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The Nuclear Many-Body Problem

» Nucleus: from few to more than 200 strongly interacting
and self-bound fermions (neutrons and protons).

» Complex systems: spin, isospin, pairing, deformation, ...
» 3 of the 4 fundamental forces in nature are contributing to
the nuclear phenomena (as a whole driven by the strong

interaction).

nucleus neutron > NuClei: Self‘bound System
atom electron proton quarks . .
. by the strong interaction
‘ || [In the binding energy
-~ Beoul ~ _Bstrong/(3 to ]0)]

» «—decay: interplay
between the strong and
electromagnetic interaction

alpha decay




The Nuclear Many-Body Problem

» Underlying interaction: the “so called” residual strong
interaction = nuclear force, the one acting effectively
between nucleons, has not been derived yet from first
principles as QCD is non-perturbative at the low-energies
relevant for the description of nuclei.
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The nuclear force in practice: effective potential fitted to
few-body physics. 3 Body force are needed. 4 Body?




Motivation: The Nuclear Many-Body Problem

e State-of-the-art many-body calc. based on these type of potentials
are not conclusive yet although great advances have been achieved:
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[A. Ekstrom, et al. PRC 91, 051301(R)] [Z.H. Li, et al., PRC 74 (2006) 047304]

e Which param. of the residual strong interaction should we use?
e Which many-body technique is the most suitable?



Motivation: The Nuclear Many-Body Problem

Binding energy per nucleon [MeV]
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[X. Roca-Maza and N.Paar, PPNP 101 (2018) 96-176]
Very simple model gets the right saturation point

e Saturation originates from the
short-range = R ~ A'/3. A simple

fit: (r3)"/% = \/21.21(1);\*‘/3

with a rm.s. ~ 0.07 fm

¢ Uniform sphere with average
nucleon interdistance of

2 x 1o =2 x 1.21 fm and density
po &~ 0.14(2) fm—3

[ ) B(A‘Z):[av—uSA7]/3]A7GCM7

Al/3
A—27)?
(ap 70/\5A71/3]%+...

A simple fit: ay = 15.6(4) MeV,

as = 18(1) MeV, ac = 0.70(2) MeV
aa = 28(3) MeV and aas = 26(12)
MeV with a rm.s. <3 MeV
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Hohenberg-Kohn theorem

The original theorem and its proof can be found in P.
Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964).

e Assuming a system of interacting fermions in some external
potential, there exist a universal functional F[p] of the fermion
density p:

Elo) = (WIT +V + VextlW) = Flp] + j Vext(1)p(r)dF

e and it can be shown that:

miny (YT + V + Vext[¥) = min, E[p]

so E[p] has a minimum at the exact ground-state density
where it assumes the exact energy as a value.




Kohn-Sham realization (F[p] — T[p])

For any interacting system, there exists a local single-particle
potential Vks(r), such that the exact ground-state density of
the interacting system equals the ground-state density of the
auxiliary non-interacting system:

occ

Pexact (T) = pxs(F) = Z |¢1(F)|2

1
where ¢ are single-particle orbitals and the total wave-function
correspond to a Slater determinant. The E[p] is unique

Exslp] = Tlp] + JVKs(r)p(r)dF

where T[p] is the kinetic energy of the non-interacting system and
for which the variational equation
SElp] 0= 8TIp]
op op
yields to the exact ground state density and energy

+ VKS



Kohn-Sham realization

e The Kohn-Sham potential Vkg is customary splitted in the
literature in three pieces:

VKS = Vext + VHartree + Ve

in nuclei V. = 0, the Hartree contribution to E[p] is easy to
calculate once an interaction v(r) has been asumed

.
Etaree = 5 | A [ dp(riv(r = 1/)p(r")

and the exchage-correlation is the less known.

¢ Kohn-Sham scheme depends entirely on whether accurate
approximations for V. can be found.

e Due to V., the KS goes beyond a simple HF (Vijr = Vi + Vf)
and it has the advantage of being local.

e Nuclear EDFs neglect explicit correlation effects Vx = Vr.
Included implicitely in the fitting parameters of the model.



Applicability of nuclear E[p] as compared to other
methods
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Advantadges and disadvantages of DFT

e exact theory that can be applied to the whole nuclear chart
e many-body problem mapped onto a one body problem
without explicitly involving inter-nucleon interactions!!!
(computational cost and interpretation of observbles in terms
of single-particle properties)

e HK generalised in (almost all) possible ways: time
dependence, degenerate ground-state, magnetic systems,
finite T, relativistic case ...

e any one body observable is within the DFT framework (this
includes also some sum rules related to nuclear excitations)

e various proofs of HK theorems do not give any clue on how
to build the functional.
¢ no direct connection with realistic NN or NNN interaction
if current approaches to EDF are not improved (some atempts
already exist)
¢ no systematic way of improvement (evaluate syst. errors).
11



(traditional) Nuclear Energy Density Functionals

e Traditional realization of a NEDF: Effective interactions
solved at the Hartree-Fock or Mean-Field fitted to
experimental data in many-body system = successful in the
description of properties such as masses, nuclear radii,
deformations, E, / sum rules in Giant Resonances ...

[ min, E[p] = miny (Y|H|¥) ~ ming (O|Hyp|®) = min, Egplp] ]

e Connection with KS is via Vxg = Vi + Vg
e remember: ¥ exact wave-function; ®@ Slater determinant; p
one-body density matrix <> one-body observables
Main types of models:
» Relativistic based on Lagrangians where effective mesons
carry the interaction (m, o, w...).
» Non-relativistic based on effective Hamiltonians (Yukawa,
Gaussian or zero-range forces)
= Both give similar results and in both cases density
dependence of the interaction (=3N, 4N, ...) improves results



Examples: Binding energies

Relativistic model by Milano and Barcelona groups
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Remarkable accuracy on thousands of measured binding
energies



Examples: Charge radii

Theory-lines / Experiment - circles

Charge radii r_[fm]
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Examples: Giant Monopole and Dipole Resonances

Non-relativistic model by Milano and Aizu (Japan) groups
e R
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R = nuclear response function (in dipole resonance is related with the

probability of a photon absorption by the nucleus or o)

Good description excitation energy and integrated R but not the
width of the resonance.



Examples: Gamow Teller Resonance
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Summary: [X. Roca-Maza and N.Paar, PPNP 101 (2018) 96-176]

Model Type N° par. po [fm™7] eo [MeV] Ko [MeV] J [MeV] L [MeV] oy [MeV]
FRDM12  Mac-Mic 38¢ - —16.195 240 32.5(5) 53(15) 0.559°
wsac Mac-Mic 18 - ~15.58(1) 235(11) 29.7(3) 59(10) 0.2984
HFB24 EDF 30€ 0.1578 —16.048 2455 30.0 46.4 0.549F
UNEDF1 EDF 12 0.1587(4) —15.800 220.0 29.0(6) 40(13) 1.889
DD-PC1 EDF 9 0.154 16.12 238 35.6 113 201"
Rel. var. 3% 4% 9% 20% 80%

@ 21 fixed from other considerations than fit to masses;

© With respect to AME2003;

¢ Estimated properties;

4 With respect to AME2012;

¢ Some of them fixed a propri;

¥ Only even-even nuclei with N, Z > 8 have been considered and compared with AME2003;
9 Only even-even nuclei with N, Z > 8 have been considered;

™ Only even-even nuclei with Z < 104 have been considered and compared to AME2012.

o Mac-Mic models: most accurate models in masses
e Traditional EDFs: ~10 parameters and based on HF

e HFB24 is based on a traditional EDF strategy plus several
phenomenological parameters, some fixed before the fit to

some intelligent guess
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Summary: [X. Roca-Maza and N.Paar, PPNP 101 (2018) 96-176]

EoS par. Observable Range Comments
Po (rczh) 172 0.154-0.159 Most accurate EDFs on M (N, Z) and
24\1/2
(rh)
eo M(N, Z) —16.2-—15.6 Most accurate EDFs on M (N, Z) and
2\1/2
<Tch>
Ko M(N, Z) 220-245 Most accurate EDFs on M (N, Z) and
132
ISGMR 220-260 From EDFs in closed shell nuclei (Colo)
ISGMR 250-315 Blaizot’s formula (Stone)
ISGMR ~200 EDF describing also open shell nuclei (Avogadro)
] M(N, Z) 29-35.6 Most accurate EDFs on M (N, Z) and
24\1/2
(réh)
IVGDR ~24.1(8)+1L/8 From EDF analysis
[S(p = 0.1 fm™3) = 24.1(8) MeV] (Trippa)
PDS 30.2-33.8 From EDF analysis (Klimkiewicz)
PDS 31.0-33.6 From EDF analysis (Carbone)
ap 24.5(8) +0.168(7)L  From EDF analysis 2°8Pb
xp 30-35 From EDF analysis
IAS and Arnp 30.2-33.7 From EDF analysis (Danielewicz)
AGDR 31.2-35.4 From EDF analysis
PDS, o, IVGQR, AGDR 32-33 From EDF analysis (Paar)
compilation 29.0-32.7 Astrophys. J. 771 (1) (2013) 51
compilation 30.7-325 PLB 727 (1) (2013) 276aAS281
compilation 28.5-34.9 RMP 89 (2017) 015007




Summary: [X. Roca-Maza and N.Paar, PPNP 101 (2018) 96-176]

EoS par. Observable Range Comments
L M(N, Z) 27-113 Most accurate EDFs on M (N, Z)
(r3)1 /2
Pn 40-110 proton—2 08pp scattering (Zenihiro)
Pn 0-60 7t photoproduction (Z 08 Pb) (Tarbert)
Pn 30-80 antiprotonic at. (EDF analysis) (Centelles,Warda)
Pweak > 20 Parity violating scattering (PREx)
PDS 32-54 From EDF analysis (Klimkiewicz)
PDS 49.1-80.5 From EDF analysis (Carbone)
ap 20-66 From EDF analysis
IVGQR and ISGQR 19-55 From EDF analysis
IAS and Arnp 35-75 From EDF analysis (Danielewicz)
AGDR 75.2-122.4 From EDF analysis
PDS, ap, IVGQR, AGDR 45.2-54.6 From EDF analysis (Paar)
compilation 40.5-61.9 Astrophys. J. 771 (1) (2013) 51
compilation 42.4-754 PLB 727 (1) (2013) 276aAS281
compilation 30.6-86.8 RMP 89 (2017) 015007
K Pn —620-—400 antiprotonic at. (EDF analysis) (Centelles)
ISGMR —650-—450 «-scattering Sn isotopes (Li)
ISGMR —630-—480 «-scattering Cd isotopes (Patel)
ISGMR —840-—-350 Blaizot’s formula (Stone)

’

K . . .
Kt = Keym + L (— - 6) or as it has been customary in different analyses K = Ksym — 6L, neglecting K’

Ko



EDFs from ab initio?

[ (kind Of) analogy with Coulomb DFT (see for review: PPNP 64 (2010) 120)
HEAVEN OF CHEMICAL ACCURACY

inoccupied {9} genacallzed FPY 1. Present-day, e.g., Skyrme EDFs (including p and Vp). [DONE!]
2. Generalized Skyrme (additional gradient and density
€« hyper-GGA dependences, with new constraints from microscopic theory (e.g.,

neutron drops).
3. Functionals that merge the long-range parts (from xEFT) with a

T andlor V2n meta-GGA -
Skyrme functional.
4. point 3 from a low-momentum potential that is evolved from xEFT
Vn GGA NN and NNN interactions.
# LSD 5. Full orbital-based DFT based on low-momentum interactions.
HARTREE WORLD

e Determine Vig from pgp initio Via inverse KS problem (see
below)
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EDFs from ab initio?
Example 1: DD-ME$ functional £ = £ + Lm + Lint
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¢ EoS from BHF fixes the density dep. coupling constants g’s

e 4 parameters left to fix B (rm.s. 2 MeV) and Ry, (r.m.s. 0.02 fm)

e Expected to be better in extrapolations, not the case...



EDFs from ab initio?

Example 2: BCP functional E[p] = Tp + Es + Es.0. + Ec + Epr

To = n > Vw2
2m
Ec = % Jd3rd3r’ PP‘(TTLPSI(‘T/) _ % <%)1/3 Jd3rpp(r)4/3
Ecolp] = | @®r[Ps (p) (1= B2) + Pn(p)B%1p
(P’s fifth order polynomials)
Emlel = 5 [ ¥ radrp(rvir—r')p(r')~ 3 [a¥radr/pimp(r')

(interaction gaussian type depending on three parameters)

E/A (MeV)

0 0.1 0.2 0.3 0.4 0.5
density (fm™)

PLB 663 (2008) 390-394

¢ EoS from BHEF fix coefficinets of polynomial
¢ 4 parameters left to fix B (rm.s. 2 MeV), Ry, (r.m.s. 0.03 fm)

and spin-orbit splittings

¢ Expected to be better in extrapolations, not the case...
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Inverse Kohn-Sham problem

[ Determine Vg from pexp ]

Non-linear problem, not well-defined (Hadamard criteria),
numerically difficult

Methods: essentially two.

CV Method ——
Iterative Method ——

. . . . Empirical Potential ——
» Iterative: algebraic inversion A
of KS equation.

ks [MeV]

» Simple to implement. Direct

i
KS equation solved at each A
step. 154

» Too sensitive to initial guess.

Y m
G. Accorto Master Thesis

» Variational: constrained minimization of the
non-interacting kinetic energy.

[Remember from KS: %[p] = —Vis]

» Difficult to implement. KS equation not need to be solved
» No sensitivity to initial guess.
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Conclusions

» Effective interactions solved at Hartree-Fock or
Mean-Field level have been shown to be successful in the
description of all nuclei (masses, nuclear sizes,
deformations, Giant Resonances...

» These effective models can be understood as an
approximate realization of a nuclear energy density
functional E[p] = exact functional exist.

» EDFs from ab initio starts to be explored.
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Thank you!



