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• Nuclear collective motion
– Small amplitude & fast collective motion

– TDDFT simulation and linear response calculation
– Large amplitude “slow” collective motion

– Problems in direct application of TDDFT
– Re-quantization of collective subspace
– Application to alpha reaction, subbarrier fusion
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Time-dependent	density	functional	
theory	(TDDFT)	for	nuclei

• Time-odd	densities	(current	density,	spin	
density,	etc.)

• TD	Kohn-Sham-Bogoliubov-de-Gennes eq.
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SkM*	functional

Intrinsic	Q	moment

Yoshida and TN, Phys. Rev. C 83, 021404 (2011)

Success:	Giant	resonances
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FIG. 2: (Color online) Energies of �-vibrational states from a) experiment [43], b) SkM⇤, c) SLy4, and d) Delaroche et al. [54].

FIG. 3: (Color online) B(E2; 0+gs ! 2+� ) corresponding to Fig. 2. The value for 162Dy in c) is 0.562 e2b2. This figure has no
panel d) because the results from the calculation of Delaroche et al. [54] are not published. We include only those experimental
data that are labeled �-vibrations in Ref. [43]. The symbols for particular isotopic chains are the same in each panel.

where Ecal and Eexp are the calculated and experimen-
tal energies of the �-vibrational state. The results are
in Tab. I. SLy4 actually does better than SkM⇤ in the
averages, but gives much larger dispersions.

Table II shows the statistical measures for the spherical

nuclei treated in Ref. [53] and for the subset of those
nuclei that exhibit “low softness.” (Some of the other
nuclei in Ref. [53] are transitional.) There are far more
nuclei in the spherical data set than in the deformed rare-
earth set, so it is hard to make a precise comparison of

Problem: Low-energy states
• Low-energy collective states

– Linear response cal.
– Not as good as GR

Terasaki, Engel, Phys. Rev. C 84, 014332 (2011)

gamma vib.
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FIG. 2: (Color online) Energies of �-vibrational states from a) experiment [43], b) SkM⇤, c) SLy4, and d) Delaroche et al. [54].

FIG. 3: (Color online) B(E2; 0+gs ! 2+� ) corresponding to Fig. 2. The value for 162Dy in c) is 0.562 e2b2. This figure has no
panel d) because the results from the calculation of Delaroche et al. [54] are not published. We include only those experimental
data that are labeled �-vibrations in Ref. [43]. The symbols for particular isotopic chains are the same in each panel.

where Ecal and Eexp are the calculated and experimen-
tal energies of the �-vibrational state. The results are
in Tab. I. SLy4 actually does better than SkM⇤ in the
averages, but gives much larger dispersions.

Table II shows the statistical measures for the spherical

nuclei treated in Ref. [53] and for the subset of those
nuclei that exhibit “low softness.” (Some of the other
nuclei in Ref. [53] are transitional.) There are far more
nuclei in the spherical data set than in the deformed rare-
earth set, so it is hard to make a precise comparison of



Time-dependent	density	functional	
theory	(TDDFT)	without	pairing

• Time-odd	densities	(current	density,	spin	
density,	etc.)

• Time-dependent	Kohn-Sham	equation
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Heavy-ion collision simulation



Real-time	simulation

  

K. Sekizawa and K. Yabana, Phys. Rev. C 88, 014614 (2013)

● 衝突径数の大きいとき  (3 fm < b)

● 衝突径数の小さいとき  (b < 3 fm)

 K. Sekizawa

58Ni  +208Pb    at Elab=328.4 MeV
28 8230 126TDHF計算の結果:

核子の移行確率核子の移行確率

: 粒子数射影法
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“Partial”-space	particle-number	projection
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FIG. 6. Same as Figs. 1–5, but for the 136Xe+198Pt reaction at Ec.m. ≃ 644.98 MeV. The horizontal axis is the mass number
of the fragments. Cross sections for secondary products evaluated by TDHF+GEMINI (with Ē∗ and J̄) are shown by blue
solid lines. The experimental data were reported in Ref. [66].

excited compared to those in proton-stripping channels.
Note that GRAZING also provides similar magnitude of
evaporation effects, although the absolute value of the
cross sections are substantially underestimated.

IV. SUMMARY

In this paper, a method, called TDHF+GEMINI, has
been proposed, which enables us to evaluate production
cross sections for secondary products in low-energy heavy
ion reactions. In the method, the reaction dynamics, on
the timescale of 10−21–10−20 sec, is described microscopi-
cally based on the time-dependent Hartree-Fock (TDHF)
theory. Production probabilities, total angular momenta,
and excitation energies of primary reaction products are
extracted from the TDHF wavefunction after collision,
using the particle-number projection method. Based on
those quantities derived from TDHF, secondary deexci-
tation processes of primary reaction products, both par-
ticle evaporation and fission, are described employing the
GEMINI++ compound-nucleus deexcitation model.
The method was applied to 40,48Ca+124Sn,

40Ca+208Pb, 58Ni+208Pb, 64Ni+238U, and 136Xe+198Pt
reactions for which precise experimental cross sections
are available. The inclusion of deexcitation effects,
which are dominated by neutron evaporation, changes
the cross sections toward the direction consistent with
the experimental data. However, there remain discrep-
ancies between the measured cross sections and the
TDHF+GEMINI results, especially for multi-proton

stripping processes. It may indicate the importance of
description going beyond the standard self-consistent
mean-field theory to correctly describe multinucleon
transfer processes in low-energy heavy ion reactions.
Finally, it is to be reminded that, in the proposed

method, there is no room to adjust the model param-
eters specific to each reaction: energy density functional
is determined so as to reproduce known properties of fi-
nite nuclei and nuclear matter [54]; GEMINI++ [46] and
its ongoing developments [59, 60] allow a systematic re-
production of a large body of data. Therefore, it will be a
promising tool that can predict, in a non-empirical way,
optimal reaction mechanisms to produce new neutron-
rich isotopes that have not yet been produced to date.
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Success:	Reaction	above	the	Coulomb	barrier

Simenel, C., 2010, Phys. Rev. Lett. 105, 192701.

136Xe + 198Pt



Problem: Reaction below the Coulomb barrier

• Decay modes
– Spontaneous fission
– Alpha decay

• Low-energy reaction
– Sub-barrier fusion reaction
– Alpha capture reaction (element synthesis in 

the stars)



Deep-subbarrier fusion hindrance

C.L.Jiang,!!priv.!comm.!

The “magnificent systems” 

JIANG, BACK, ESBENSEN, JANSSENS, AND REHM PHYSICAL REVIEW C 73, 014613 (2006)
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FIG. 1. Comparison of the logarithmic derivative and S-factor
representations of the fusion cross section for the systems, 58Ni + 58Ni
[14] and 64Ni + 64Ni [12]. The dashed curves correspond to a constant
S-factor, whereas the solid curves display results of coupled-channels
calculations. The L(E) data were obtained from a fit to the cross
sections at three consecutive beam energies.

the limit of E = 0. If L(E) does not grow faster than Lcs(E)
with decreasing energy, it may not cross Lcs(E) for any positive
value of E. It is, therefore, of interest to study the systematics of
the sub-barrier fusion hindrance over a wide range of systems,
including some with positive Q-value, as is the case mainly in
fusion between lighter nuclei.

The expected dependence on the Q-value of the system
appears to be borne out by data. The systematics of the
logarithmic derivative L(E) of fusion excitation functions is
illustrated in Fig. 2 for a number of systems ranging from 10B +
10B to 90Zr + 92Zr. The logarithmic derivatives are represented
by open circles for five-point derivatives, whereas the open
squares were obtained by a fit to three consecutive data points.
We observe that L(E) for all systems increases with decreasing
energy. The dashed curves represent the logarithmic slopes
corresponding to a constant S-factor [(Eq. (1)]. In an earlier
study of fusion between “stiff” nuclei [11], which did not
include systems lighter than 16O + 144Sm, we found that
the S-factor maximum systematically occurred at a value of
Ls = 2.33 MeV−1 corresponding to

Eref
s = 0.356(Z1Z2

√
µ)

2
3 (MeV). (2)

Studying the full range of systems, we observe that the
crossing point, Es , for lighter systems, which have increasingly
positive Q-values, indeed occurs at larger values of L(E). For
the lightest systems, the logarithmic derivatives of the data
intersect the constant S-factor curve at a small angle and it
is, therefore, difficult to accurately estimate Es . Consequently,
we have used fits to the data with the expression a + b/E3/2

(solid curves), aand bbeing adjustable parameters, to obtain
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FIG. 2. Logarithmic derivative representations for a range of
systems. The dashed curves correspond to a constant S-factor,
whereas the dashed-dotted curves display results of coupled-channels
calculations, and the solid curves represent a fit to the data using the
function a + b/E3/2. The range of Es values are indicated by vertical
line segments for heavy systems. For the four lightest systems only
lower limits of Ls can be derived (shown as arrows). The data are
taken from Refs. 10B + 10B [15], 11B + 12C , 12C + 13C, 12C +
16O, 16O + 16O [16], 48Ca + 48Ca [17], 60Ni + 89Y [10], and 90Zr +
92Zr [18].

a less subjective estimate of Es . The results are given in
Table I. Relatively large error bars are, however, assigned to
the resulting Es values and, for the lightest systems, only
upper limits are given, because of the inaccuracy of this
procedure. We also observe that the value of the logarithmic
slope, L(E), obtained by coupled-channels calculations for
heavy systems (dashed-dotted curves in Fig. 2) saturates at
a value of ∼1.5–2.0 MeV−1, much lower than measured.
It has been shown that coupled-channels calculations using
reasonable ion-ion potentials are unable to reproduce the
extreme sub-barrier behavior [11].

III. SYSTEMATICS

The systematics of sub-barrier hindrance is illustrated in
Fig. 3. Here, the derived values of Es and Ls = L(Es) are
plotted as a function of the parameter Z1Z2

√
µ in panels

(a) and (b), respectively. Aside from local deviations of Ls

from the value of 2.33 MeV−1 in medium-heavy systems (of
the order of ∼10%, arising from nuclear structure effects) Ls

clearly starts deviating from this value in lighter systems. The
corresponding Es values also fall below the Eref

s systematics
(solid curve) given in Eq. (2). A purely empirical expression

Lemp
s = 2.33 + 400/(Z1Z2

√
µ) (MeV−1) (3)

014613-2

Jiang et al, PRC 73, 014613 (2006)

Systematic investigation for
Fusion hindrance at extreme 
sub-barrier energies

(Jiang, private comm.)

Astrophysical S-factor

64Ni + 64Ni
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Summary (Part-1)
• Success of nuclear TDDFT

– Giant resonances (linearized TDDFT)
– Heavy-ion reaction at above-barrier energy

• Problems
– Low-energy collective motion
– Many-body tunneling (spontaneous fission, 

sub-barrier fusion, astrophysical reaction)
• Possible solutions

– Improving DF (𝜔-dep., beyond LDA, etc.) 
– Identification & re-quantization of collective 

subspace



Classical Hamilton’s form

The TDDFT can be described by the classical form.

The canonical variables

Number of variables = Number of ph degrees of freedom

ξ ph =
∂H
∂π ph

π ph = −
∂H
∂ξ ph

Blaizot, Ripka, “Quantum Theory of Finite Systems” (1986)  
Yamamura, Kuriyama, Prog. Theor. Phys. Suppl. 93 (1987)

𝐻 𝜉, 𝜋 = 𝐸 𝜌(𝜉, 𝜋)

𝜌334 = 𝜉 + 𝑖𝜋 𝜉 + 𝑖𝜋 6
334

𝜉37,𝜋37
𝜌774 = 1 − 𝜉 + 𝑖𝜋 6 𝜉 + 𝑖𝜋 774

𝜌37 = 𝜉 + 𝑖𝜋 1 − 𝜉 + 𝑖𝜋 6 𝜉 + 𝑖𝜋 37



Strategy
• Purpose

– Take into account “missing” quantum 
fluctuation associated with “slow” collective 
motion

• Difficulty
– Non-trivial collective variables

• Procedure
1. Identify the collective subspace of such slow 

motion, with canonical variables (𝑞, 𝑝)
2. Quantize on the subspace    𝑞, 𝑝	 = 𝑖ℏ



Expansion for “slow” motion
• Hamiltonian

𝐻 = 𝐻 𝜉, 𝜋 ≈
1
2
𝐵AB 𝜉 𝜋A𝜋B + 𝑉(𝜉)

expanded up to 2nd order in 𝜋 [α, 𝛽 = (𝑝ℎ)]

• Point Transformation  𝜉A, 𝜋A → 𝑞G, 𝑝G
𝑝G =

HIJ

HKL
𝜋A ,         𝜋A =

HKL

HIJ
𝑝G

• Hamiltonian
𝐻M = 𝐻M 𝑞, 𝑝 ≈

1
2
𝐵NGO 𝑞 𝑝G𝑝O + 𝑉(𝑞)



Decoupled submanifold
• Collective canonical variables (𝑞, 𝑝)
– 𝜉A, 𝜋A → 𝑞, 𝑝; 	𝑞R , 𝑝R; 			𝑎 = 2,⋯ ,𝑁37

• Finding a decoupled submanifold
HV
HIJ

− HV
HK

HK
HIJ

= 0 Moving mean-field eq.

𝐵BX 𝛻X
HV
HIJ

HK
HIZ

= 𝜔[ HK
HIJ

Moving RPA eq.

𝛻X
HV
HIJ ≡

H]V
HI^HIJ − ΓAX

B HV
HIZ

ΓAX
B : Affine connection with metric   𝑔AB ≡ ∑ HKL

HIJ
HKL

HIZG

Decoupling   à ΓAX
B = b

[𝐵
Bc 𝐵cA,X + 𝐵cX,A − 𝐵AX,c



Numerical procedure

𝜉𝑞,A =
𝜕𝑞
𝜕𝜉A

HV
HIJ

− HV
HK

HK
HIJ

= 0 Moving mean-field eq.

𝐵BX 𝛻X
HV
HIJ

HK
HIZ

= 𝜔[ HK
HIJ

Moving RPA eq.

Move to the next point
𝜉A + 𝛿𝜉A = 𝜉A + 𝛿𝑞𝜉,KA

Moving MF eq. to 
determine the point: 𝜉A

𝜉,KA =
𝜕𝜉A

𝜕𝑞

Tangent vectors (Generators)



Canonical variables and quantization

• Solution
– 1-dimensional state:  ξ 𝑞

– Tangent vectors:   HK
HIJ

and HI
J

HK

– Fix the scale of 𝑞	by making the inertial mass                          
𝐵N = HK

HIJ
𝐵AB HK

HIJ
= 1

• Collective Hamiltonian
– 𝐻Mfghh 𝑞, 𝑝 = b

[
𝑝[ + 𝑉N(𝑞),       𝑉N 𝑞 = 𝑉(ξ 𝑞 )

– Quantization   𝑞, 𝑝	 = 𝑖ℏ



3D real space representation

X [ fm ]

y 
[ f

m
 ]

Wen, T.N., PRC 94, 054618 (2016);
PRC 96, 014610 (2017)

• 3D space discretized in lattice
• BKN functional
• Moving mean-field eq.: Imaginary-time method
• Moving RPA eq.： Finite amplitude method (PRC 

76, 024318 (2007) )

At a moment, no pairing

1-dimensional reaction path 
extracted from the Hilbert space of 
dimension of 104 ~105.



• Reaction path
• After touching

– No bound state, but
– a resonance state in 8Be

Simple case: α + α scattering

α particle（4He） α particle（4He）



8Be: Tangent vectors (generators)
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FIG. 1. (Color online) Calculated translational mass of the ↵
particle in units of nucleon’s mass m, as functions of adoptd

mesh size h.

with various mesh sizes h = 0.5 ⇠ 1.4 fm. Note that
the ground state of the system is a trivial solution of the
ASCC equation (6). We can clearly identify the three
translational modes for x, y, and z directions, degener-
ated in energy at !com  1 MeV. Using smaller mesh
size, the eigenfrequency of the translational motion ap-
proaches to zero. There are no low-lying excited states in
the ↵ particle because of its compact and doubly-closed
characters. The calculated energy of the lowest excited
state is larger than 20 MeV.

Using Eqs. (19) and (22) with R as the center of mass,
we calculate the inertial mass of the translational motion
of the ↵ particle. Figure 1 shows the results calculated
with di↵erent mesh size h of the 3D grid. Since this is
the trivial center-of-mass motion of the total system, this
should equal the total mass,M = Am with A = 4. As the
mesh size decreases, the total mass certainly converges to
the value of 4m. In the follwoing, we adopt the mesh size
h = 0.8 fm.

2. Relative motion of two ↵ particles in
8
Be

Figure 2 shows the calculated eigenfrequencies for the
ground state of 8Be and the two well separated ↵’s at
distance R = 7.2 fm. Since the ground state of 8Be
is deformed, there appear the rotational modes of exci-
tation as the zero modes, in addition to the three in-
dependent modes of the translational motion. Because
of the axial symmetry of the ground state, the rota-
tion about the symmetry axis (z axis) does not ap-
pear. In Fig. 2 the calculation produces two rotational
modes of excitation around 2.8 MeV with large transi-
tion matrix element of the K = 1 quadrupole operator,
Q̂2±1 ⌘

R
r2Y2±1(r̂) ̂†(~r) ̂(~r)d~r. The finite energy of

these rotational modes comes from the finite mesh size
discretizing the space. Besides these five zero modes,
the lowest mode of excitation turns out to have a sizable
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FIG. 2. (Color online) Calculated eigenfrequencies for the

ground state of
8
Be (left column) and the two well-separated

↵’s at distance R = 7.2 fm (right column). The three modes

of translational motion and two modes of rotational motion

are shown by thin lines, while the thick line indicates the

K = 0 quadrupole oscillation.
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FIG. 3. (Color online) The density distribution ⇢(~r) for
8
Be

in the upper panels, and the transition density �⇢(~r) of the

lowest mode of excitation in the lower panels. The left panels

show those at the ground state and the right at R = 7.2 fm.

Those on the y � z plane are plotted.

transition strength of the K = 0 quadrupole operator
Q̂20 ⌘

R
r2Y20(r̂) ̂†(~r) ̂(~r)d~r. This mode corresponds

to the elongation of 8Be. The transition density is given
by

�⇢(~r) ⌘ h!| ̂(~r) ̂†(~r)|0i = h0|
h
⌦,  ̂(~r) ̂†(~r)

i
|0i

=

r
2

!

X

i

Pi(~r)'i(~r). (41)

The left panels of Fig. 3 show the density profile of 8Be
and the transition density �⇢(r) corresponding to the low-
est RPA normal mode. We can see an elongated struc-
ture along the z direction in the ground state. The lowest
mode of excitation corresponds to the change of its elon-
gation (�-vibration).

𝜌(𝑟⃗)

𝛿𝜌(𝑟⃗)

Tangent vectors (Generators)



8Be: Collective potential
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FIG. 4. (Color online) Potential energy as a function of the

relative distance R. The solid (blue) line corresponds to V (R)

on the ASCC collective path, while the dashed (red) line

shows 4e2/R+ 2E↵ for reference.

We also perform the same calculation for the state in
which two ↵ particles are located far away, at the rel-
ative distance R = 7.2 fm. In the right panel of Fig.
3, we clearly see that the two ↵ particles are well sepa-
rated, and the quadrupole mode in fact corresponds to
the translational motion of the ↵ particles in the opposite
directions, namely, the relative motion of two ↵’s. The
excitation energy almost vanishes for this normal mode
(Fig. 2).

B. Results of the ASCC method

In Sec. III A 2, we show that the the lowest quadrupole
mode of excitation at the ground state of 8Be may change
its character and lead to the relative motion of two ↵’s
at the asymptotic region. We adopt this mode as the
generators (Q̂(q), P̂ (q)) of the collective variables (q, p),
then, construct the collective path.

1. Collective path, potential, and inertial mass

We successfully derive the collective path {| (q)i; q =
0, �q, 2�q, · · · } connecting the ground state of 8Be into the
well-separated two ↵ particles. The inertial mass M(q)
is taken as unity and the collective potential is calcu-
lated according to Eq. (9). Then, according to Sec. II B,
the collective coordinate q is mapped onto the relative
distance R ⌘ h (q)|R̂| (q)i with Eq. (18). Figure 4
shows the obtained potential energy along the ASCC
collective path. As a reference, we also show the pure
Coulomb potential between two ↵ particles at distance
R, 4e2/R+2E↵, where E↵ is the calculated ground state
energy of the isolated ↵ particle. Apparently, it asymp-
totically approaches the pure Coulomb potential. As two
↵’s get closer, the potential starts to deviate from the
Coulomb potential at R < 6 fm and finally reaches the
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FIG. 5. (Color online) !2
in Eq. (13) and @2V/@q2 of the

ASCC calculation as a function of relative distance R.

ground state of 8Be. The ground state is at R = 3.54
fm, and the top of the Coulumb barrier is at R = 6.6
fm. Note that the path is determined self-consistently
without any a priori assumption.
With this calculated potential, we may check the self-

consistency of the ASCC potential and the eigenfre-
quency. If the collective path perfectly follows the di-
rection defined by the local generators (Q̂(p), P̂ (q)) at
each point of q, the second derivative of the potential
d2V/dq2 should coincide with the eigenfrequency !2 of
the moving RPA equation. The almost perfect agree-
ment between these is shown in Fig. 5.
For the region of R < 3.5 fm, there exists some discrep-

ancy between d2V/dq2 and !2. In this region, the 8Be
nucleus has even more compact shapes than the ground
state, then, the coordinate q and R become almost or-
thogonal to each other, losing the one-to-one correspon-
dence between them. In other words, the states | (q)i
change as q gets smaller, but keep R = h (q)|R̂| (q)i al-
most constant. In addition, the moving RPA frequency !
becomes larger than the particle threshold energy, enter-
ing in the continuum. Thus, in this region of R < 3.5 fm,
the results somewhat depend on the adopted box size.
Figure 6 shows the obtained inertial mass M(R) as a

function of R for the scattering between two ↵’s As the
two ↵’s are far away, the ASCC inertial mass asymp-
totically produces the exact reduced mass of 2m. This
means that the collective coordinate q becomes parallel
to the relative distance R, even though we do not assume
so. At R < 3.54 fm, the value of inertial mass M(R) in-
creases. This is due to the decrease of the factor dR/dq
in Eq. (19). Making the sytem even more compact than
the ground state, M(R) rises up drastically, which means
that the coordinates q and R become almost orthogonal.

2. Phase shift for ↵� ↵ scattering

The ASCC calculation provides us the collective
Hamiltonian along the optimal reaction path. Using this,

Represented by the relative distance R
Transformation: 𝑞 → 𝑅

𝑉 𝑅 = 𝑉(𝑞 𝑅 )

R
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we demonstrate the calculation of nuclear phase shift. We
should take this result in a qualitative sense, because of
a schematic nature of the BKN interaction.

Using the collective potential V (R) and the inertial
mass M(R) obtained in the ASCC calculation, the nu-
clear phase shift for the angular momentum L at incident
energy E is calculated in the WKB approximation as [41]

�L(E) =

Z 1

R0

k(R)dR�

Z 1

Rc

kc(R)dR, (42)

with

k2(R) = 2M(R)

(
E � V (R)�

�
L+ 1

2

�2

4mR2

)
,

k2c (R) = 4m

(
E �

4e2

R
�

�
L+ 1

2

�2

4mR2

)
, (43)

where k(R) and kc(R) are the wave numbers in the
radial motion with and without the nuclear potential.

R0 and Rc are the outer turning points for the po-
tentials V (R) and 4e2/R, respectively, i.e. k(R0) =
kc(Rc) = 0. The centrifugal potential is approximated
as (L + 1/2)2/(2µR2) with the reduced mass µ = 2m
and the semiclassical approximation for L(L+ 1).
Figure 7 shows the calculated nuclear phase shifts for

the scattering between two ↵’s. The dashed line is calcu-
lated with the same potential V (R) but with the constant
reduced mass, M(R) ! µ = 2m. We can see the promi-
nent increase of the nuclear phase shift caused by the
coordinate-dependent ASCC inertial mass M(R). We
should remark that the energy of the resonance in 8Be is
not reproduced with the BKN interaction. In fact, the
present calculation leads to the stable ground state for
8Be; E8Be < 2E↵. Thus, we should regard this result
as a quatlitative one. Nevertheless, the basic features of
phase shifts for the ↵�↵ scattering are reproduced. This
demonstrates the usefulness of the requantization using
the ASCC calculation.

C. Comparison with other approaches

We compare the present ASCC results with those ob-
tained with other approaches: (i) CHF + cranking in-
ertia, (ii) CHF + local RPA, and (iii) ATDHF. We
adopt the same model space as the ASCC calculations
for these calculations. For the constraint operators of
CHF calculation in (i) and (ii), we adopt the K = 0
mass quadrupole operator Q̂20 and the relative distance
R̂.

1. CHF + cranking inertia

Since 8Be is the simplest system and has a promi-
nent ↵ + ↵ structure even at the ground state, the
collective path can be approximated by more conven-
tional CHF calculations with a constraint operator as
either Q̂20 or R̂. The potential is defined as VCHF(R) =
h CHF(R)|Ĥ| CHF(R)i. For the inertial mass, the In-
glis’s cranking formula is widely used. There are two
kinds of cranking formulae: The original formula is de-
rived by the adiabatic perturbation, which is given for
the 1D collective motion as

MNP

cr
(R) = 2

X

m,i

|h'm(R)|@/@R|'i(R)i|2

em(R)� ei(R)
, (44)

where the single-particle states and energies are defined
with respect to hCHF(R) = hHF[⇢]� �(R)Ô as

hCHF(R)|'µ(R)i = eµ(R))|'µ(R)i, µ = i,m. (45)

Note that, depending on choice of the constraint oper-
ator, Ô = (Q̂20, R̂), we obtain slightly di↵erent |'i(R)i
even at the same R.
Another formula, which is more frequently used in

many applications and also called the cranking inertial

Reduced	mass

𝐵N(𝑅) =
𝜕𝑅
𝜕𝑞 𝐵

N 𝜕𝑅
𝜕𝑞 =

𝜕𝑅
𝜕𝑞

[

𝑀M(𝑅) =
1

𝐵N(𝑅)

Transformation: 𝑞 → 𝑅

𝑀M(𝑅) → 2𝑚
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we demonstrate the calculation of nuclear phase shift. We
should take this result in a qualitative sense, because of
a schematic nature of the BKN interaction.

Using the collective potential V (R) and the inertial
mass M(R) obtained in the ASCC calculation, the nu-
clear phase shift for the angular momentum L at incident
energy E is calculated in the WKB approximation as [41]

�L(E) =

Z 1

R0

k(R)dR�

Z 1

Rc

kc(R)dR, (42)

with

k2(R) = 2M(R)

(
E � V (R)�

�
L+ 1

2

�2

4mR2

)
,

k2c (R) = 4m

(
E �

4e2

R
�

�
L+ 1

2

�2

4mR2

)
, (43)

where k(R) and kc(R) are the wave numbers in the
radial motion with and without the nuclear potential.

R0 and Rc are the outer turning points for the po-
tentials V (R) and 4e2/R, respectively, i.e. k(R0) =
kc(Rc) = 0. The centrifugal potential is approximated
as (L + 1/2)2/(2µR2) with the reduced mass µ = 2m
and the semiclassical approximation for L(L+ 1).
Figure 7 shows the calculated nuclear phase shifts for

the scattering between two ↵’s. The dashed line is calcu-
lated with the same potential V (R) but with the constant
reduced mass, M(R) ! µ = 2m. We can see the promi-
nent increase of the nuclear phase shift caused by the
coordinate-dependent ASCC inertial mass M(R). We
should remark that the energy of the resonance in 8Be is
not reproduced with the BKN interaction. In fact, the
present calculation leads to the stable ground state for
8Be; E8Be < 2E↵. Thus, we should regard this result
as a quatlitative one. Nevertheless, the basic features of
phase shifts for the ↵�↵ scattering are reproduced. This
demonstrates the usefulness of the requantization using
the ASCC calculation.

C. Comparison with other approaches

We compare the present ASCC results with those ob-
tained with other approaches: (i) CHF + cranking in-
ertia, (ii) CHF + local RPA, and (iii) ATDHF. We
adopt the same model space as the ASCC calculations
for these calculations. For the constraint operators of
CHF calculation in (i) and (ii), we adopt the K = 0
mass quadrupole operator Q̂20 and the relative distance
R̂.

1. CHF + cranking inertia

Since 8Be is the simplest system and has a promi-
nent ↵ + ↵ structure even at the ground state, the
collective path can be approximated by more conven-
tional CHF calculations with a constraint operator as
either Q̂20 or R̂. The potential is defined as VCHF(R) =
h CHF(R)|Ĥ| CHF(R)i. For the inertial mass, the In-
glis’s cranking formula is widely used. There are two
kinds of cranking formulae: The original formula is de-
rived by the adiabatic perturbation, which is given for
the 1D collective motion as

MNP

cr
(R) = 2

X

m,i

|h'm(R)|@/@R|'i(R)i|2

em(R)� ei(R)
, (44)

where the single-particle states and energies are defined
with respect to hCHF(R) = hHF[⇢]� �(R)Ô as

hCHF(R)|'µ(R)i = eµ(R))|'µ(R)i, µ = i,m. (45)

Note that, depending on choice of the constraint oper-
ator, Ô = (Q̂20, R̂), we obtain slightly di↵erent |'i(R)i
even at the same R.
Another formula, which is more frequently used in

many applications and also called the cranking inertial

Nuclear	phase	shift

Effect	of	dynamical	change	of	the	inertial	mass
Dashed	line:			Constant	reduced	mass	(	𝑀 𝑅 → 2𝑚)
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pecially near the SD state. Our result shows a peculiar
increase in the inertial mass near the SD local minimum
(R = 4.9 fm). On the contrary, the ATDHF result of
Ref. [32] even shows a decrease near the ending point at
R ≈ 5 fm. In our previous study on α + α →8Be, we
have also found that the ATDHF potential is relatively
similar to that of the ASCC, while the inertial masses are
different.

C. Sub-barrier fusion cross section

The ASCC calculation provides us the collective
Hamiltonian on the optimal reaction path. Using this,
we demonstrate the calculation of sub-barrier fusion cross
section for 16O+α→ 20Ne and 16O+16O→32S. We follow
the procedure in Ref. [32].
Using the collective potential V (R) and the inertial

mass M(R) obtained in the ASCC calculation, the sub-
barrier fusion cross section is evaluated with the WKB
approximation. The transmission coefficient for the par-
tial wave L at incident energy Ec.m. is given by

TL(Ec.m.) = [1 + exp(2IL)]
−1, (29)

with

IL(Ec.m.) =

∫ b

a
dR

{
2M(R)

×
(
V (R) +

L(L+ 1)

2µredR2
− Ec.m.

)}1/2
, (30)

where a and b are the classical turning points on the inner
and outer sides of the barrier respectively. The centrifu-
gal potential is approximated as L(L+1)/(2µredR2). The
fusion cross section is given by

σ(Ec.m.) =
π

2µredEc.m.

∑

L

(2L+ 1)TL(Ec.m.). (31)

For identical incident nuclei, Eq. (31) must be modified
according to the proper symmetrization. Only the partial
wave with even L contribute to the cross section as

σ(Ec.m.) =
π

2µredEc.m.

∑

L

[1 + (−)L](2L+ 1)TL(Ec.m.).

(32)

Instead of σ(Ec.m.), one usually refers to the astrophys-
ical S factor defined by

S(Ec.m.) = Ec.m.σ(Ec.m.) exp[2πZ1Z2e
2/!v], (33)

where v is the relative velocity at R → ∞. The as-
trophysical S factor is preferred for sub-barrier fusion
because it removes the change by tens of orders of mag-
nitude present in the cross section due to the trivial pen-
etration through the Coulomb barrier. The S factor may
reveal in a more transparent way the influence of the nu-
clear structure and dynamics.
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Figure 11 shows the calculated S factor for the scatter-
ing of 16O+α and 16O+16O, respectively. For 16O+16O,
the values of the S factor are plotted in log scale. The
dashed line is calculated with the same potential V (R)
but with the reduced mass, replacing M(R) by the con-
stant value of µred in Eq. (30). Effect of the inertial
mass is significant in the deep sub-barrier energy region,
especially for the reaction of 16O+16O at Ec.m. < 4 MeV.
Because of a schematic nature of the BKN density func-
tional, we should regard this result as a qualitative one.
Nevertheless, it suggests the significant effect of the iner-
tial mass and roughly reproduces basic features of exper-
imental S factor for the 16O-16O scattering. This demon-
strates the usefulness of the requantization approach us-
ing the ASCC collective Hamiltonian.

IV. SUMMARY

Based on the ASCC method we developed a numerical
method to determine the collective path for the large
amplitude nuclear collective motion. We applied this
method to the nuclear fusion reactions; 16O+α →20Ne
and 16O+16O→32S. In the grid representation of the 3D
coordinate space, the reaction paths, collective poten-
tials, and the inertial masses are calculated.

The ASCC collective path smoothly connects the ini-
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barrier. The S factor may reveal in a more transparent way the
influence of the nuclear structure and dynamics.

Figure 11 shows the calculated S factor for the scattering
of 16O + α and 16O + 16O, respectively. For 16O + 16O, the
values of the S factor are plotted on a log scale. The dashed
line is calculated with the same potential V (R) but with the
reduced mass, replacing M(R) by the constant value of µred
in Eq. (30). The effect of the inertial mass is significant in the
deep subbarrier-energy region, especially for the reaction of
16O + 16O at Ec.m. < 4 MeV. Because of a schematic nature of
the BKN density functional, we should regard this result as a
qualitative one. Nevertheless, it suggests the significant effect
of the inertial mass and roughly reproduces basic features
of experimental S factor for the 16O-16O scattering. This
demonstrates the usefulness of the requantization approach
using the ASCC collective Hamiltonian.

IV. SUMMARY

Based on the ASCC method we developed a numerical
method to determine the collective path for the large-amplitude
nuclear collective motion. We applied this method to the
nuclear fusion reactions; 16O + α → 20Ne and 16O + 16O →
32S. In the grid representation of the 3D coordinate space, the
reaction paths, collective potentials, and the inertial masses are
calculated.

The ASCC collective path smoothly connects the initial
state of 16O + α to the ground state of the fused nucleus 20Ne.
It is found the self-consistent collective path is different from
that of the conventional CHF calculation with the quadrupole
or octupole moment as the constraint. For the reaction of 16O +
16O → 32S, we succeed to obtain the 1D reaction path between
16O + 16O and a superdeformed state in 32S. The calculated
inertial mass asymptotically coincides with the reduced mass;
however, it shows a peculiar increase near equilibrium states,
such as the ground state of 20Ne and the superdeformed state
of 32S.

In the present work, we continue to choose the generators
of the same symmetry type to construct the collective path. In
principle we may lift this restriction. For instance, inside the
superdeformed state of 32S, the Kπ = 0+ quadrupole mode is
no longer favored in energy, which may suggest the necessity
to change the generator Q̂ of quadrupole type to octupole type.
The importance of the octupole shape in this region was also
suggested in Ref. [31]. The bifurcation of the collective path
is possible in the ASCC and will be a future issue.

From the ASCC results, it is straightforward to construct
and quantize the collective Hamiltonian to study the collective
dynamics microscopically. The calculated fusion cross section
suggests that the behavior of the inertial mass may have a
significant impact on the fusion probability at deep subbarrier
energies.

Between the superdeformed and triaxial ground states in
32S, we cannot find a 1D collective path to connect them.
Since we made an approximation neglecting the curvature
terms, the mixture of the rotational NG modes takes place in
the triaxial states. The multidimensional collective subspace
may be necessary, which is beyond the scope of the present
work. In the present study, the schematic EDF of the BKN is
adopted. To make more quantitative discussion and apply the
method to heavier nuclei, it is necessary to use realistic EDFs
and include the pairing correlation. These are our future tasks.
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Effect	of	dynamical	change	of	the	inertial	mass	hinders	
the	fusion	cross	section	by	2	orders	of	magnitude.
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S-factor, whereas the solid curves display results of coupled-channels
calculations. The L(E) data were obtained from a fit to the cross
sections at three consecutive beam energies.

the limit of E = 0. If L(E) does not grow faster than Lcs(E)
with decreasing energy, it may not cross Lcs(E) for any positive
value of E. It is, therefore, of interest to study the systematics of
the sub-barrier fusion hindrance over a wide range of systems,
including some with positive Q-value, as is the case mainly in
fusion between lighter nuclei.

The expected dependence on the Q-value of the system
appears to be borne out by data. The systematics of the
logarithmic derivative L(E) of fusion excitation functions is
illustrated in Fig. 2 for a number of systems ranging from 10B +
10B to 90Zr + 92Zr. The logarithmic derivatives are represented
by open circles for five-point derivatives, whereas the open
squares were obtained by a fit to three consecutive data points.
We observe that L(E) for all systems increases with decreasing
energy. The dashed curves represent the logarithmic slopes
corresponding to a constant S-factor [(Eq. (1)]. In an earlier
study of fusion between “stiff” nuclei [11], which did not
include systems lighter than 16O + 144Sm, we found that
the S-factor maximum systematically occurred at a value of
Ls = 2.33 MeV−1 corresponding to

Eref
s = 0.356(Z1Z2

√
µ)

2
3 (MeV). (2)

Studying the full range of systems, we observe that the
crossing point, Es , for lighter systems, which have increasingly
positive Q-values, indeed occurs at larger values of L(E). For
the lightest systems, the logarithmic derivatives of the data
intersect the constant S-factor curve at a small angle and it
is, therefore, difficult to accurately estimate Es . Consequently,
we have used fits to the data with the expression a + b/E3/2

(solid curves), aand bbeing adjustable parameters, to obtain
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FIG. 2. Logarithmic derivative representations for a range of
systems. The dashed curves correspond to a constant S-factor,
whereas the dashed-dotted curves display results of coupled-channels
calculations, and the solid curves represent a fit to the data using the
function a + b/E3/2. The range of Es values are indicated by vertical
line segments for heavy systems. For the four lightest systems only
lower limits of Ls can be derived (shown as arrows). The data are
taken from Refs. 10B + 10B [15], 11B + 12C , 12C + 13C, 12C +
16O, 16O + 16O [16], 48Ca + 48Ca [17], 60Ni + 89Y [10], and 90Zr +
92Zr [18].

a less subjective estimate of Es . The results are given in
Table I. Relatively large error bars are, however, assigned to
the resulting Es values and, for the lightest systems, only
upper limits are given, because of the inaccuracy of this
procedure. We also observe that the value of the logarithmic
slope, L(E), obtained by coupled-channels calculations for
heavy systems (dashed-dotted curves in Fig. 2) saturates at
a value of ∼1.5–2.0 MeV−1, much lower than measured.
It has been shown that coupled-channels calculations using
reasonable ion-ion potentials are unable to reproduce the
extreme sub-barrier behavior [11].

III. SYSTEMATICS

The systematics of sub-barrier hindrance is illustrated in
Fig. 3. Here, the derived values of Es and Ls = L(Es) are
plotted as a function of the parameter Z1Z2

√
µ in panels

(a) and (b), respectively. Aside from local deviations of Ls

from the value of 2.33 MeV−1 in medium-heavy systems (of
the order of ∼10%, arising from nuclear structure effects) Ls

clearly starts deviating from this value in lighter systems. The
corresponding Es values also fall below the Eref

s systematics
(solid curve) given in Eq. (2). A purely empirical expression

Lemp
s = 2.33 + 400/(Z1Z2

√
µ) (MeV−1) (3)

014613-2

Exp (Ni+Ni)



Summary (Part-2)

• Missing correlations in nuclear density 
functional
– Correlations associated with low-energy 

collective motion
• Re-quantize a specific mode of collective 

motion
– Derive the slow collective motion
– Quantize the collective Hamiltonian
– Applicable to nuclear structure and reaction



Summary (Part-2)
• Review articles

– T.N., Prog. Theor. Exp. Phys. 2012, 01A207 
(2012)

– T.N. et al., Rev. Mod. Phys. 88, 045004 (2016)
• Collaborators

– Shuichiro Ebata (Hokkaido Univ.)
– Fang Ni (Univ. Tsukuba)
– Kai Wen (Univ. Surrey)
– Kenichi Yoshida (Kyoto Univ.)





Nuclear energy density functional
• Energy functional for the intrinsic states
• Spin & isospin degrees of freedom

– Spin-current density is indispensable.
• Nuclear superfluidity à Kohn-Sham-

Bogoliubov eq.
– Pair density (tensor) is necessary for heavy 

nuclei.

[ ]qqqq JE κτρ ;,,
!

spin-current

kinetic pair density



Nuclear deformation as symmetry breaking

ΨΨ= µµβ 2
2

2 Yr
Quadrupole deformation

prolate           oblate        triaxial

Octupole deformation

ΨΨ= 30
3

30 Yrβ

Pear shape (µ=0)

Pairing deformation 
(superfluidity)

Ψ≠ΨJie φ Ψ≠ΨNie φ

ΨΨ=Δ ψψ ˆˆ

Nuclear Superconductivity 
Nuclear Superfluidity

Deformation in the gauge space

Ψ±≠ΨP̂



Nuclear deformation

S. Ebata, T. Nakatsukasa

2016 71st JPS meeting @ Touhoku Gakuin Univ.

3D HF+BCS Cal. w/ SkM* From N=Z to N=2Z, Z=6-92 even-even (Total # 1005)

Results
Ebata and T.N., Phys. Scr. 92 (2017) 064005 

Deformation landscape Quadrupole deformation



S. Ebata, T. Nakatsukasa

2016 71st JPS meeting @ Touhoku Gakuin Univ.

3D HF+BCS Cal. w/ SkM* From N=Z to N=2Z, Z=6-92 even-even (Total # 1005)

Results

Nuclear deformation predicted by DFT
Intrinsic	Q	moment

Deformation landscape

N = 82

Z = 50



Linear	response	(RPA)	equation
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A constant mean-field potential

• Binding energy in the mean field

• Saturation property

Inconsistent with 
nuclear binding
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Saturation properties of nuclear matter

• Symmetric nuclear matter w/o Coulomb
–

• Constant binding energy per nucleon
– Constant separation energy

• Saturation density

– Fermi energy
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Momentum-dependent potential

• State-dependent potential
– Momentum dependence
– The lowest order → “Effective mass”

– Inconsistent with experiments!
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A possible solution for the 
inconsistency

• Energy density functional

• State-dependent effective interaction
– Rearrangement terms
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FIGURE 2. (Color online) Ground-state deformations β (left) and two-neutron separation energies S2n
(right) obtained within HFBTHO using SkP (top) and SLy4 (bottom) interactions.
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FIGURE 3. (Color online) Deviations of ground-state HFBTHO energies from experiment [13] for
SkP (left) and SLy4 (right) interactions. Positive values correspond to underbound nuclei. No corrections
beyond mean field were included.
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Inertial	mass
• Cranking	(Inglis-Belyaev)	inertial	mass

– Neglect	time-odd	mean-field	effects

• GCM-GOA
– Realistic	applications:	real	coordinates	only

• Wrong	total	mass	for	translation

• ASCC	inertial	mass	(extension	of	RPA	mass)
– Time-odd	effects
– Correctly	reproduce	the	total	mass



ATDHF: 8Be: 

Difficulties:
Around the saddle point
Convergence

ATDHF	method	(Goeke,	Gruemmer,	Reinhard 1983)

12

gives the ATDHF collective path. The solutions with
di↵erent initial conditions of | (0)i produce di↵erent col-
lective paths. The envelope curve of all these trajectories
is regarded as the final solution of the adiabatic collective
path.

The ATDHF inertial mass is given by

Matdhf(q) = h (q)|[Q̂(q), [Ĥ, Q̂(q)]]| (q)i�1, (52)

with

Q̂(q) =

✓
@V

@q

◆�1

Ĥph(q) =

✓
@V

@q

◆�1

{hHF(q)}ph .

(53)

According to Eq. (19), the mass with respect to the
relative distance R can be calculated as

Matdhf(R) = Matdhf(q)

✓
dq

dR

◆2

=

✓
dV

dR

◆2

h (q)|[Ĥph(q), [Ĥ, Ĥph(q)]]| (q)i
�1.

(54)

Another, even easier, way of calculatingMatdhf(R) is sim-
ply inverting Eq. (51). Using Eqs. (19) and (51), we
obtain

Matdhf(R) =

✓
dq

dR

◆2 "

�q

dV

dq
=

"

�R

dV

dR
. (55)

For the scattering between two ↵’s, we prepare two
↵ particles both at ground states separately, then put
them away at di↵erent distances of R = 4.8, 5.6, 6.4
fm, as the initial conditions for Eq. (50). The potential
surface of the ATDHF trajectories are plotted in Fig. 12,
which shows how the solutions of Eq. (49) with di↵erent
initial conditions converge to a common collective path.
The converged ATDHF potential surface is similar to the
potentials of CHF and ASCC calculations. It should be
noted that we can obtain these fall-line trajectories on the
potential surface which go only from high to low energy
[56]. It becomes numerically unstable if we calculate in
the opposite direction. Thus, we cannot start from the
HF ground state, and it is di�cult to obtain the solution
in a region of R < 3.5 fm, beyond the HF minimum state.

Figure 13 shows the mass parameters based on the
same trajectories in Fig. 12. The inertial masses cal-
culated with Eqs. (54) and (55) roughly produce the
identical results. Near the HF state of R = 3.54 fm, the
inertial mass increases drastically. This is very di↵erent
from the result of the former calculations [15, 56], the
reason of which is currently under investigation. We also
encounter a di�culty to obtain the collective path in the
asymptotic region at large R. A larger model space and
finer mesh size seems to be needed to obtain the potential
in the asymptotic region and to reproduce the reduced
mass 2m. We should also mention that the saddle point
with dV/dR = 0 is extremely di�cult to reach by solving
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FIG. 12. (Color online) The potential energy on the ATDHF

collective path derived by Eq. (50), as a function of relative

distance R. Initial distances between the two alpha particles

are set to be R = 4.8, 5.6, 6.4 fm respectively. The thin (red)

line indicates the result of ASCC method.
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FIG. 13. (Color online) Matdhf(R) calculated by Eqs. (54)

and (55) shown with blue crosses and green dots, respectively.

They are based on the same ATDHF trajectories in Fig. 12.

The solid (red) line indicates the ASCC mass for comparism.

Eq. (50). In the ASCC method, we do not encounter
these di�culties, and are able to obtain the unique reac-
tion path and inertial mass.

IV. SUMMARY

We have applied the ASCC method to the determina-
tion of the nuclear reaction path, the collective poten-
tial, and the collective inertial mass. The 3D coordinate
space representation is adopted for the single-particle
wave functions. Using the imaginary-time method and
the finite-amplitude method, the coupled equations of
the ASCC that consists of the moving HF equation and
the moving RPA equations, are solved iteratively. The
generators are represented in the mixture of the hole or-
bit and the coordinate grid points, such as Qj(~r).
The first application has been performed to the sim-
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FIG. 10. (Color online) Inertial mass calculated with the
CHF + local RPA in units of nucleon mass. The solid and
dashed lines indicate the results with constraints on R̂ and
Q̂20, respectively. The ASCC result is shown by the thin line
for comparison.

tween the generators, Q̂(q) and P̂ (q), and the collective
path {|ψ(q)⟩} is lost. This method of CHF + local RPA
has been applied to studies of nuclear structure with the
separable Hamiltonian [24–27, 54, 55].
In Fig. 10, we show the result of the local RPA cal-

culation based on the CHF states. At the ground state
(R = 3.54 fm), since both the CHF + local RPA and
the ASCC calculations reduce to the HF + RPA calcula-
tion, they produces the identical inertial mass. Mlrpa(R)
also converges to the ASCC value at large R, faster than
MNP

cr (R), and asymptotically gives the exact reduced
mass 2m. Especially, the calculation with the R con-
straint produces almost identical results as the ASCC
method, at R > 5 fm.
The self-consistency between the local generators and

the assumed coordinate can be checked by comparing
the local RPA frequency and the second derivative of the
potential V (R). If they are consistent, we expect the
relation

ω2 =
d2V

dq2
=

d2V

dR2

1

Mlrpa(R)
+

dV

dR

d2R

dq2
. (48)

It turns out that the last term is negligible. Taking the
potential V (R) of the Q20 constrained calculation as an
example, this comparison is shown in Fig. 11. We can
see some deviations in the region of 3.5 fm< R < 6 fm,
although the overall agreement is not so bad. The de-
viation indicates that the CHF states are not exactly
on the collective path defined by the local generators
(Q̂(R), P̂ (R)). On the other hand, the perfect agreement
is seen in a region of R > 6 fm. This suggests that, at
R > 6 fm, the optimal collective coordinate q obtained
with the ASCC method coincides with the relative dis-
tance R and the quadrupole moment Q20.
Finally, we remark a necessity to modify the constraint

operators, such as Q̂20 and R̂, in the CHF calculation.
Taking the constraint operator Q̂20 as an example, on
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FIG. 11. (Color online) ω2 in Eq. (13) and ∂2V/∂q2 of the
CHF + local RPA calculation.

the symmetry axis (z axis), the constraint term −λQ̂20

results in a external potential proportional to −z2. If
we adopt a large model space, the CHF calculation may
lead to an unphysical solution, namely, the appearance
of small density at the edge of the box. In order to avoid
these unphysical states, we have to screen the operator in
the outer region; Q̃20 ≡

∫

f(r)r2Y20(r̂)ψ̂†(r⃗)ψ̂(r⃗)dr⃗ with
a screening function f(r) which should be unity in the
relevant region and vanish in the irrelevant region (r >
R0). The function form of f(r) becomes non-trivial when
two nuclei are far away in an asymptotic region. This
kind of complication is not necessary for the ASCC local
generator Q̂(q), because it vanishes in a region where all
the hole orbits are zero ϕi(r⃗; q) = 0. In other words, the
ASCC generators are properly “screened” automatically.

3. ATDHF

The ATDHF is based on Eqs. (6) and (7). Since the
second-order equation (8) is missing, the collective path is
not unique. We follow the prescriptions given in Ref. [56]
for practical calculations. The equation of the collective
path is formulated in a form of the first-order differential
equation for |ψ(q)⟩,

∂

∂q
|ψ(q)⟩ =

Matdhf(q)

dV/dq
[Ĥ, Ĥph]ph|ψ(q)⟩, (49)

where Ĥph is the ph and hp parts of the Hamiltonian
defined locally at each q. The single-particle wave func-
tions |ϕi(q)⟩ in the Slater determinant |ψ(q)⟩ is evolved
according to the following equation:

|ϕi(q − δq)⟩ = |ϕi(q)⟩ − ε {1− ρ(q)}

× (hHF(q) {1− 2ρ(q)} hHF(q)

+Tr {v[hHF(q), ρ(q)]}) |ϕi(q)⟩ (50)

with

ε =
δqMatdhf(q)

dV/dq
. (51)

12

In order to obtain the stable solutions, ε is set to be a
small real number. Successive application of Eq. (50)
gives the ATDHF collective path. The solutions with
different initial conditions of |ψ(0)⟩ produce different col-
lective paths. The envelope curve of all these trajectories
is regarded as the final solution of the adiabatic collective
path.
The ATDHF inertial mass is given by

Matdhf(q) = ⟨ψ(q)|[Q̂(q), [Ĥ, Q̂(q)]]|ψ(q)⟩−1, (52)

with

Q̂(q) =

(

∂V

∂q

)−1

Ĥph(q) =

(

∂V

∂q

)−1

{hHF(q)}ph .

(53)

According to Eq. (19), the mass with respect to the
relative distance R can be calculated as

Matdhf(R) = Matdhf(q)

(

dq

dR

)2

=

(

dV

dR

)2

⟨ψ(q)|[Ĥph(q), [Ĥ, Ĥph(q)]]|ψ(q)⟩
−1.

(54)

Another, even easier, way of calculatingMatdhf(R) is sim-
ply inverting Eq. (51). Using Eqs. (19) and (51), we
obtain

Matdhf(R) =

(

dq

dR

)2 ε

δq

dV

dq
=

ε

δR

dV

dR
. (55)

For the scattering between two α’s, we prepare two
α particles both at ground states separately, then put
them away at different distances of R = 4.8, 5.6, 6.4
fm, as the initial conditions for Eq. (50). The potential
surface of the ATDHF trajectories are plotted in Fig. 12,
which shows how the solutions of Eq. (49) with different
initial conditions converge to a common collective path.
The converged ATDHF potential surface is similar to the
potentials of CHF and ASCC calculations. It should be
noted that we can obtain these fall-line trajectories on the
potential surface which go only from high to low energy
[56]. It becomes numerically unstable if we calculate in
the opposite direction. Thus, we cannot start from the
HF ground state, and it is difficult to obtain the solution
in a region of R < 3.5 fm, beyond the HF minimum state.

Figure 13 shows the mass parameters based on the
same trajectories in Fig. 12. The inertial masses cal-
culated with Eqs. (54) and (55) roughly produce the
identical results. Near the HF state of R = 3.54 fm, the
inertial mass increases drastically. This is very different
from the result of the former calculations [15, 56], the
reason of which is currently under investigation. We also
encounter a difficulty to obtain the collective path in the
asymptotic region at large R. A larger model space and
finer mesh size seems to be needed to obtain the potential
in the asymptotic region and to reproduce the reduced
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FIG. 12. (Color online) The potential energy on the ATDHF
collective path derived by Eq. (50), as a function of relative
distance R. Initial distances between the two alpha particles
are set to be R = 4.8, 5.6, 6.4 fm respectively. The thin (red)
line indicates the result of ASCC method.
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FIG. 13. (Color online) Matdhf(R) calculated by Eqs. (54)
and (55) shown with blue crosses and green dots, respectively.
They are based on the same ATDHF trajectories in Fig. 12.
The solid (red) line indicates the ASCC mass for comparison.

mass 2m. We should also mention that the saddle point
with dV/dR = 0 is extremely difficult to reach by solving
Eq. (50). In the ASCC method, we do not encounter
these difficulties, and are able to obtain the unique reac-
tion path and inertial mass.

IV. SUMMARY

We have applied the ASCC method to the determina-
tion of the nuclear reaction path, the collective poten-
tial, and the collective inertial mass. The 3D coordinate
space representation is adopted for the single-particle
wave functions. Using the imaginary-time method and
the finite-amplitude method, the coupled equations of
the ASCC, that consist of the moving HF equation and
the moving RPA equations, are solved iteratively. The
generators are represented in the mixed representation

12

In order to obtain the stable solutions, ε is set to be a
small real number. Successive application of Eq. (50)
gives the ATDHF collective path. The solutions with
different initial conditions of |ψ(0)⟩ produce different col-
lective paths. The envelope curve of all these trajectories
is regarded as the final solution of the adiabatic collective
path.
The ATDHF inertial mass is given by

Matdhf(q) = ⟨ψ(q)|[Q̂(q), [Ĥ, Q̂(q)]]|ψ(q)⟩−1, (52)

with

Q̂(q) =

(

∂V

∂q

)−1

Ĥph(q) =

(

∂V

∂q

)−1

{hHF(q)}ph .

(53)

According to Eq. (19), the mass with respect to the
relative distance R can be calculated as

Matdhf(R) = Matdhf(q)

(

dq

dR

)2

=

(

dV

dR

)2

⟨ψ(q)|[Ĥph(q), [Ĥ, Ĥph(q)]]|ψ(q)⟩
−1.

(54)

Another, even easier, way of calculatingMatdhf(R) is sim-
ply inverting Eq. (51). Using Eqs. (19) and (51), we
obtain

Matdhf(R) =

(

dq

dR

)2 ε

δq

dV

dq
=

ε

δR

dV

dR
. (55)

For the scattering between two α’s, we prepare two
α particles both at ground states separately, then put
them away at different distances of R = 4.8, 5.6, 6.4
fm, as the initial conditions for Eq. (50). The potential
surface of the ATDHF trajectories are plotted in Fig. 12,
which shows how the solutions of Eq. (49) with different
initial conditions converge to a common collective path.
The converged ATDHF potential surface is similar to the
potentials of CHF and ASCC calculations. It should be
noted that we can obtain these fall-line trajectories on the
potential surface which go only from high to low energy
[56]. It becomes numerically unstable if we calculate in
the opposite direction. Thus, we cannot start from the
HF ground state, and it is difficult to obtain the solution
in a region of R < 3.5 fm, beyond the HF minimum state.

Figure 13 shows the mass parameters based on the
same trajectories in Fig. 12. The inertial masses cal-
culated with Eqs. (54) and (55) roughly produce the
identical results. Near the HF state of R = 3.54 fm, the
inertial mass increases drastically. This is very different
from the result of the former calculations [15, 56], the
reason of which is currently under investigation. We also
encounter a difficulty to obtain the collective path in the
asymptotic region at large R. A larger model space and
finer mesh size seems to be needed to obtain the potential
in the asymptotic region and to reproduce the reduced
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collective path derived by Eq. (50), as a function of relative
distance R. Initial distances between the two alpha particles
are set to be R = 4.8, 5.6, 6.4 fm respectively. The thin (red)
line indicates the result of ASCC method.

 1.5

 2

 2.5

 3

 3.5

 4

 3  3.5  4  4.5  5  5.5  6  6.5  7

M
(R

)/m

R [fm]

FIG. 13. (Color online) Matdhf(R) calculated by Eqs. (54)
and (55) shown with blue crosses and green dots, respectively.
They are based on the same ATDHF trajectories in Fig. 12.
The solid (red) line indicates the ASCC mass for comparison.

mass 2m. We should also mention that the saddle point
with dV/dR = 0 is extremely difficult to reach by solving
Eq. (50). In the ASCC method, we do not encounter
these difficulties, and are able to obtain the unique reac-
tion path and inertial mass.

IV. SUMMARY

We have applied the ASCC method to the determina-
tion of the nuclear reaction path, the collective poten-
tial, and the collective inertial mass. The 3D coordinate
space representation is adopted for the single-particle
wave functions. Using the imaginary-time method and
the finite-amplitude method, the coupled equations of
the ASCC, that consist of the moving HF equation and
the moving RPA equations, are solved iteratively. The
generators are represented in the mixed representation

Calculate many trajectories to 
construct an “envelope”


