Theories of nuclear large amplitude collective motion

Takashi Nakatsukasa (University of Tsukuba)

- Nuclear collective motion
- Small amplitude \& fast collective motion
- TDDFT simulation and linear response calculation
- Large amplitude "slow" collective motion
- Problems in direct application of TDDFT
- Re-quantization of collective subspace
- Application to alpha reaction, subbarrier fusion
2018.9.14-19 $1^{\text {st }}$ APCTP-TRIUMF joint workshop on "Understanding Nuclei from Different Theoretical Approaches" @APCTP, Pohang, Korea

Nuclear Landscape

Crome Ab initio

Configuration Interaction

푬ㅁ Density Functional Theory

Time-dependent density functional theory (TDDFT) for nuclei

- Time-odd densities (current density, spin density, etc.)

$$
\begin{aligned}
& E\left\lfloor\rho_{q}(t), \tau_{q}(t), \vec{J}_{q}(t), \vec{j}_{q}(t), \overrightarrow{\vec{q}}_{q}(t), \vec{T}_{q}(t) ; \kappa_{q}(t)\right\rfloor \\
& \text { kinetic } \\
& \text { spin-kinetic } \\
& \text { spin-current } \\
& \text { spin } \\
& \text { pair density }
\end{aligned}
$$

- TD Kohn-Sham-Bogoliubov-de-Gennes eq.

$$
i \frac{\partial}{\partial t}\binom{U_{\mu}(t)}{V_{\mu}(t)}=\left(\begin{array}{cc}
h(t)-\lambda & \Delta(t) \\
-\Delta^{*}(t) & -(h(t)-\lambda)^{*}
\end{array}\right)\binom{U_{\mu}(t)}{V_{\mu}(t)}
$$

Linear response calculation

Success: Giant resonances

SkM* functional Yoshida and TN, Phys. Rev. C 83, 021404 (2011)

Problem: Low-energy states

- Low-energy collective states
- Linear response cal.
- Not as good as GR

Time-dependent density functional theory (TDDFT) without pairing

- Time-odd densities (current density, spin density, etc.)

$$
\begin{aligned}
& E\left\lfloor\rho_{q}(t), \tau_{q}(t), \vec{J}_{q}(t), \vec{j}_{q}(t), \overrightarrow{,}_{q}(t), \vec{T}_{q}(t) ; \kappa_{q}(t)\right\rfloor \\
& \underset{\substack{\text { kinetic } \\
\text { spin-current }}}{\text { current }} \underset{\text { spin }}{\text { spin-kinetic }} \text { pair density }
\end{aligned}
$$

- Time-dependent Kohn-Sham equation

$$
i \frac{\partial \psi_{i}(t)}{\partial t}=h[\rho(t)] \psi_{i}(t)
$$

Heavy-ion collision simulation

Success: Reaction above the Coulomb barrier

"Partial"-space particle-number projection
Simenel, C., 2010, Phys. Rev. Lett. 105, 192701.
$P_{n}=\langle\Phi| \hat{P}_{n}|\Phi\rangle=\frac{1}{2 \pi} \int_{0}^{2 \pi} d \theta e^{i n \theta} \operatorname{det}\left\{\left\langle\phi_{i} \mid \phi_{j}\right\rangle_{\mathrm{V}_{\mathrm{T}}}+e^{-i \theta}\left\langle\phi_{i} \mid \phi_{j}\right\rangle_{\mathrm{V}_{\mathrm{P}}}\right\}$
Real-time simulation

Sekizawa, Phys. Rev. C 96, 014615 (2017)

Problem: Reaction below the Coulomb barrier

- Decay modes
- Spontaneous fission
- Alpha decay
- Low-energy reaction
- Sub-barrier fusion reaction
- Alpha capture reaction (element synthesis in the stars)

Deep-subbarrier fusion hindrance

Summary (Part-1)

- Success of nuclear TDDFT
- Giant resonances (linearized TDDFT)
- Heavy-ion reaction at above-barrier energy
- Problems
- Low-energy collective motion
- Many-body tunneling (spontaneous fission, sub-barrier fusion, astrophysical reaction)
- Possible solutions
- Improving DF (ω-dep., beyond LDA, etc.)
- Identification \& re-quantization of collective subspace

Classical Hamilton's form

Blaizot, Ripka, "Quantum Theory of Finite Systems" (1986)
Yamamura, Kuriyama, Prog. Theor. Phys. Suppl. 93 (1987)
The TDDFT can be described by the classical form.

$$
\begin{aligned}
& \dot{\xi}^{p h}=\frac{\partial H}{\partial \pi_{p h}} \\
& \dot{\pi}_{p h}=-\frac{\partial H}{\partial \xi^{p h}} \quad H(\xi, \pi)=E[\rho(\xi, \pi)]
\end{aligned}
$$

The canonical variables $\left(\xi^{p h}, \pi_{p h}\right)$

$$
\begin{aligned}
& \rho_{p p^{\prime}}=\left[(\xi+i \pi)(\xi+i \pi)^{\dagger}\right]_{p p \prime} \quad \rho_{h h^{\prime}}=\left[1-(\xi+i \pi)^{\dagger}(\xi+i \pi)\right]_{h h^{\prime}} \\
& \rho_{p h}=\left[(\xi+i \pi)\left\{1-(\xi+i \pi)^{\dagger}(\xi+i \pi)\right\}\right]_{p h}
\end{aligned}
$$

Number of variables $=$ Number of $p h$ degrees of freedom

Strategy

- Purpose
- Take into account "missing" quantum fluctuation associated with "slow" collective motion
- Difficulty
- Non-trivial collective variables
- Procedure

1. Identify the collective subspace of such slow motion, with canonical variables (q, p)
2. Quantize on the subspace $[q, p]=i \hbar$

Expansion for "slow" motion

- Hamiltonian

$$
\begin{aligned}
& H=H(\xi, \pi) \approx \frac{1}{2} B^{\alpha \beta}(\xi) \pi_{\alpha} \pi_{\beta}+V(\xi) \\
& \text { expanded up to } 2^{\text {nd }} \text { order in } \pi \quad[\alpha, \beta=(p h)]
\end{aligned}
$$

- Point Transformation $\left(\xi^{\alpha}, \pi_{\alpha}\right) \rightarrow\left(q^{\mu}, p_{\mu}\right)$

$$
p_{\mu}=\frac{\partial \xi^{\alpha}}{\partial q^{\mu}} \pi_{\alpha}, \quad \pi_{\alpha}=\frac{\partial q^{\mu}}{\partial \xi^{\alpha}} p_{\mu}
$$

- Hamiltonian

$$
\bar{H}=\bar{H}(q, p) \approx \frac{1}{2} \bar{B}^{\mu v}(q) p_{\mu} p_{v}+V(q)
$$

Decoupled submanifold

- Collective canonical variables (q, p)
$-\left\{\xi^{\alpha}, \pi_{\alpha}\right\} \rightarrow\left\{q, p ; q^{a}, p_{a} ; \quad a=2, \cdots, N_{p h}\right\}$
- Finding a decoupled submanifold

$$
\begin{gathered}
\frac{\frac{\partial V}{\partial \xi^{\alpha}}-\frac{\partial V}{\partial q} \frac{\partial q}{\partial \xi^{\alpha}}=0 \quad \text { Moving mean-field eq. }}{B^{\beta \gamma}\left(\nabla_{\gamma} \frac{\partial V}{\partial \xi^{\alpha}}\right) \frac{\partial q}{\partial \xi^{\beta}}=\omega^{2} \frac{\partial q}{\partial \xi^{\alpha}}} \quad \text { Moving RPA eq. } \\
\nabla_{\gamma} \frac{\partial V}{\partial \xi^{\alpha}} \equiv \frac{\partial^{2} V}{\partial \xi^{2} \partial \xi^{\alpha}}-\Gamma_{\alpha \gamma}^{\beta} \frac{\partial V}{\partial \xi^{\beta}}
\end{gathered}
$$

$$
\Gamma_{\alpha \gamma}^{\beta}: \text { Affine connection with metric } g_{\alpha \beta} \equiv \sum_{\mu} \frac{\partial q^{\mu} \partial q^{\mu}}{\partial \xi^{\alpha}} \partial \xi^{\beta}
$$

$$
\text { Decoupling } \rightarrow \quad \Gamma_{\alpha \gamma}^{\beta}=\frac{1}{2} B^{\beta \delta}\left(B_{\delta \alpha, \gamma}+B_{\delta \gamma, \alpha}-B_{\alpha \gamma, \delta}\right)
$$

Numerical procedure

$$
\begin{aligned}
& \frac{\partial V}{\partial \xi^{\alpha}}-\frac{\partial V}{\partial q} \frac{\partial q}{\partial \xi^{\alpha}}=0 \\
& B^{\beta \gamma}\left(\nabla_{\gamma} \frac{\partial V}{\partial \xi^{\alpha}}\right) \frac{\partial q}{\partial \xi^{\beta}}=\omega^{2} \frac{\partial q}{\partial \xi^{\alpha}}
\end{aligned}
$$

Moving mean-field eq.
Moving RPA eq.
Tangent vectors (Generators)

$$
q_{, \alpha}=\frac{\partial q}{\partial \xi^{\alpha}} \quad \xi_{, q}^{\alpha}=\frac{\partial \xi^{\alpha}}{\partial q}
$$

Moving MF eq. to determine the point: ξ^{α}

Move to the next point $\xi^{\alpha}+\delta \xi^{\alpha}=\xi^{\alpha}+\delta q \xi_{,}^{\alpha}$

Canonical variables and quantization

- Solution
- 1-dimensional state: $\xi(q)$
- Tangent vectors: $\frac{\partial q}{\partial \xi^{\alpha}}$ and $\frac{\partial \xi^{\alpha}}{\partial q}$
- Fix the scale of q by making the inertial mass

$$
\bar{B}=\frac{\partial q}{\partial \xi^{\alpha}} B^{\alpha \beta} \frac{\partial q}{\partial \xi^{\alpha}}=1
$$

- Collective Hamiltonian
- $\bar{H}_{\text {coll }}(q, p)=\frac{1}{2} p^{2}+\bar{V}(q), \quad \bar{V}(q)=V(\xi(q))$
- Quantization $[q, p]=i \hbar$

3D real space representation

- 3D space discretized in lattice
- BKN functional
- Moving mean-field eq.: Imaginary-time method
- Moving RPA eq. : Finite amplitude method (PRC 76, 024318 (2007))

At a moment, no pairing
1-dimensional reaction path extracted from the Hilbert space of dimension of $10^{4} \sim 10^{5}$.

Wen, T.N., PRC 94, 054618 (2016); PRC 96, 014610 (2017)

Simple case: $\alpha+\alpha$ scattering

a particle (${ }^{4} \mathrm{He}$)

a particle (${ }^{4} \mathrm{He}$)

- Reaction path
- After touching
- No bound state, but
- a resonance state in ${ }^{8} \mathrm{Be}$

${ }^{8} \mathrm{Be}$: Tangent vectors (generators)

Tangent vectors (Generators)

${ }^{8} \mathrm{Be}:$ Collective potential

Represented by the relative distance R Transformation: $q \rightarrow R$

Inertial mass

- A particle moving along the x axis
$-H=\frac{1}{2} m \dot{x}^{2}$
- Assuming the motion along the X axis
- $H=\frac{1}{2} m \dot{X}^{2}$ (Wrong dynamics)
- Representing in the X axis $(x=f(X))$
- $H=\frac{1}{2} m_{e f f} \dot{X}^{2} \quad$ (Correct dynamics)
$-m_{e f f}=\frac{m}{(\cos \theta)^{2}}$

${ }^{8} \mathrm{Be}:$ Collective inertial mass

Transformation: $q \rightarrow R \quad \bar{B}(R)=\frac{\partial R}{\partial q} \bar{B} \frac{\partial R}{\partial q}=\left(\frac{\partial R}{\partial q}\right)^{2}$

Ground (resonance) state

$\alpha+\alpha$ scattering (phase shift)

Nuclear phase shift

Effect of dynamical change of the inertial mass
Dashed line: Constantreduced mass $(M(R) \rightarrow 2 m)$

${ }^{16} \mathrm{O}+\alpha$ scattering

- Important reaction to synthesize heavy elements in giant stars
- Alpha reaction

${ }^{16} \mathrm{O}+\alpha$ to/from ${ }^{20} \mathrm{Ne}$

Reaction path

${ }^{20} \mathrm{Ne}$: Inertial mass

${ }^{20} \mathrm{Ne}$: Collective potential

Alpha reaction: ${ }^{16} \mathrm{O}+\alpha$

Nuclear reaction to produce ${ }^{20} \mathrm{Ne}$

Fusion reaction:
 Astrophysical S-factor

$$
\sigma(E)=\frac{1}{E} P(E) \times S(E)
$$

Effect of dynamical change of the inertial mass
Dashed line: Constant reduced mass $(M(R) \rightarrow 3.2 m)$

${ }^{16} \mathrm{O}+{ }^{16} \mathrm{O} \rightarrow{ }^{32} \mathrm{~S}:$ Reaction path

Starting from two ${ }^{16} \mathrm{O}$ configuration

${ }^{16} \mathrm{O}+{ }^{16} \mathrm{O} \rightarrow{ }^{32} \mathrm{~S}:$ Collective potential

${ }^{16} \mathrm{O}+{ }^{16} \mathrm{O} \rightarrow{ }^{32} \mathrm{~S}:$ Collective mass

Fusion reaction: ${ }^{16} \mathrm{O}+{ }^{16} \mathrm{O}$

Effect of dynamical change of the inertial mass hinders the fusion cross section by 2 orders of magnitude.

Summary (Part-2)

- Missing correlations in nuclear density functional
- Correlations associated with low-energy collective motion
- Re-quantize a specific mode of collective motion
- Derive the slow collective motion
- Quantize the collective Hamiltonian
- Applicable to nuclear structure and reaction

Summary (Part-2)

- Review articles
- T.N., Prog. Theor. Exp. Phys. 2012, 01A207 (2012)
- T.N. et al., Rev. Mod. Phys. 88, 045004 (2016)
- Collaborators
- Shuichiro Ebata (Hokkaido Univ.)
- Fang Ni (Univ. Tsukuba)
- Kai Wen (Univ. Surrey)
- Kenichi Yoshida (Kyoto Univ.)

Nuclear energy density functional

- Energy functional for the intrinsic states
- Spin \& isospin degrees of freedom
- Spin-current density is indispensable.
- Nuclear superfluidity \rightarrow Kohn-ShamBogoliubov eq.
- Pair density (tensor) is necessary for heavy nuclei.

$$
E\left\lfloor\underset{\substack{\text { kinetic }}}{\rho_{q p i n-c u r r e n t}, \tau_{q}}, \underset{\substack{\text { pair density }}}{\stackrel{\rightharpoonup}{J}} ; \kappa_{q}\right\rfloor
$$

Nuclear deformation as symmetry breaking

$$
e^{i \phi J}|\Psi\rangle \neq|\Psi\rangle
$$

Quadrupole deformation
$\beta_{2 \mu}=\langle\Psi| r^{2} Y_{2 \mu}|\Psi\rangle$

prolate

oblate

triaxial

$$
e^{i \phi N}|\Psi\rangle \neq|\Psi\rangle
$$

Pairing deformation (superfluidity)

$$
\Delta=\langle\Psi| \hat{\psi} \hat{\psi}|\Psi\rangle
$$

Deformation in the gauge space
Nuclear Superconductivity
Nuclear Superfluidity
$\beta_{30}=\langle\Psi| r^{3} Y_{30}|\Psi\rangle$

$$
\hat{P}|\Psi\rangle \neq \pm|\Psi\rangle
$$

Pear shape ($\mu=0$)

Nuclear deformation

Ebata and T.N., Phys. Scr. 92 (2017) 064005

Nuclear deformation predicted by DFT

Linear response (RPA) equation

Assuming the external field with a fixed frequency and expanding $\delta \phi_{i}$ in terms of particle (unoccupied) orbitals,

$$
\begin{aligned}
& \delta \phi_{i}(t)=\sum_{m>A} \phi_{m}^{0}\left\{X_{m i} \exp (-i \omega t)+Y_{m i}^{*} \exp (i \omega t)\right\} \\
& \left\{\left(\begin{array}{cc}
A & B \\
B^{*} & A^{*}
\end{array}\right)-\omega\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\right\}\binom{X_{m i}(\omega)}{Y_{m i}(\omega)}=-\binom{\left.V_{\text {ext }}\right)_{m i}}{\left(V_{\text {ext }}\right)_{i m}} \\
& \left.A_{m i, i v}=\left(\varepsilon_{m}-\varepsilon\right) \delta_{m=1} \delta_{i j}+\left\langle\phi_{m}\right| \frac{\partial V}{\partial \rho_{w_{i j}}}| |_{e_{i}}\right\rangle \\
& B_{m, i y j}=\left\langle\left.\phi_{m} \frac{\partial V}{\partial \rho_{m m_{m}}} \right\rvert\, \phi_{\rho_{0}}\right\rangle
\end{aligned}
$$

A constant mean-field potential

- Binding energy in the mean field

$$
\begin{aligned}
-B & =\sum_{i=1}^{A}\left(T_{i}+\frac{V}{2}\right), \quad T_{i}=\frac{\hbar^{2} k_{i}^{2}}{2 m} \\
& =A\left(\frac{3}{5} T_{F}+\frac{V}{2}\right)
\end{aligned}
$$

† E

- Saturation property

$$
S=B / A \quad \Rightarrow \quad T_{F}=-\frac{5}{4} V \quad \begin{aligned}
& \text { Inconsistent with } \\
& \text { nuclear binding }
\end{aligned}
$$

Saturation properties of nuclear matter

- Symmetric nuclear matter w/o Coulomb
- $N=Z=A / 2$
- Constant binding energy per nucleon
- Constant separation energy

$$
B / A \approx S_{n(p)} \approx 16 \mathrm{MeV}
$$

- Saturation density
$\rho \approx 0.16 \mathrm{fm}^{-3} \Rightarrow k_{F} \approx 1.35 \mathrm{fm}^{-1}$
- Fermi energy

$$
T_{F}=\frac{\hbar^{2} k_{F}^{2}}{2 m} \approx 40 \mathrm{MeV}
$$

Momentum-dependent potential

- State-dependent potential
- Momentum dependence
- The lowest order \rightarrow "Effective mass"

$$
\begin{aligned}
V=U_{0}+U_{1} k^{2} \Rightarrow m^{*} / m & =\left(1+U_{1} k_{F}^{2} / T_{F}\right)^{-1} \\
& =\left(\frac{3}{2}+\frac{5}{2} \frac{B}{A} \frac{1}{T_{F}}\right)^{-1} \approx 0.4
\end{aligned}
$$

- Inconsistent with experiments!

A possible solution for the inconsistency

- Energy density functional

$$
\begin{array}{cc}
E[\rho] \Rightarrow & h[\rho]\left|\phi_{i}\right\rangle=\varepsilon_{i}\left|\phi_{i}\right\rangle \\
& h[\rho] \equiv \frac{\delta E}{\delta \rho}
\end{array}
$$

- State-dependent effective interaction - Rearrangement terms

Predicted nuclear mass

Inertial mass

- Cranking (Inglis-Belyaev) inertial mass
- Neglect time-odd mean-field effects
- GCM-GOA
- Realistic applications: real coordinates only
- Wrong total mass for translation
- ASCC inertial mass (extension of RPA mass)
- Time-odd effects
- Correctly reproduce the total mass

ATDHF: ${ }^{8} \mathrm{Be}$:

ATDHF method (Goeke, Gruemmer, Reinhard 1983)

$$
\frac{\partial}{\partial q}|\psi(q)\rangle=\frac{M_{\mathrm{atdhf}}(q)}{d V / d q}\left[\hat{H}, \hat{H}_{\mathrm{ph}}\right]_{\mathrm{ph}}|\psi(q)\rangle
$$

Calculate many trajectories to construct an "envelope"
$M_{\text {atdhf }}(q)=\langle\psi(q)|[\hat{Q}(q),[\hat{H}, \hat{Q}(q)]]|\psi(q)\rangle^{-1}$

