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The Nuclear Many-Body Problem
◮ Nucleus: from few to more than 200 strongly interacting

and self-bound fermions (neutrons and protons).
◮ Complex systems: spin, isospin, pairing, deformation, ...
◮ 3 of the 4 fundamental forces in nature are contributing to

the nuclear phenomena (as a whole driven by the strong

interaction).

◮ β−decay: weak process

◮ Nuclei: self-bound system
by the strong interaction
[In the binding energy
Bcoul ∼ −Bstrong/(3 to 10)]

◮ α−decay: interplay
between the strong and
electromagnetic interaction
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The Nuclear Many-Body Problem

◮ Underlying interaction: the “so called” residual strong

interaction = nuclear force, the one acting effectively

between nucleons, has not been derived yet from first
principles as QCD is non-perturbative at the low-energies
relevant for the description of nuclei.

The nuclear force in practice: effective potential fitted to
few-body physics. 3 Body force are needed. 4 Body?
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Motivation: The Nuclear Many-Body Problem
• State-of-the-art many-body calc. based on these type of potentials

are not conclusive yet although great advances have been achieved:

[A. Ekström, et al. PRC 91, 051301(R)] [Z.H. Li, et al., PRC 74 (2006) 047304]

• Which param. of the residual strong interaction should we use?

• Which many-body technique is the most suitable?
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Motivation: The Nuclear Many-Body Problem
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[X. Roca-Maza and N.Paar, PPNP 101 (2018) 96-176]

• Saturation originates from the
short-range ⇒ R ≈ A1/3. A simple

fit: 〈r2ch〉
1/2 =

√

3

5
1.21(1)A−1/3

with a r.m.s. ≈ 0.07 fm

• Uniform sphere with average

nucleon interdistance of

2× r0 = 2× 1.21 fm and density

ρ0 ≈ 0.14(2) fm−3

• B(A,Z) = (aV −aSA
−1/3)A−aC

Z(Z− 1)

A1/3
−

(aA −aASA
−1/3)

(A− 2Z)2

A
+ ...

A simple fit: aV = 15.6(4) MeV,

aS = 18(1) MeV, aC = 0.70(2) MeV

aA = 28(3) MeV and aAS = 26(12)

MeV with a r.m.s. < 3 MeV

Very simple model gets the right saturation point
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Hohenberg-Kohn theorem

The original theorem and its proof can be found in P.

Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964).

• Assuming a system of interacting fermions in some external
potential, there exist a universal functional F[ρ] of the fermion
density ρ:

E[ρ] = 〈Ψ|T + V + Vext|Ψ〉 = F[ρ] +

∫

Vext(r)ρ(r)d~r

• and it can be shown that:

minΨ〈Ψ|T + V + Vext|Ψ〉 = minρE[ρ]

so E[ρ] has a minimum at the exact ground-state density
where it assumes the exact energy as a value.
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Kohn-Sham realization (F[ρ] → T [ρ])

For any interacting system, there exists a local single-particle
potential VKS(r), such that the exact ground-state density of
the interacting system equals the ground-state density of the
auxiliary non-interacting system:

ρexact(~r) = ρKS(~r) =

occ∑

i

|φi(~r)|
2

where φ are single-particle orbitals and the total wave-function

correspond to a Slater determinant. The E[ρ] is unique

EKS[ρ] = T [ρ] +

∫

VKS(r)ρ(r)d~r

where T [ρ] is the kinetic energy of the non-interacting system and

for which the variational equation
δE[ρ]

δρ
= 0 =

δT [ρ]

δρ
+ VKS

yields to the exact ground state density and energy
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Kohn-Sham realization
• The Kohn-Sham potential VKS is customary splitted in the
literature in three pieces:

VKS = Vext + VHartree + Vxc

in nuclei Vext = 0, the Hartree contribution to E[ρ] is easy to
calculate once an interaction v(r) has been asumed

EHartree =
1

2

∫

d~r

∫

d~r′ρ(r)v(r− r′)ρ(r′)

and the exchage-correlation is the less known.
• Kohn-Sham scheme depends entirely on whether accurate

approximations for Vxc can be found.

• Due to Vxc, the KS goes beyond a simple HF (VHF = VH + VF)
and it has the advantage of being local.
• Nuclear EDFs neglect explicit correlation effects Vcx = VF.
Included implicitely in the fitting parameters of the model.
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Applicability of nuclear E[ρ] as compared to other

methods
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Advantadges and disadvantages of DFT
• exact theory that can be applied to the whole nuclear chart

• many-body problem mapped onto a one body problem

without explicitly involving inter-nucleon interactions!!!

(computational cost and interpretation of observbles in terms

of single-particle properties)

• HK generalised in (almost all) possible ways: time

dependence, degenerate ground-state, magnetic systems,

finite T, relativistic case ...

• any one body observable is within the DFT framework (this

includes also some sum rules related to nuclear excitations)

• various proofs of HK theorems do not give any clue on how

to build the functional.

• no direct connection with realistic NN or NNN interaction

if current approaches to EDF are not improved (some atempts

already exist)

• no systematic way of improvement (evaluate syst. errors).
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(traditional) Nuclear Energy Density Functionals
• Traditional realization of a NEDF: Effective interactions

solved at the Hartree-Fock or Mean-Field fitted to

experimental data in many-body system ⇒ successful in the
description of properties such as masses, nuclear radii,

deformations, Ex / sum rules in Giant Resonances ...

minρE[ρ] = minΨ〈Ψ|H|Ψ〉 ≈ minΦ〈Φ|HHF|Φ〉 = minρEHF[ρ]

• Connection with KS is via VKS ≡ VH + VF

• remember: Ψ exact wave-function; Φ Slater determinant; ρ
one-body density matrix ↔ one-body observables
Main types of models:
◮ Relativistic based on Lagrangians where effective mesons

carry the interaction (π, σ,ω...).
◮ Non-relativistic based on effective Hamiltonians (Yukawa,

Gaussian or zero-range forces)

⇒ Both give similar results and in both cases density

dependence of the interaction (=3N, 4N, ...) improves results 12



Examples: Binding energies

Relativistic model by Milano and Barcelona groups
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Remarkable accuracy on thousands of measured binding

energies
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Examples: Charge radii
Theory-lines / Experiment - circles
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Examples: Giant Monopole and Dipole Resonances

Non-relativistic model by Milano and Aizu (Japan) groups
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R = nuclear response function (in dipole resonance is related with the
probability of a photon absorption by the nucleus or σγ)

Good description excitation energy and integrated R but not the

width of the resonance.
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Examples: Gamow Teller Resonance

Gamow-Teller

Resonance driven by

nuclear force (analogous

transitions to β−decay).
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Summary: [X. Roca-Maza and N.Paar, PPNP 101 (2018) 96-176]

Model Type No par. ρ0 [fm−3] e0 [MeV] K0 [MeV] J [MeV] L [MeV] σM [MeV]

FRDM12 Mac-Mic 38a – −16.195 240 32.5(5) 53(15) 0.559b

WS4c Mac-Mic 18 – −15.58(1) 235(11) 29.7(3) 59(10) 0.298d

HFB24 EDF 30e 0.1578 −16.048 245.5 30.0 46.4 0.549f

UNEDF1 EDF 12 0.1587(4) −15.800 220.0 29.0(6) 40(13) 1.88g

DD-PC1 EDF 9 0.154 −16.12 238 35.6 113 2.01h

Rel. var. 3% 4% 9% 20% 80%

a 21 fixed from other considerations than fit to masses;
b With respect to AME2003;
c Estimated properties;
d With respect to AME2012;
e Some of them fixed a propri;
f Only even-even nuclei withN,Z > 8 have been considered and compared with AME2003;
g Only even-even nuclei withN,Z > 8 have been considered;
h Only even-even nuclei with Z 6 104 have been considered and compared to AME2012.

• Mac-Mic models: most accurate models in masses
• Traditional EDFs: ∼10 parameters and based on HF
• HFB24 is based on a traditional EDF strategy plus several
phenomenological parameters, some fixed before the fit to
some intelligent guess
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Summary: [X. Roca-Maza and N.Paar, PPNP 101 (2018) 96-176]

EoS par. Observable Range Comments

ρ0 〈r2ch〉
1/2 0.154-0.159 Most accurate EDFs onM(N,Z) and

〈r2ch〉
1/2

e0 M(N,Z) −16.2 - −15.6 Most accurate EDFs onM(N,Z) and

〈r2ch〉
1/2

K0 M(N,Z) 220-245 Most accurate EDFs onM(N,Z) and

〈r2ch〉
1/2

ISGMR 220-260 From EDFs in closed shell nuclei (Colò)
ISGMR 250-315 Blaizot’s formula (Stone)
ISGMR ∼ 200 EDF describing also open shell nuclei (Avogadro)

J M(N,Z) 29-35.6 Most accurate EDFs onM(N,Z) and

〈r2ch〉
1/2

IVGDR ∼ 24.1(8) + L/8 From EDF analysis

[S(ρ = 0.1 fm−3) = 24.1(8) MeV] (Trippa)
PDS 30.2-33.8 From EDF analysis (Klimkiewicz)
PDS 31.0-33.6 From EDF analysis (Carbone)

αD 24.5(8) + 0.168(7)L From EDF analysis 208Pb
αD 30-35 From EDF analysis

IAS and ∆rnp 30.2-33.7 From EDF analysis (Danielewicz)
AGDR 31.2-35.4 From EDF analysis

PDS, αD , IVGQR, AGDR 32-33 From EDF analysis (Paar)
compilation 29.0-32.7 Astrophys. J. 771 (1) (2013) 51
compilation 30.7-32.5 PLB 727 (1) (2013) 276âĂŞ281
compilation 28.5-34.9 RMP 89 (2017) 015007
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Summary: [X. Roca-Maza and N.Paar, PPNP 101 (2018) 96-176]

EoS par. Observable Range Comments
L M(N,Z) 27-113 Most accurate EDFs onM(N,Z)

〈r2ch〉
1/2

ρn 40-110 proton-208Pb scattering (Zenihiro)

ρn 0-60 π photoproduction (208Pb) (Tarbert)
ρn 30-80 antiprotonic at. (EDF analysis) (Centelles,Warda)

ρweak > 20 Parity violating scattering (PREx)
PDS 32-54 From EDF analysis (Klimkiewicz)
PDS 49.1-80.5 From EDF analysis (Carbone)
αD 20-66 From EDF analysis

IVGQR and ISGQR 19-55 From EDF analysis
IAS and ∆rnp 35-75 From EDF analysis (Danielewicz)

AGDR 75.2-122.4 From EDF analysis
PDS, αD , IVGQR, AGDR 45.2-54.6 From EDF analysis (Paar)

compilation 40.5-61.9 Astrophys. J. 771 (1) (2013) 51
compilation 42.4-75.4 PLB 727 (1) (2013) 276âĂŞ281
compilation 30.6-86.8 RMP 89 (2017) 015007

Kτ ρn −620 - −400 antiprotonic at. (EDF analysis) (Centelles)
ISGMR −650 - −450 α-scattering Sn isotopes (Li)
ISGMR −630 - −480 α-scattering Cd isotopes (Patel)
ISGMR −840 - −350 Blaizot’s formula (Stone)

Kτ = Ksym + L

(

K′

K0
− 6

)

or as it has been customary in different analyses Kτ = Ksym − 6L, neglecting K′
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EDFs from ab initio?

• (kind of) analogy with Coulomb DFT (see for review: PPNP 64 (2010) 120)

1. Present-day, e.g., Skyrme EDFs (including ρ and ∇ρ). [DONE!]
2. Generalized Skyrme (additional gradient and density
dependences, with new constraints from microscopic theory (e.g.,
neutron drops).
3. Functionals that merge the long-range parts (from χEFT) with a
Skyrme functional.
4. point 3 from a low-momentum potential that is evolved from χEFT
NN and NNN interactions.

5. Full orbital-based DFT based on low-momentum interactions.

• Determine VKS from ρab initio via inverse KS problem (see
below)
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EDFs from ab initio?
Example 1: DD-MEδ functional L = L

N
+ LM + Lint

LN = ψ̄
(

iγµ∂
µ −m

)

LM =
1

2

(

∂µσ∂
µσ−m2

σσ
2
)

+
1

2

(

∂µ~δ∂µ~δ−m2
σ
~δ2

)

−
1

4
ΩµνΩ

µν −
1

2
m2

ωωµω
µ −

1

4
~Rµν~Rµν −

1

2
m2

ρ~ρµ~ρµ

−
1

4
FµνF

µν

Lint = gσψ̄σψ+ gδψ̄~τ~δψ

− gωψ̄γµω
µψ− gρψ̄γµ~τ~ρµψ− eψ̄γµA

µψ

field strength tensors for the vector fields are

Ωµν = ∂µων − ∂νωµ and correspondingly ~Rµν and Fµν .
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• EoS from BHF fixes the density dep. coupling constants g’s
• 4 parameters left to fix B (r.m.s. 2 MeV) and Rch (r.m.s. 0.02 fm)
• Expected to be better in extrapolations, not the case...
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EDFs from ab initio?

Example 2: BCP functional E[ρ] = T0 + E∞ + ES.O. + EC + EFR

T0 =
 h2

2m

∑
|~∇Ψ|2

EC =
1

2

∫

d3rd3r′
ρp(r)ρp(r′)

|r− r′|
−
3

4

(

3

π

)1/3 ∫

d3rρp(r)4/3

E∞[ρ] =

∫

d3r[Ps(ρ)(1−β
2) + Pn(ρ)β2]ρ

(P’s fifth order polynomials)

EFR[ρ] =
1

2

∫

d3rd3r′ρ(r)v(r−r′)ρ(r′)−
1

2

∫

d3rd3r′ρ(r)ρ(r′)

(interaction gaussian type depending on three parameters)

PLB 663 (2008) 390-394

• EoS from BHF fix coefficinets of polynomial
• 4 parameters left to fix B (r.m.s. 2 MeV), Rch (r.m.s. 0.03 fm)
and spin-orbit splittings
• Expected to be better in extrapolations, not the case...
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Inverse Kohn-Sham problem

Determine VKS from ρexp

Non-linear problem, not well-defined (Hadamard criteria),

numerically difficult

Methods: essentially two.
◮ Iterative: algebraic inversion

of KS equation.
◮ Simple to implement. Direct

KS equation solved at each
step.

◮ Too sensitive to initial guess.
G. Accorto Master Thesis

◮ Variational: constrained minimization of the
non-interacting kinetic energy.

[Remember from KS:
δT [ρ]

δρ
= −VKS]

◮ Difficult to implement. KS equation not need to be solved.
◮ No sensitivity to initial guess.
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Conclusions

◮ Effective interactions solved at Hartree-Fock or

Mean-Field level have been shown to be successful in the
description of all nuclei (masses, nuclear sizes,

deformations, Giant Resonances...

◮ These effective models can be understood as an
approximate realization of a nuclear energy density

functional E[ρ] ⇒ exact functional exist.

◮ EDFs from ab initio starts to be explored.
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Thank you!
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