i \pi \cdot \tau+\cdots$

$$
\begin{gathered}
V(U)=\frac{1}{2} m^{2}|\pi|^{2}+\cdots \\
E_{l i n}=\int_{M}\left(\frac{\varepsilon}{2} \partial_{i} \pi \cdot \partial_{i} \pi+\frac{m^{2}}{2}|\pi|^{2}\right)
\end{gathered}
$$

Klein-Gordon triplet of mass $m / \sqrt{\varepsilon}$

- $E_{6}+E_{0}$ is irredeemably sick (e.g. EL eqn isn't an evolution eqn)
- Need $E=E_{6}+E_{0}+\varepsilon E_{2}$
- Pion mass? Linearize about vacuum $U=\mathbb{I}_{2}+i \pi \cdot \tau+\cdots$

$$
\begin{gathered}
V(U)=\frac{1}{2} m^{2}|\pi|^{2}+\cdots \\
E_{l i n}=\int_{M}\left(\frac{\varepsilon}{2} \partial_{i} \pi \cdot \partial_{i} \pi+\frac{m^{2}}{2}|\pi|^{2}\right)
\end{gathered}
$$

Klein-Gordon triplet of mass $m / \sqrt{\varepsilon}$

- Better choose V with $m=0$, else pions are heavier than nucleons!
- $V_{\pi}=\operatorname{tr}\left(\mathbb{I}_{2}-U\right)$ no good
- $W=\left[\operatorname{tr}\left(\mathbb{I}_{2}-U\right)\right] / 2$ is OK. Compacton at $\varepsilon=0$

Numerical results $E=E_{6}+E_{0}+\varepsilon E_{2}$

- Numerics (Harland, Gillard, JMS):
- Start at $\varepsilon=1$, minimize using conjugate gradient method.
- Reduce ε, repeat
- Check integrality of B and Derrick scaling identities

$$
\begin{aligned}
E(U(\lambda \mathbf{x})) & =\lambda^{3} E_{6}+\varepsilon \lambda^{-1} E_{2}+\lambda^{-3} E_{0} \\
\Rightarrow 0 & =3 E_{6}-\varepsilon E_{2}-3 E_{0}
\end{aligned}
$$

Numerical results $E=E_{6}+E_{0}+\varepsilon E_{2}$

- Numerics (Harland, Gillard, JMS):
- Start at $\varepsilon=1$, minimize using conjugate gradient method.
- Reduce ε, repeat
- Check integrality of B and Derrick scaling identities

$$
\begin{aligned}
E(U(\lambda \mathbf{x})) & =\lambda^{3} E_{6}+\varepsilon \lambda^{-1} E_{2}+\lambda^{-3} E_{0} \\
\Rightarrow 0 & =3 E_{6}-\varepsilon E_{2}-3 E_{0}
\end{aligned}
$$

- Numerics become unstable at $\varepsilon \approx 0.2$.
- B.E.s decrease with ε, but still too large

Numerical results $E=E_{6}+E_{0}+\varepsilon E_{2}$

- Numerics (Harland, Gillard, JMS):
- Start at $\varepsilon=1$, minimize using conjugate gradient method.
- Reduce ε, repeat
- Check integrality of B and Derrick scaling identities

$$
\begin{aligned}
E(U(\lambda \mathbf{x})) & =\lambda^{3} E_{6}+\varepsilon \lambda^{-1} E_{2}+\lambda^{-3} E_{0} \\
\Rightarrow 0 & =3 E_{6}-\varepsilon E_{2}-3 E_{0}
\end{aligned}
$$

- Numerics become unstable at $\varepsilon \approx 0.2$.
- B.E.s decrease with ε, but still too large
- $B=1,2$ have axial symmetry: can push ε much further

$$
\frac{2 E(1)-E(2)}{2 E(1)} \approx 0.01
$$

requires $\varepsilon=0.014$, way too small for 3D numerics

Numerical results $E=E_{6}+E_{0}+\varepsilon E_{2}$

$$
\mathscr{B}=0.5 \mathscr{B}_{\max }
$$

Left $\varepsilon=1$, right $\varepsilon=0.2$

Covergence to BPS skyrmions? $B=4$

$$
E(U)=E_{6}(U)+E_{0}(U)+\varepsilon E_{2}(U)
$$

- $E(U)$ should be stationary for all smooth variations U_{t} of U
- Choose $U_{t}=U \circ \psi_{t}, \psi_{t}$ a curve through Id in $\operatorname{SDiff}(M)$

$$
E(U)=E_{6}(U)+E_{0}(U)+\varepsilon E_{2}(U)
$$

- $E(U)$ should be stationary for all smooth variations U_{t} of U
- Choose $U_{t}=U \circ \psi_{t}, \psi_{t}$ a curve through Id in $\operatorname{SDiff}(M)$
- E_{6} and E_{0} are SDiff invariant! So E_{2} must be stationary for these variations: geometric language, $U: M \rightarrow N$ must be restricted harmonic

$$
E(U)=E_{6}(U)+E_{0}(U)+\varepsilon E_{2}(U)
$$

- $E(U)$ should be stationary for all smooth variations U_{t} of U
- Choose $U_{t}=U \circ \psi_{t}, \psi_{t}$ a curve through Id in $\operatorname{SDiff}(M)$
- E_{6} and E_{0} are SDiff invariant! So E_{2} must be stationary for these variations: geometric language, $U: M \rightarrow N$ must be restricted harmonic
- Strain tensor $\mathscr{D}_{i j}=-\frac{1}{2} \operatorname{tr}\left(L_{i} L_{j}\right)$, or better $\mathscr{D}=\mathscr{D}_{i j} d x_{i} d x_{j}$

$$
E(U)=E_{6}(U)+E_{0}(U)+\varepsilon E_{2}(U)
$$

- $E(U)$ should be stationary for all smooth variations U_{t} of U
- Choose $U_{t}=U \circ \psi_{t}, \psi_{t}$ a curve through Id in $\operatorname{SDiff}(M)$
- E_{6} and E_{0} are SDiff invariant! So E_{2} must be stationary for these variations: geometric language, $U: M \rightarrow N$ must be restricted harmonic
- Strain tensor $\mathscr{D}_{i j}=-\frac{1}{2} \operatorname{tr}\left(L_{i} L_{j}\right)$, or better $\mathscr{D}=\mathscr{D}_{i j} d x_{i} d x_{j}$
- U restricted harmonic iff $\operatorname{div} \mathscr{D}$ is exact

$$
\partial_{i} \partial_{k} \mathscr{D}_{k j} d x_{i} \wedge d x_{j}=0
$$

$$
E(U)=E_{6}(U)+E_{0}(U)+\varepsilon E_{2}(U)
$$

- $E(U)$ should be stationary for all smooth variations U_{t} of U
- Choose $U_{t}=U \circ \psi_{t}, \psi_{t}$ a curve through Id in $\operatorname{SDiff}(M)$
- E_{6} and E_{0} are SDiff invariant! So E_{2} must be stationary for these variations: geometric language, $U: M \rightarrow N$ must be restricted harmonic
- Strain tensor $\mathscr{D}_{i j}=-\frac{1}{2} \operatorname{tr}\left(L_{i} L_{j}\right)$, or better $\mathscr{D}=\mathscr{D}_{i j} d x_{i} d x_{j}$
- U restricted harmonic iff $\operatorname{div} \mathscr{D}$ is exact

$$
\partial_{i} \partial_{k} \mathscr{D}_{k j} d x_{i} \wedge d x_{j}=0
$$

- True for all $\varepsilon>0$. So if $U \xrightarrow{\varepsilon \rightarrow 0} U_{B P S}$, this should be RH also
- Bad news: $U_{B}=U_{H} \circ \psi_{B}$ isn't (failure gets worse as B increases)

$$
E=-\frac{1}{16} \int_{\mathbb{R}^{3}} \operatorname{tr}\left(\left[L_{i}, L_{j}\right]\left[L_{i}, L_{j}\right]\right)+\int_{\mathbb{R}^{3}} V(U)
$$

$$
E=-\frac{1}{16} \int_{\mathbb{R}^{3}} \operatorname{tr}\left(\left[L_{i}, L_{j}\right]\left[L_{i}, L_{j}\right]\right)+\int_{\mathbb{R}^{3}} V(U)
$$

- Harland's energy bound:

$$
E \geq \underbrace{4\left(2 \pi^{2}\right)\left\langle V^{1 / 4}\right\rangle}_{C} B
$$

Proof uses AM-GM and Hölder inequalities

$$
E=-\frac{1}{16} \int_{\mathbb{R}^{3}} \operatorname{tr}\left(\left[L_{i}, L_{j}\right]\left[L_{i}, L_{j}\right]\right)+\int_{\mathbb{R}^{3}} V(U)
$$

- Harland's energy bound:

$$
E \geq \underbrace{4\left(2 \pi^{2}\right)\left\langle V^{1 / 4}\right\rangle}_{C} B
$$

Proof uses AM-GM and Hölder inequalities

- Crucial step (Manton): rewrite E_{4} in terms of eigenvalues of \mathscr{D}

$$
E_{4}=\int_{M}\left(\lambda_{1}^{2} \lambda_{2}^{2}+\lambda_{2}^{2} \lambda_{3}^{2}+\lambda_{3}^{2} \lambda_{1}^{2}\right)
$$

$$
E=-\frac{1}{16} \int_{\mathbb{R}^{3}} \operatorname{tr}\left(\left[L_{i}, L_{j}\right]\left[L_{i}, L_{j}\right]\right)+\int_{\mathbb{R}^{3}} V(U)
$$

- Harland's energy bound:

$$
E \geq \underbrace{4\left(2 \pi^{2}\right)\left\langle V^{1 / 4}\right\rangle}_{C} B
$$

Proof uses AM-GM and Hölder inequalities

- Crucial step (Manton): rewrite E_{4} in terms of eigenvalues of \mathscr{D}

$$
E_{4}=\int_{M}\left(\lambda_{1}^{2} \lambda_{2}^{2}+\lambda_{2}^{2} \lambda_{3}^{2}+\lambda_{3}^{2} \lambda_{1}^{2}\right)
$$

- Bound attained iff

$$
\lambda_{1}^{2}=\lambda_{2}^{2}=\lambda_{3}^{2}=V^{1 / 2}
$$

everywhere: $U: \mathbb{R}^{3} \rightarrow S^{3}$ must be conformal with conformal factor $\sqrt{V(U)}$

- Essentially unique solution: $U: \mathbb{R}^{3} \rightarrow S^{3}$ is inverse stereographic projection, and

$$
V(U)=V_{\text {quartic }}(U)=\left(\frac{1}{2} \operatorname{tr}\left(\mathbb{I}_{2}-U\right)\right)^{4}
$$

- Bound only saturated for $B=1$. For $B \geq 2, E(U)>C B$, so model is unbound

$$
E_{\varepsilon}(U)=E_{4}+(1-\varepsilon) E_{0}^{\text {quartic }}+\varepsilon\left(E_{2}+E_{0}^{\text {pion }}\right)
$$

- $\varepsilon=0$ Harland's unbound model, $\varepsilon=1$ usual model with massive pions

Perturbation (Harland, Gillard, JMS)

$$
E_{\varepsilon}(U)=E_{4}+(1-\varepsilon) E_{0}^{\text {quartic }}+\varepsilon\left(E_{2}+E_{0}^{\text {pion }}\right)
$$

- $\varepsilon=0$ Harland's unbound model, $\varepsilon=1$ usual model with massive pions
- Numerics: minimize using conjugate gradient method, start at $\varepsilon=1$, reduce ε
- Get "realistic" binding energies for $\varepsilon \approx 0.05$, easily accessible to numerics

$$
E_{\varepsilon}(U)=E_{4}+(1-\varepsilon) E_{0}^{\text {quartic }}+\varepsilon\left(E_{2}+E_{0}^{\text {pion }}\right)
$$

- $\varepsilon=0$ Harland's unbound model, $\varepsilon=1$ usual model with massive pions
- Numerics: minimize using conjugate gradient method, start at $\varepsilon=1$, reduce ε
- Get "realistic" binding energies for $\varepsilon \approx 0.05$, easily accessible to numerics
- Skyrmions are lightly bound: $B=1$ units occupying subsets of FCC lattice in maximally attractive internal orientation

$$
E_{\varepsilon}(U)=E_{4}+(1-\varepsilon) E_{0}^{\text {quartic }}+\varepsilon\left(E_{2}+E_{0}^{\text {pion }}\right)
$$

- $\varepsilon=0$ Harland's unbound model, $\varepsilon=1$ usual model with massive pions
- Numerics: minimize using conjugate gradient method, start at $\varepsilon=1$, reduce ε
- Get "realistic" binding energies for $\varepsilon \approx 0.05$, easily accessible to numerics
- Skyrmions are lightly bound: $B=1$ units occupying subsets of FCC lattice in maximally attractive internal orientation
- Many nearly degenerate local minima
- Minima tend to have much less symmetry than in usual $E_{2}+E_{4}$ model

Lightly bound skyrmions

$$
\mathscr{B}=0.1 \mathscr{B}_{\max }
$$

$6 a$

2

6b

$7 a$

$7 b$

8a

4

5

7c

$8 b$

8c

8d

8 e

Lightly bound skyrmions

Classical binding energies: summary

- General unit skyrmion

$$
U(\mathbf{x})=U_{H}\left(R\left(\mathbf{x}-\mathbf{x}_{0}\right)\right)
$$

position x_{0}, orientation $R \in S O$ (3)

- Interaction energy of Skyrmion pair at $\left(\mathbf{x}_{1}, R_{1}\right),\left(\mathbf{x}_{2}, R_{2}\right)$ depends only on $\mathbf{X}=\mathbf{x}_{1}-\mathbf{x}_{2}$ and $R=R_{1}^{-1} R_{2}$
- Assumption/approximation

$$
V_{\text {int }}=V_{0}(|\mathbf{X}|)+V_{1}(|\mathbf{X}|) \operatorname{tr} R+V_{2}(|\mathbf{X}|) \frac{\mathbf{X} \cdot R \mathbf{X}}{|\mathbf{X}|^{2}}
$$

- Find V_{0}, V_{1}, V_{2} by fitting to classical scattering solutions
- General unit skyrmion

$$
U(\mathbf{x})=U_{H}\left(R\left(\mathbf{x}-\mathbf{x}_{0}\right)\right)
$$

position x_{0}, orientation $R \in S O$ (3)

- Interaction energy of Skyrmion pair at $\left(\mathbf{x}_{1}, R_{1}\right),\left(\mathbf{x}_{2}, R_{2}\right)$ depends only on $\mathbf{X}=\mathbf{x}_{1}-\mathbf{x}_{2}$ and $R=R_{1}^{-1} R_{2}$
- Assumption/approximation

$$
V_{i n t}=V_{0}(|\mathbf{X}|)+V_{1}(|\mathbf{X}|) \operatorname{tr} R+V_{2}(|\mathbf{X}|) \frac{\mathbf{X} \cdot R \mathbf{X}}{|\mathbf{X}|^{2}}
$$

- Find V_{0}, V_{1}, V_{2} by fitting to classical scattering solutions
- Very simple point particle approximation to Skyrme energy

$$
E_{p p}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{B}, R_{1}, \ldots, R_{B}\right)=B E\left(U_{H}\right)+\sum_{1 \leq a<b \leq B} V_{i n t}\left(\left|\mathbf{x}_{a}-\mathbf{x}_{b}\right|, R_{a}^{-1} R_{b}\right)
$$

- Does remarkably well: for $1 \leq B \leq 8$ reproduces all local minima, with correct energy ordering except reverses $6 a$ and $6 b$

Point skyrmion model (H+G+JMS+Maybee+Kirk)

3

6(c)*
7(a)*
6(a)

7(b)

8(b)
8(c)

- Let it loose on $9 \leq B \leq 23$
- Can automate rigid body quantization procedure (not entirely trivial)
- Results modest: binding energies get inflated (as usual), spin/isospin predictions often unphysical

Point skyrmion model: rigid body quantization

Name	Bonds	Colour count	Classical energy	Symmetry group	1	J	Quantum energy	Experiment	
2a	1	1,1,0,0	-0.310	D_{2}	0	1	3.813	${ }^{2} \mathrm{H}_{1}$	
3 a	3	1,1,1,0	-0.931	C_{3}	1/2	1/2	1.106	${ }^{3} \mathrm{He}_{2}$	
4 a	6	1,1,1,1	-1.862	T	0		-1.862	${ }^{4} \mathrm{He}_{2}$	
5 a	8	2,1,1,1	-2.338	,	1/2	1/2	-1.167		
5b	8	2,2,1,0	-2.185	C_{4}	1/2	3/2	-0.700	${ }^{5} \mathrm{He}_{2}$	
6a	12	2,2,2,0	-3.229	0	2	1	4.275		
6b	11*	2,2,1,1	-3.117	D_{2}	0	1	-2.973	${ }^{6} \mathrm{Li}_{3}$	
6c	11*	2,2,1,1	-3.046	1	0	0	-3.046		
7 a	15	2,2,2,1	-4.057	C_{3}	1/2	1/2	-3.210		
8 a	18	2,2,2,2	-4.889	D_{3}	0	0	-4.889	${ }^{8} \mathrm{Be}_{4}$	
8 b	18	2,2,2,2	-4.869	C_{2}	0	1	-4.769		
9 a	21	3,2,2,2	-5.664	C_{3}	1/2	1/2	-5.024		
9 b	21	3,2,2,2	-5.598	1	1/2	1/2	-4.956		
10a	25	3,3,2,2	-6.443	D_{2}	,	1	-6.352		
10b	$24 *$	4,2,2,2	-6.442	T	0	0	-6.442		
11a	28	3,3,3,2	-7.261	1	1/2	1/2	-6.736		
12a	31*	3,3,3,3	-8.081	C_{2}	0	0	-8.081	${ }^{12} \mathrm{C}_{6}$	
12b	32	3,3,3,3	-8.066	1	0	0	-8.066		
13a	36	4,3,3,3	-9.016	C_{3}	1/2	1/2	-8.575	${ }^{13} \mathrm{C}_{6}$	
14a	39*	4,4,3,3	-9.821		0	0	-9.821		
15a	43*	4,4,4,3	-10.653	1	1/2	1/2	-10.272	${ }^{15} \mathrm{~N}_{7}$	
15b	42**	4,4,4,3	-10.627	1	1/2	1/2	-10.247	${ }^{15} \mathrm{~N}_{7}$	
15c	43*	4,4,4,3	-10.584	1	1/2	1/2	-10.202	${ }^{15} \mathrm{~N}_{7}$	
16a	48	4,4,4,4	-11.771	T	0	0	-11.771	${ }^{16} \mathrm{O}_{8}$	
17a	51*	5,4,4,4	-12.563	C_{3}	1/2	1/2	-12.228		
18a	$54^{* *}$	5,5,4,4	-13.356	C_{2}	0	0	-13.356		
18b	56	6,4,4,4	-13.340	C_{4}	0	0	-13.340		
19a	60	5,5,5,4	-14.251	C_{3}	1/2	1/2	-13.951	${ }^{19} \mathrm{~F}_{9}$	
19b	60	7,4,4,4	-14.244	0	1/2	1/2	-13.946	${ }^{19} \mathrm{~F}_{9}$	
19c	$58^{* *}$	5,5,5,4	-14.178	1	1/2	1/2	-13.879	${ }^{19} \mathrm{~F}_{9}$	
19d	59*	5554	-14 104	1	1/2	1/2	13864		

- Near BPS model $\left(E_{6}+E_{0}+\varepsilon E_{2}\right)$
- Skyrmions seem to keep conventional symmetries
- Has (approx) SDiff invariance: liquid drop model
- Need $\varepsilon \approx 0.014$ to get realistic B.E.s, much too small for reliable numerics
- No idea what limit BPS skyrmions actually are. $U_{H} \circ \psi_{B}$ certainly wrong.
- Near BPS model $\left(E_{6}+E_{0}+\varepsilon E_{2}\right)$
- Skyrmions seem to keep conventional symmetries
- Has (approx) SDiff invariance: liquid drop model
- Need $\varepsilon \approx 0.014$ to get realistic B.E.s, much too small for reliable numerics
- No idea what limit BPS skyrmions actually are. $U_{H} \circ \psi_{B}$ certainly wrong.
- Lightly bound model $\left(E_{4}+E_{0}+\varepsilon\left(E_{2}+E_{0}^{\pi}-E_{0}\right)\right)$
- Numerically tractable at very low ε
- $\varepsilon \approx 0.05$ yields realistic B.E.s
- Skyrmions resemble molecules, subsets of FCC lattice
- Lose symmetries, many nearly degenerate minima
- Simple and reliable point particle model
- Has inspired new initial data for conventional model at high B (Manton et al)
- Good laboratory for more advanced quantization techniques
- Loosely bound model (Gudnason): $E=E_{4}+E_{0}+\varepsilon\left(E_{2}+E_{0}^{\pi}\right)$ but with
$E_{0}=\int_{M}\left[\operatorname{tr}\left(\mathbb{I}_{2}-U\right)\right]^{2} \quad$ instead of $\quad E_{0}=\int_{M}\left[\operatorname{tr}\left(\mathbb{I}_{2}-U\right)\right]^{4}$.
Gets low classical B.E. without losing as much symmetry as lightly bound model.
- Loosely bound model (Gudnason): $E=E_{4}+E_{0}+\varepsilon\left(E_{2}+E_{0}^{\pi}\right)$ but with
$E_{0}=\int_{M}\left[\operatorname{tr}\left(\mathbb{I}_{2}-U\right)\right]^{2} \quad$ instead of $\quad E_{0}=\int_{M}\left[\operatorname{tr}\left(\mathbb{I}_{2}-U\right)\right]^{4}$.
Gets low classical B.E. without losing as much symmetry as lightly bound model.
- Holography (Sutcliffe):
- Interpret pure YM on M^{4} as Skyrme model (on \mathbb{R}^{3}) coupled to infinite tower of vector mesons
- Get near BPS theory by truncating meson tower
- $N=1$ modest reduction in B.E.s
- $N=2$ a lot better (Sutcliffe, Naya)
- Price: extremely complicated numerical problem
- Advantage: vector meson coupling interesting for other reasons

