

Inha University, Republic of Korea

Properties of Nuclei in Chiral Soliton Model (from nucleons to nuclei and neutron stars)

Ulugbek Yakhshiev

Talk @ APCTP-TRIUMF Joint Workshop on "Understanding Nuclei from Different Theoretical Approaches" September 14-19, 2018, APCTP, Pohang, Korea

Motivation (in wider sense)

What is important in the understanding process of surrounding physical reality,

- a general global understanding or
- a deep and directed analysis (an exact and precise description of experimental data)?

What are the fundamental degrees of freedom (according to reductionism principle),

- bosons or
- fermions?

Beyond the standard model (e.g. Unification problem) ...

- It seems, it is not possible to put "an unified picture of all fundamental interactions" into the 4-dimensional space-time.
- It seems, a gravity is spreading to extra dimensions e.g. String theory in many dimensional space.

Basic ingredients and important concepts are

- strings, brains (fundamental degrees of freedom) have topological nature;
- duality (e.g. AdS-CFT correspondence);
- compactification of an extra dimension (infinite tower of Kaluza-Klein modes).

Motivation (in narrower sense)

Strong interactions at low energies are mainly governed by two phenomena:

- confinement;
- spontaneous chiral symmetry breaking.

Vacuum structure of nonabelian-gauge theory is nontrivial... It allows a variety of topological structures: instantons, monopoles... They can explain

- spontaneous chiral symmetry breaking (e.g. instantons) and
- may be, confinement also (stability of topological structures).

Direct application of QCD is not yet possible (except lattice QCD). Possible ways to proceed:

- large Nc approach (theories with a variety of mesonic ingredients)
 <=> similarity with KK theory;
- the topological solitons (fundamental ingredients are bosons) <=> automatically takes into account confinement of quarks;
- fermions having a composite structure appear after the quantization (spin has an essentially quantum nature).

In other words our aim:

To construct a framework — "The modelling of nuclear and hadron physics".

Strategy

How to construct a theoretical framework (model)?

Our guiding principles are

- simplicity (easy to analyse, transparent, etc...) <=> e.g. small number of terms in the Lagrangian;
- relation to phenomenology in an attractive way as much as possible peculiarities of strong interactions should be taken into account using as less as possible number of parameters;
- universality <=> applicability to
 - hadron structure and spectrum studies (from light to heavy sector);
 - analysis of NN interactions;
 - nuclear many body problems <=> nucleonic systems (finite nuclei) and infinite nuclear matter properties (EOS);
 - relation to mesonic atoms;
 - hadron structure changes in nuclear environment;
 - extreme density phenomena (e.g. neutron stars);
 - · etc.

Two possible ways (in the sense of choice):

- to construct a completely new approach;
- a bit fresh look to old ideas (e.g. putting a bit more phenomenological information).

Content

- Topological models (describe structure-full hadrons)
- Medium modifications (interactions with surrounding environment)
- Nucleon in nuclear matter (structure changes due to surrounding environment)
- Nuclear matter (takes into account structure changes of the constituents)
- Neutron stars (extrapolations to high density regions)
- Nucleon in finite nuclei (non-spherical deformations)
- Properties of finite nuclei (example: mirror nuclei)
- Consistency (difference) with (from) other approaches
- Summary and Outlook

Why topological models?

At fundamental level we may have

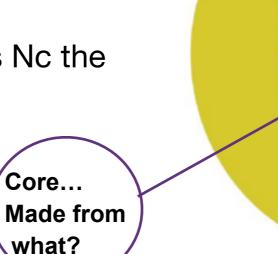
fermions -> then bosons are trivial fermion systems

bosons -> then fermions are <u>nontrivial topological structures</u>

Structure

From what is made a nucleon and, in particular, its core in a starting boson picture approach?

- The structure treatment depends on an energy scale
- At the limit of large number colours Nc the core still has the mesonic content



Shell is made from the meson cloud

Stabilization mechanism

- Soliton has the finite size and the finite energy
- One needs at least two counter terms in the effective (mesonic) Lagrangian

Prototype: **Skyrme model**[T.H.R. Skyrme, Pros.Roy.Soc.Lond. A260 (1961)]

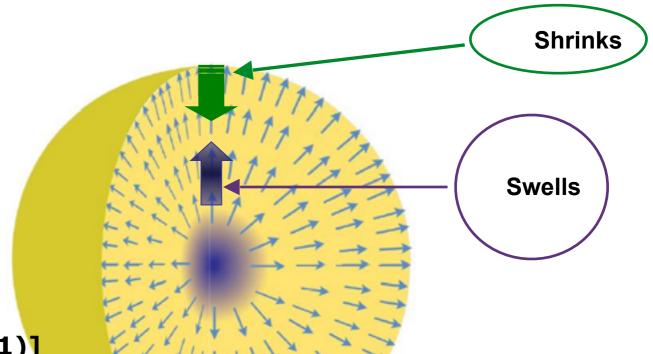
Nonlinear chiral effective meson (pionic) theory

$$\mathcal{L} = \frac{F_{\pi}^{2}}{16} \operatorname{Tr} \left(\partial_{\mu} U \partial^{\mu} U^{\dagger} \right) - \frac{1}{16e^{2}} \operatorname{Tr} \left[U^{\dagger} \partial_{\mu} U, U^{\dagger} \partial_{\nu} U \right]^{2}$$

Shrinking term

<u>Hedgehog</u> solution (nontrivial mapping)

$$U = \exp\left\{\frac{i\overline{\tau} \overline{\pi}}{2F_{\pi}}\right\} = \exp\left\{i\overline{\tau} \overline{n}F(r)\right\}$$



Swelling term

The free space Lagrangian (which was widely in use)

[G.S.Adkins et al. Nucl.Phys. B228 (1983)]

$$\mathcal{L} = \frac{F_{\pi}^2}{16} \operatorname{Tr} \left(\partial_{\mu} U \partial^{\mu} U^{\dagger} \right) - \frac{1}{16e^2} \operatorname{Tr} \left[U^{\dagger} \partial_{\mu} U, U^{\dagger} \partial_{\nu} U \right]^2 + \frac{F_{\pi}^2 m_{\pi}^2}{16} \operatorname{Tr} \left(U + U^{\dagger} - 2 \right)$$

- Nontrivial structure: topologically stable solitons with the corresponding conserved topological number (baryon number) A
- Nucleon is quantized state of the classical soliton-skyrmion which rotates in the ordinary and internal spaces

$$U = \exp\{i\overline{\tau} \,\overline{\pi}/2F_{\pi}\} = \exp\{i\overline{\tau} \,\overline{n}F(r)\}$$

$$B^{\mu} = \frac{1}{24\pi^{2}} \varepsilon^{\mu\nu\alpha\beta} Tr(L_{\nu}L_{\alpha}L_{\beta}) \qquad L_{\alpha} = U^{+}\partial_{\alpha}U$$

$$A = \int d^{3}rB^{0}$$

$$H = M_{cl} + \frac{\overline{S}^{2}}{2I} = M_{cl} + \frac{\overline{T}^{2}}{2I},$$

$$|S = T, s, t\rangle = (-1)^{t+T} \sqrt{2T + 1} D_{-t,s}^{S=T} (A)$$

Topological charge density

$$B^{\mu} = \frac{1}{24\pi^{2}} \varepsilon^{\mu\nu\alpha\beta} Tr(L_{\nu}L_{\alpha}L_{\beta}) \qquad L_{\alpha} = U^{+}\partial_{\alpha}U \qquad A = \int d^{3}rB^{0}$$

Symmetric hedgehog (hedgehog ansatz)

$$U = \exp\{i\vec{\tau}\vec{n}/2F_{\pi}\} = \exp\{i\vec{\tau}\vec{n}F(r)\}$$

One of possible deformed hedgehogs (rational map ansatz)

$$U = \exp\{i\vec{\tau}\vec{\pi}/2F_{\pi}\} = \exp\{i\vec{\tau}\vec{N}(\theta,\varphi)F(r)\}\$$

Generalized hedgehog

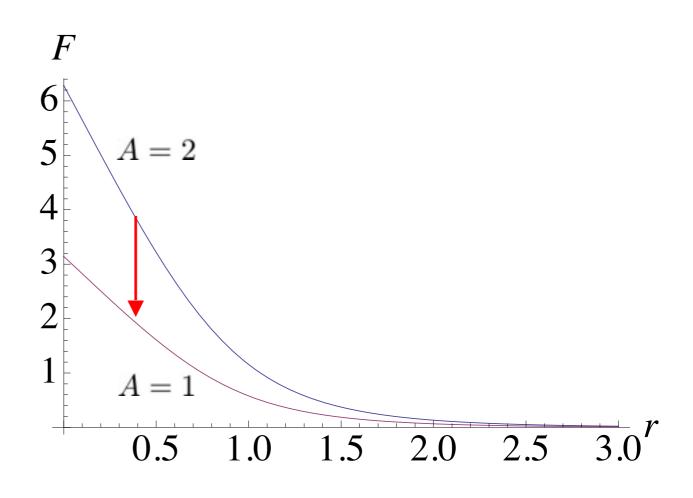
$$U = \exp\{i\vec{\tau}\vec{\pi}/2F_{\pi}\} = \exp\{i\vec{\tau}\vec{N}(r,\theta,\varphi)F(r,\theta,\varphi)\}$$

Many skyrmionic sector (symmetric skyrmion)

$$A = \int d^3r B_0 = -\frac{1}{\pi} [F(\infty) - F(0)], \qquad F(0) = A\pi, \quad F(\infty) = 0$$

- Classically "unstable"
- Mathematically, there is no smooth transition between topologically distinct sectors
- Physically, it will be an infinite potential barrier between the corresponding solutions, e.g. energy density

$$E_4(r) \sim \frac{\sin^2 F(r)}{r^4}$$



What happens in the nuclear medium?

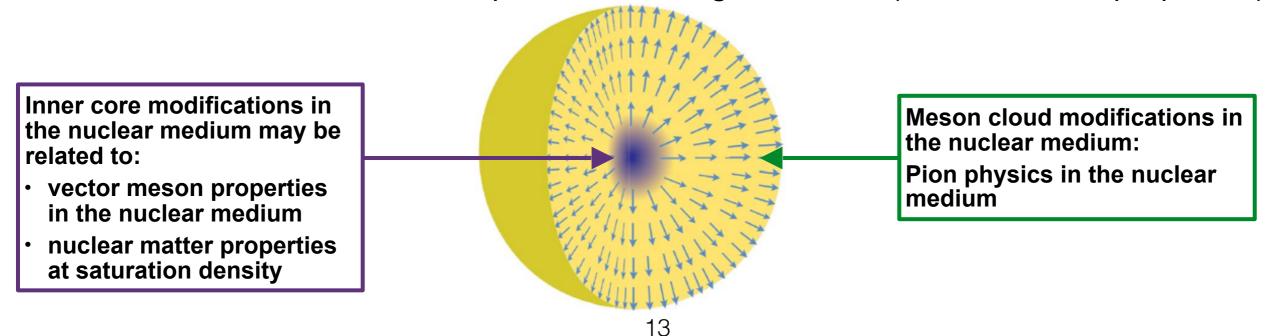
The possible medium effects

- Deformations (swelling or shrinking, multipole deformations) of nucleons
- Characteristic changes in: effective mass, charge distributions, all possible form factors
- NN interactions may change
- etc.

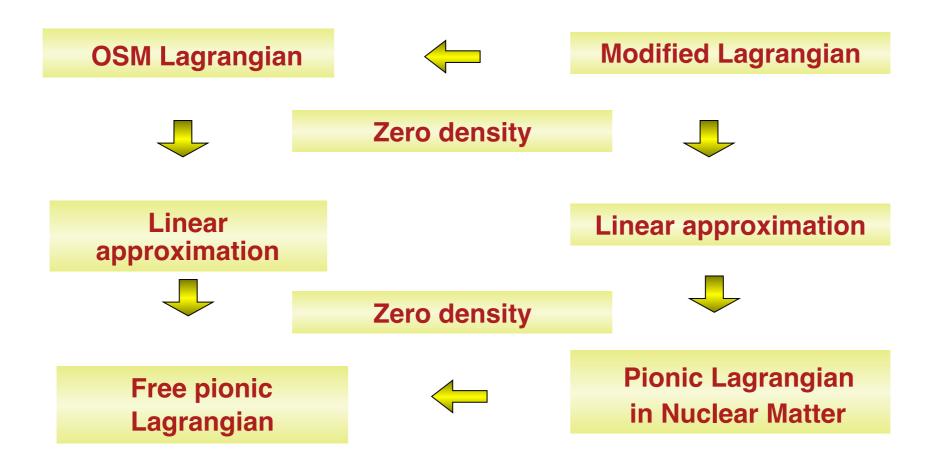
One should be able to describe all those phenomena

Soliton in the nuclear medium (phenomenological way)

- Outer shell modifications (informations from pionic atoms)
- Inner core modifications, in particular, at large densities (nuclear matter properties)



- Modifications of the mesonic sector modifies the baryonic sector
- Lagrangian must satisfy some limiting conditions



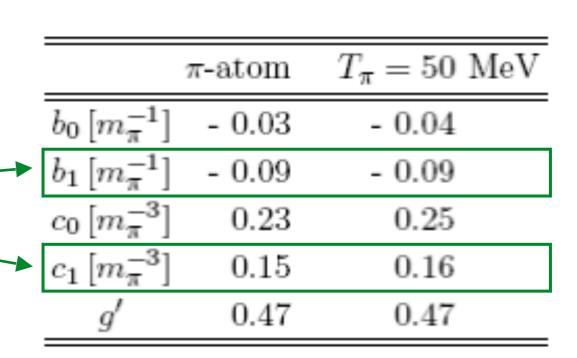
"Outer shell" modifications

- In free space three types of pions can be treated separately: isospin breaking
- In nuclear matter: there are three types of polarization operators
- Optic potential approach: parameters from the pion-nucleon scattering (including the isospin dependents)

$$(\partial^{\mu}\partial_{\mu} + m_{\pi}^2)\vec{\pi}^{(\pm,0)} = 0$$

$$(\partial^{\mu}\partial_{\mu} + m_{\pi}^2 + \hat{\Pi}^{(\pm,0)})\vec{\pi}^{(\pm,0)} = 0$$

$$\hat{\Pi}^0 = 2\omega U_{\text{opt}} = \chi_s(\rho, b_0, c_0) + \vec{\nabla} \cdot \chi_p(\rho, b_0, c_0) \vec{\nabla}$$



"Outer shell" modifications in the Lagrangian

[U.Meissner et al., EPJ A36 (2008)]

$$\mathcal{L}_{2}^{*} = \frac{F_{\pi}^{2}}{16} \alpha_{\tau} \operatorname{Tr} \left(\partial_{0} U \partial_{0} U^{\dagger} \right) - \frac{F_{\pi}^{2}}{16} \alpha_{s} \operatorname{Tr} \left(\partial_{i} U \partial_{i} U^{\dagger} \right)$$

$$\mathcal{L}_m^* = -\frac{F_\pi^2 m_\pi^2}{16} \alpha_m \operatorname{Tr} \left(2 - U - U^+\right)$$

- Due to the non-locality of optic potential the kinetic term is also modified
- Due to energy and momentum dependence of the optic potential parameters, the following parts of the kinetic term are modified in different forms:
 - Temporal part
 - Space part

$$\hat{\Pi}^0 = 2\omega U_{\text{opt}} = \chi_s(\rho, b_0, c_0) + \vec{\nabla} \cdot \chi_p(\rho, b_0, c_0) \vec{\nabla}$$

	$\pi ext{-atom}$	$T_{\pi} = 50 \mathrm{MeV}$
$b_0 [m_{\pi}^{-1}]$	- 0.03	- 0.04
$b_1 [m_{\pi}^{-1}]$	- 0.09	- 0.09
$c_0 \left[m_\pi^{-3} \right]$	0.23	0.25
$c_1 \left[m_\pi^{-3} \right]$	0.15	0.16
g'	0.47	0.47

"Inner core" modifications

[UY & H.Ch. Kim, PRC83 (2011); UY, JKPS62 (2013); UY, PRC88 (2013)]

$$\mathcal{L}_{4}^{*} = -\frac{1}{16e^{2}\zeta_{\tau}} \operatorname{Tr} \left[U^{\dagger} \partial_{0} U, U^{\dagger} \partial_{i} U \right]^{2} + \frac{1}{32e^{2}\zeta_{s}} \operatorname{Tr} \left[U^{\dagger} \partial_{i} U, U^{\dagger} \partial_{j} U \right]^{2}$$

may be related to

- Vector meson properties in nuclear matter;
- Nuclear matter properties.

$$\zeta_{\tau,s} = \zeta_{\tau,s}(\rho, \delta\rho, \text{parameters})$$

Final Lagrangian

[UY, JKPS62 (2013); UY, PRC88 (2013)]

Separated into two parts

$$\mathcal{L}^* = \mathcal{L}^*_{\mathrm{sym}} + \mathcal{L}^*_{\mathrm{asym}}$$

Isoscalar part

$$\mathcal{L}_{ ext{sym}}^* = \mathcal{L}_2^* + \mathcal{L}_4^* + \mathcal{L}_m^*$$

Isovector part

$$\mathcal{L}_{\mathrm{asym}}^* = \mathcal{L}_{\delta m}^* + \mathcal{L}_{\delta \rho}^*$$

- Nuclear matter stabilization
- Asymmetric matter properties

$$\mathcal{L}_{2}^{*} = \frac{F_{\pi}^{2}}{16} \alpha_{\tau} \operatorname{Tr} \left(\partial_{0} U \partial_{0} U^{\dagger} \right) - \frac{F_{\pi}^{2}}{16} \alpha_{s} \operatorname{Tr} \left(\partial_{i} U \partial_{i} U^{\dagger} \right)$$

$$\frac{1}{16e^{2}\zeta_{\tau}} \operatorname{Tr} \left[U^{\dagger} \partial_{0} U, U^{\dagger} \partial_{i} U \right]^{2} + \frac{1}{32e^{2}\zeta_{s}} \operatorname{Tr} \left[U^{\dagger} \partial_{i} U, U^{\dagger} \partial_{j} U \right]^{2}$$

$$\mathcal{L}_m^* = -\frac{F_\pi^2 m_\pi^2}{16} \, \alpha_m \text{Tr} \, \left(2 - U - U^+\right)$$

$$\mathcal{L}_{\delta m}^{*} = -\frac{F_{\pi}^{2}}{32} \sum_{a=1}^{2} (m_{\pi^{\pm}}^{2} - m_{\pi^{0}}^{2}) \operatorname{Tr} (\tau_{a} U) \operatorname{Tr} (\tau_{a} U^{\dagger})$$

$$\left(\mathcal{L}_{\delta\rho}^{*} \right) = -\frac{F_{\pi}^{2}}{16} m_{\pi} \alpha_{e} \, \varepsilon_{ab3} \text{Tr} \left(\tau_{a} U \right) \text{Tr} \left(\tau_{b} \partial_{0} U^{\dagger} \right)$$

Reparametrization [UY, PRC88 (2013)]

- Five density dependent parameters
- Rearrangment (technical simplification)

$$1 + C_1 \lambda = f_1(\lambda) \equiv \sqrt{\frac{\alpha_p^0}{\zeta_s}},$$

$$1 + C_2 \lambda = f_2(\lambda) \equiv \frac{\alpha_s^{00}}{(\alpha_p^0)^2 \zeta_s},$$

$$\frac{\alpha_e}{\gamma_s} = f_4 \left(\frac{\rho}{\rho_0}\right) \frac{\rho_n - \rho_p}{\rho_0} = \frac{C_4 \frac{\rho}{\rho_0}}{1 + C_5 \frac{\rho}{\rho_0}} \frac{\rho_n - \rho_p}{\rho_0}$$

$$1 + C_3 \lambda = f_3(\lambda) \equiv \frac{(\alpha_p^0 \zeta_s)^{3/2}}{\alpha_s^{02}},$$

Outer shell modifications
$$F_{\pi,\tau} \to F_{\pi,\tau}^*, \quad e_{\tau} \to e_{\tau}^*, \quad m_{\pi} \to m_{\pi}^*, \quad F_{\pi,s} \to F_{\pi,s}^*, \quad e_{s} \to e_{s}^*$$

$$\frac{\alpha_e}{\gamma_s} = f_4 \left(\frac{\rho}{\rho_0}\right) \frac{\rho_n - \rho_p}{\rho_0} = \frac{C_4 \frac{\rho}{\rho_0}}{1 + C_5 \frac{\rho}{\rho_0}} \frac{\rho_n - \rho_p}{\rho_0}$$

Structure studies 1: Energy momentum tensor

- It allows to address the questions like:
 - How are the total angular momentum and angular momentum of the nucleon shared among its constituents?
 - How are the strong forces experienced by its constituents distributed inside the nucleon?
- EMT form factors in free space studied in lattice QCD, ChPT and in different models (chiral quark soliton model, Skyrme model, etc.)
- We made a further step studying EMT form factors in nuclear matter

Structure studies 1: Energy momentum tensor

Definition

$$\langle p' | \hat{T}_{\mu\nu}(0) | p \rangle = \bar{u}(p', \, s') \left[M_2(t) \, \frac{P_\mu P_\nu}{M_N} + J(t) \, \, \frac{i (P_\mu \sigma_{\nu\rho} + P_\nu \sigma_{\mu\rho}) \Delta^\rho}{2 M_N} + d_1(t) \, \frac{\Delta_\mu \Delta_\nu - g_{\mu\nu} \Delta^2}{5 M_N} \right] u(p, \, s) \, ,$$

 Three form factors give an information about energy distribution, angular momentum distribution and about the stabilization of strong forces inside the nucleon

$$\begin{split} T_{00}^*(r) \; &=\; \frac{F_{\pi,s}^{*2}}{8} \left(\frac{2 \sin^2 F}{r^2} + F'^2 \right) + \frac{\sin^2 F}{2\,e^{*2}\,r^2} \left(\frac{\sin^2 F}{r^2} + 2F'^2 \right) + \frac{m_\pi^{*2} F_{\pi,s}^{*2}}{4} \left(1 - \cos F \right), \\ T_{0k}^*(r,s) \; &=\; \frac{\epsilon^{klm} r^l s^m}{(\mathbf{s} \times \mathbf{r})^2} \, \rho_J^*(r) \,, \\ T_{ij}^*(r) \; &=\; s^*(r) \left(\frac{r_i r_j}{r^2} - \frac{1}{3} \, \delta_{ij} \right) + p^*(r) \, \delta_{ij} \end{split} \qquad \begin{split} M_2^*(t) - \frac{t}{5M_N^{*2}} \, d_1^*(t) \; &=\; \frac{|\mathbf{l}|}{M_N^*} \int \mathrm{d}^3 r \, T_{00}^*(r) \, j_0(r\sqrt{-t}) \,, \\ d_1^*(t) \; &=\; \frac{15M_N^*}{2} \int \mathrm{d}^3 r \, p^*(r) \, \frac{j_0(r\sqrt{-t})}{t} \,, \\ M_2^*(0) \; &=\; \frac{1}{M_N^*} \int \mathrm{d}^3 r \, T_{00}^*(r) = 1 \,, \quad J^*(0) \; &=\; \int \mathrm{d}^3 r \, \rho_J^*(r) = \frac{1}{2} \,. \end{split} \qquad J^*(t) \; &=\; 3 \int \mathrm{d}^3 r \, \rho_J^*(r) \, \frac{j_1(r\sqrt{-t})}{r\sqrt{-t}} \,, \end{split}$$

Structure studies1: Energy momentum tensor related quantities [H.C.Kim, P. Schweitzer, UY, Phys.Lett. B718 (2012)]

Different quantities related to the nucleon EMT densities and their form factors: $T_{00}^*(0)$ denotes the energy in the center of the nucleon; $\langle r_{00}^2 \rangle^*$ and $\langle r_J^2 \rangle^*$ depict the mean square radii for the energy and angular momentum densities, respectively; $p^*(0)$ represents the pressure in the center of the nucleon, whereas r_0^* designates the position where the pressure changes its sign; d_1^* is the value of the $d_1^*(t)$ form factor at the zero momentum transfer.

$ ho/ ho_0$	$T_{00}^*(0)$ [GeV fm ⁻³]	$\langle r_{00}^2 angle^* \ [ext{fm}^2]$	$\langle r_J^2 angle^* \ [ext{fm}^2]$	$p^*(0)$ [GeV fm ⁻³]	r ₀ * [fm]	<i>d</i> ₁ *
0	1.45	0.68	1.09	0.26	0.71	-3.54
0.5	0.96	0.83	1.23	0.18	0.82	-4.30
1.0	0.71	0.95	1.35	0.13	0.90	-4.85

Structure studies 1: Pressure distribution inside the nucleon in free space and in symmetric matter [H.C.Kim, P. Schweitzer, UY, Phys.Lett. B718 (2012)]

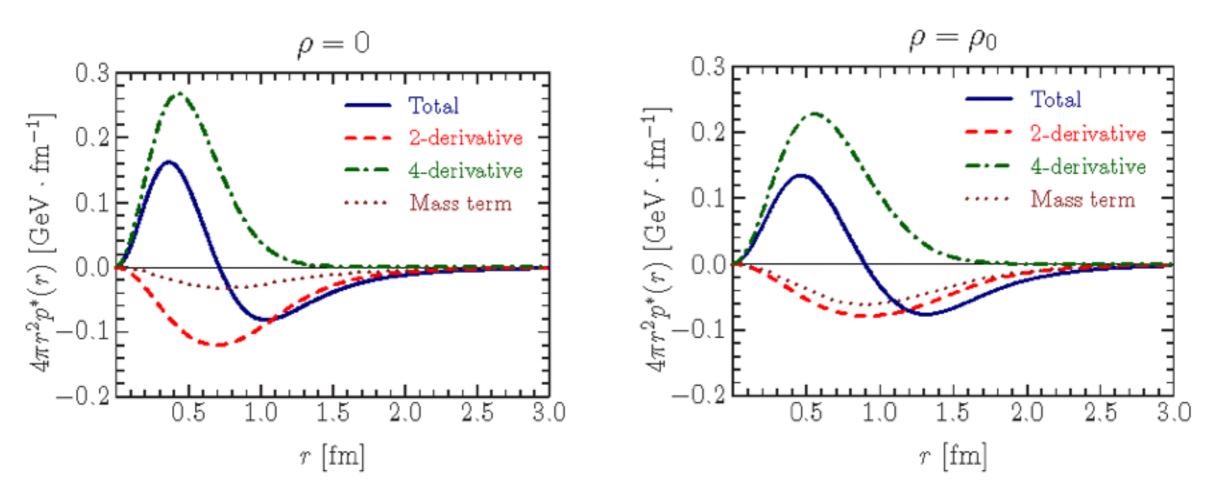


FIG. 3: (Color online) The decomposition of the pressure densities $4\pi r^2 p^*(r)$ as functions of r, in free space ($\rho = 0$) and at $\rho = \rho_0$, in the left and right panels, respectively. The solid curves denote the total pressure densities, the dashed ones represent the contributions of the 2-derivative (kinetic) term, the long-dashed ones are those of the 4-derivative (stabilizing) term, and the dotted ones stand for those of the pion mass term.

Stability and applicability [H.C.Kim, P. Schweitzer, UY, Phys.Lett. B718 (2012)]

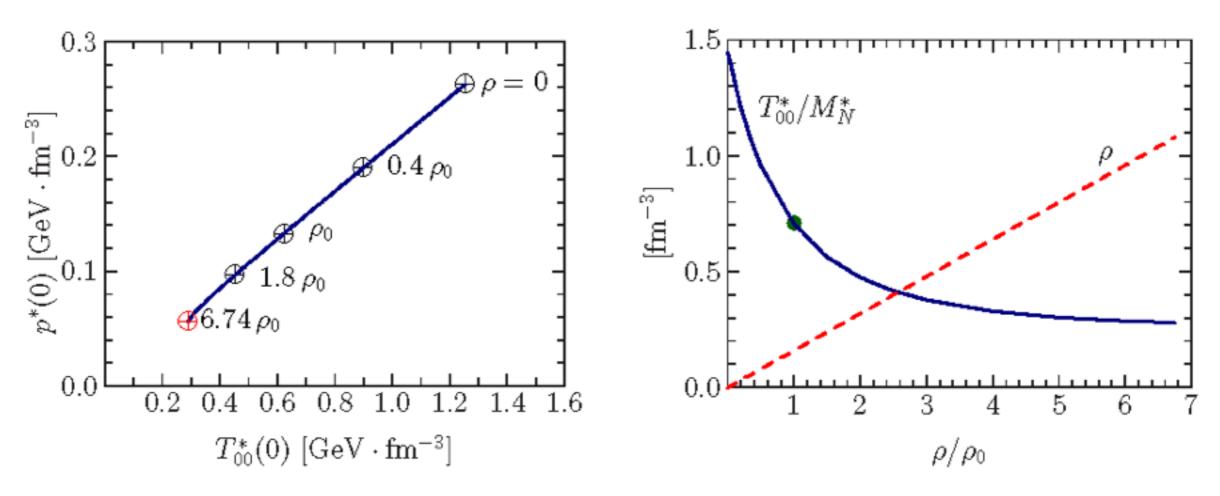


FIG. 5: (Color online) In the left panel, the correlated change of $p^{\bullet}(0)$ and $T_{00}^{\bullet}(0)$ drawn with ρ varied. In the right panel, the $T_{00}^{\bullet}/M_N^{\bullet}$ and ρ depicted as a function of ρ/ρ_0 . The maximal density is given as about $6.74 \, \rho_0$, above which the Skyrmion does not exist anymore. The filled circle on the solid curve represents the value of $T_{00}^{\bullet}/M_N^{\bullet}$ at normal nuclear matter density.

Structure studies 2: Transverse EM charge densities

• Definition of EM ff's $\langle N(p', S') | J_{\mu}^{EM}(0) | N(p, S) \rangle$ $= \bar{u}_N(p', S') \left[\gamma_{\mu} F_1^*(q^2) + i \frac{\sigma_{\mu\nu} q^{\nu}}{2m_N} F_2^*(q^2) \right] u_N(p, S).$

These Pauli and Dirac ff's can be expressed by Sachs ff's

$$G_E(Q^2) = F_1(Q^2) + \frac{Q^2}{4M_N^2} F_2(Q^2)$$

 $G_M(Q^2) = F_1(Q^2) + F_2(Q^2)$,

 They give an information about transverse charge distributions inside the nucleon

$$\begin{split} \rho_0^*(b) &= \int\limits_0^\infty \frac{Q \, dQ}{2\pi} \, J_0(b \, Q) \frac{G_E^*(Q^{\, 2}) + \tau \, G_M^*(Q^{\, 2})}{1 + \tau} \\ \rho_T^*(\pmb{b}) &= \rho_0^*(b) - \sin(\phi_b - \phi_S) \\ &\times \int\limits_0^\infty \frac{Q^{\, 2} \, dQ}{4\pi \, m_N} \, J_1(b \, Q) \frac{-G_E^*(Q^{\, 2}) + G_M^*(Q^{\, 2})}{1 + \tau} , \qquad \pmb{b} = b(\cos\phi_b \, \hat{\pmb{e}}_X + \sin\phi_b \, \hat{\pmb{e}}_Y) \end{split}$$

Structure studies 2: Transverse EM charge densities inside an unpolarized nucleon [UY, H.C.Kim, Phys.Lett. B726 (2013)]

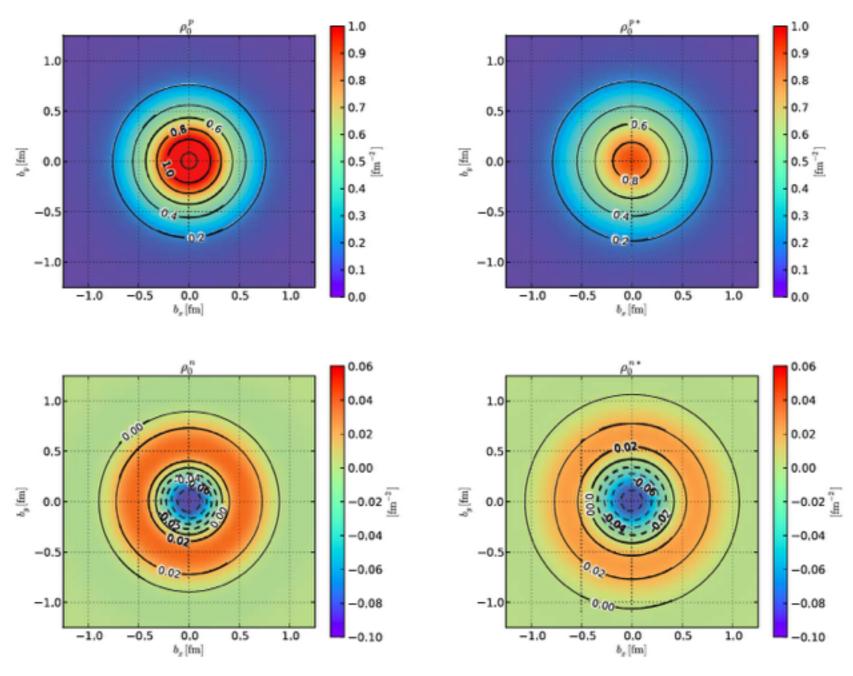


Fig. 3. Quark transverse charge densities inside an unpolarized proton (upper panels) and a neutron (lower panels) in free space (left panels) and at nuclear matter density $\rho_0 = 0.5m_\pi^2$ (right panels).

Structure studies 2: Transverse EM charge densities inside the polarized nucleon [UY, H.C.Kim, Phys.Lett. B726 (2013)]

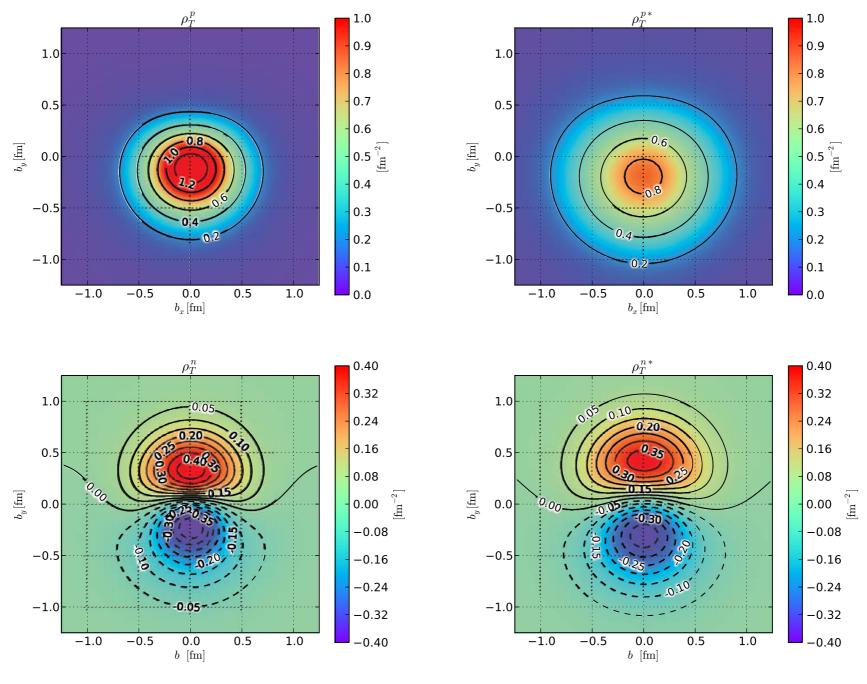


Fig. 4. Transverse charge densities of the proton (upper panels) and neutron (lower panels) in free space (left panels) and in nuclear matter with the density $\rho_0 = 0.5m_\pi^3$ (right panels).

Static properties (e.g. mass) [UY, PRC88 (2013)]

- Isoscalar effective mass
- $m_{N,s}^* = M_S^* + \frac{3}{8\Lambda^*} + \frac{\Lambda^*}{2} \left(a^{*2} + \frac{\Lambda_{\text{env}}^{*2}}{\Lambda^{*2}} \right)$
- Isovector effective mass (relevant to: universe evolution in Early stage; stability of drip line nuclei; mirror nuclei; transport in heavy-ion collisions; asymmetric nuclear matter)

$$\Delta m_{np}^* = a^* + \frac{\Lambda_{\text{env}}^*}{\Lambda^*}$$

 Effective masses of the nucleons

$$m_{n,p}^* = m_{N,s}^* - \Delta m_{np}^* T_3$$

Nuclear Matter

Nuclear matter

Bethe-Weizsacker formula for the binding energy per nucleon

$$\varepsilon(A,Z) = -a_V + a_S \frac{(N-Z)^2}{A^2} + \mathbb{Z}$$

Its terms can be obtained in the framework of present model

We are ready to reproduce

- considering symmetric infinite nuclear matter
 Asymmetry term
 - - considering isospin asymmetric environment
 - Surface and Coulomb terms
 - considering the nucleons in a finite volume
 - Finite nuclei properties
 - using the local density approximation

Nuclear matter

The volume term and Symmetry energy

 At infinite nuclear matter approximation the binding energy per nucleon takes the form

$$\varepsilon(\lambda, \delta) = \varepsilon_V(\lambda) + \varepsilon_S \delta^2 + O(\delta^4) \equiv \varepsilon_V(\lambda) + \varepsilon_A(\lambda, \delta)$$

- \cdot λ is normalised nuclear matter density
- \cdot δ is asymmetry parameter
- ϵ_S is symmetry energy
- In our model
 - Symmetric matter
 - Asymmetric matter

$$\varepsilon_V(\lambda) = m_{N,s}^*(\lambda,0) - m_N^{\text{free}}$$

$$\varepsilon_{A}(\lambda,\delta) = \varepsilon(\lambda,\delta) - \varepsilon_{V}(\lambda)$$

$$= m_{N,s}^{*}(\lambda,\delta) - m_{N,s}^{*}(\lambda,0) + m_{N,V}^{*}(\lambda,\delta)\delta$$

Nuclear matter

Nuclear matter properties

Symmetric matter properties (pressure, compressibility and third derivative)

$$p = \rho_0 \lambda^2 \frac{\partial \varepsilon_V(\lambda)}{\partial \lambda} \bigg|_{\lambda=1}, \quad K_0 = 9 \rho^2 \frac{\partial^2 \varepsilon_V(\lambda)}{\partial \rho^2} \bigg|_{\rho=\rho_0} \qquad Q = 27 \lambda^3 \frac{\partial^3 \varepsilon_V(\lambda)}{\partial \lambda^3} \bigg|_{\lambda=1}$$

Symmetry energy properties (coefficient, slop and curvature)

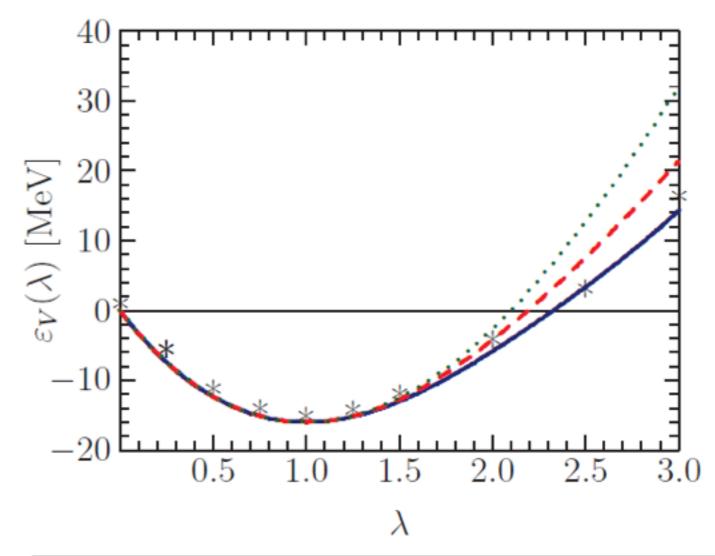
$$\varepsilon_s(\lambda) = \varepsilon_s(1) + \frac{L_s}{3}(\lambda - 1) + \frac{K_s}{18}(\lambda - 1)^2 + \mathbb{W}$$

Symmetric matter

Volume energy [UY, PRC88 (2013)]

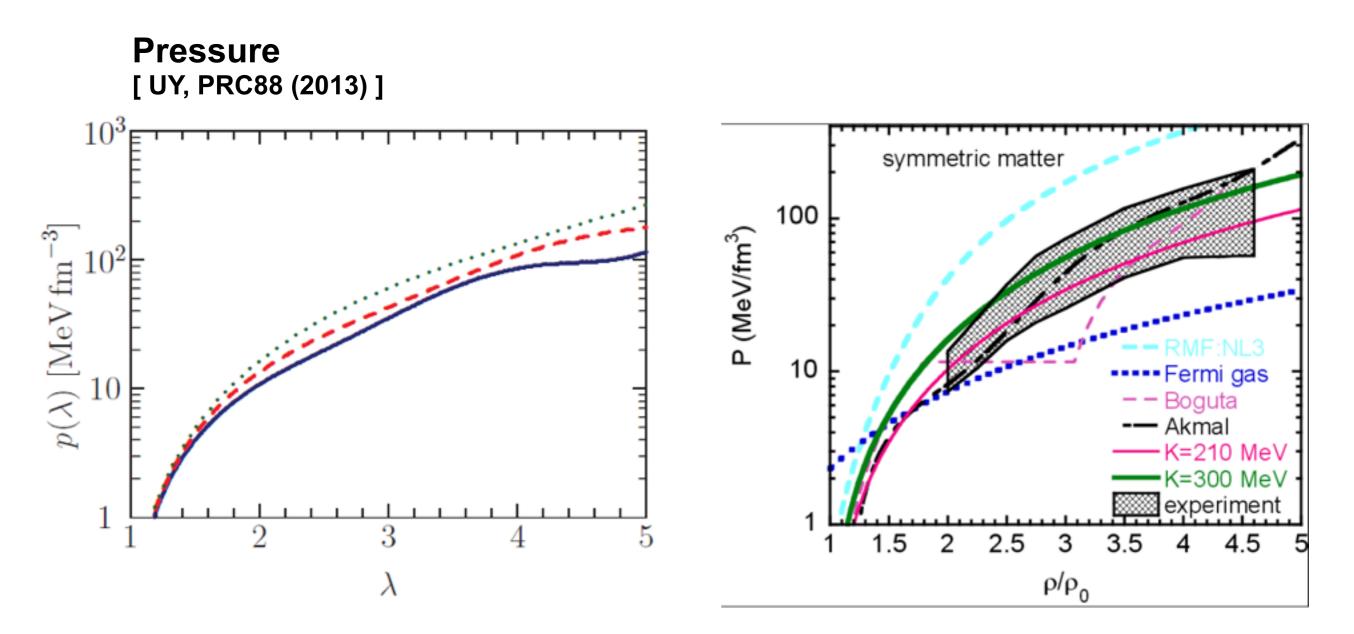
- Set I solid
- Set II dashed
- Set III dotted

For comparison: Akmal-Pandharipande-Ravenhall (APR) predictions
[PRC 58, 1804 (1998)] are given by stars.
(From Arigonna 2 body interactions + 3 body interactions)



Set	C_1	C_2	C_3	$\varepsilon_V(\rho_0)$ (MeV)	K ₀ (MeV)	Q (MeV)
I	-0.279	0.737	1.782	-16	240	-410
II	-0.273	0.643	1.858	-16	250	-279
III	-0.277	0.486	2.124	-16	260	-178

Symmetric matter



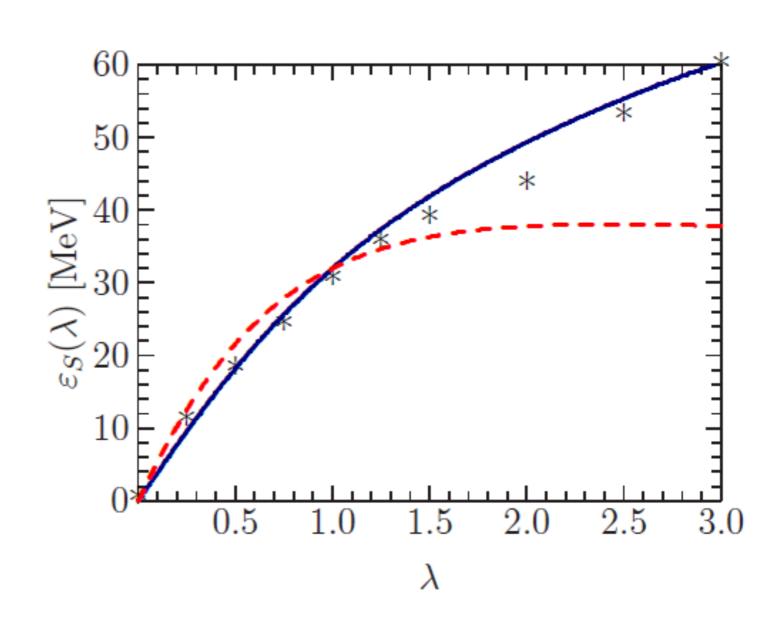
For comparison: Right figure from Danielewicz- Lacey-Lynch, Science 298, 1592 (2002). (Deduced from experimental flow data and simulations studies)

Asymmetric matter

Symmetry energy

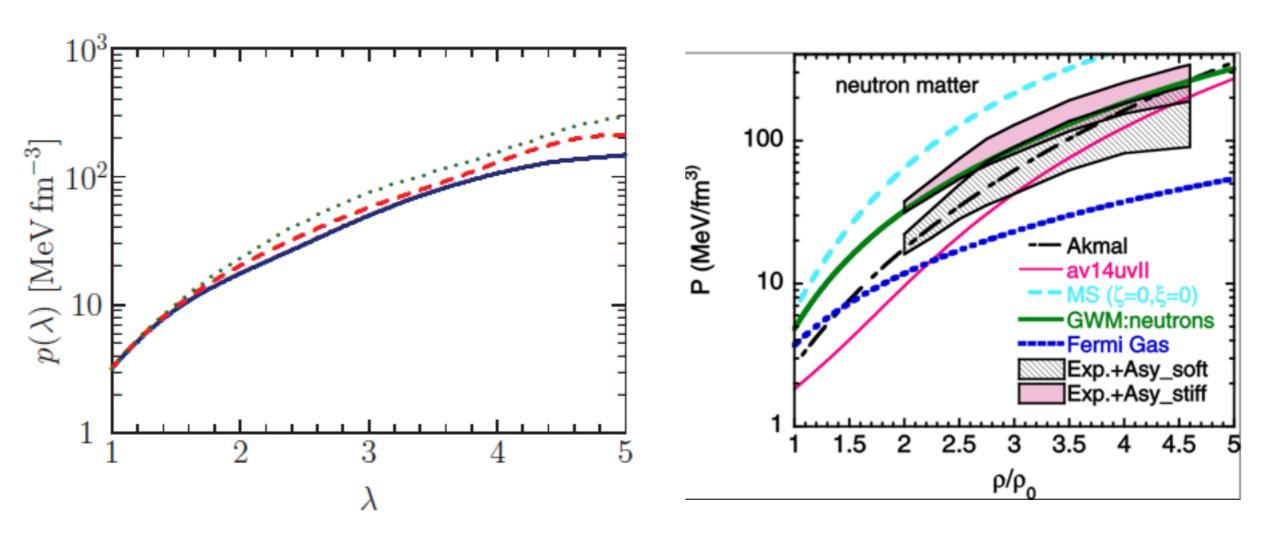
- Solid $L_s = 70 \,\mathrm{MeV}$
- Dashed $L_s = 40 \, \mathrm{MeV}$

For comparison: Akmal-Pandharipande-Ravenhall (APR) predictions
[PRC 58, 1804 (1998)] are given by stars.
(From arigonna 2 body interactions + 3 body interactions)



Asymmetric matter

Pressure in neutron matter [UY, PRC88 (2013)]



For comparison: Right figure from

Danielewicz- Lacey-Lynch, Science 298, 1592 (2002).

(Deduced from experimental flow data and simulations studies)

Asymmetric matter

Low density behaviour of symmetry energy

For comparison:

Trippa-Colo-Vigezzi [PRC 77, 061304 (2008)];

From analysis of GDR (208Pb).

Consequently one can predict in this model:

$$K_{\tau} = K_s - 6L_s$$

$$K_{0,2} = K_{\tau} - \frac{Q}{K_0} L_s$$

$23.3 < \varepsilon_s (\rho = 0.1 \text{fm}^{-3}) < 2$	4.9 MeV
--	---------

$\varepsilon_S(ho_0)$	L_S	K_S	$K_{ au}$	$K_{0,2}$	ε_S	(0.1fm^-)	$^{3})$
$[\mathrm{MeV}]$	[MeV]	[MeV]	$[\mathrm{MeV}]$	$[\mathrm{MeV}]$		[MeV]	
32	40	-181	-301	-257		25.15	
32	50	-160	-310	-254		24.15	
32	60	-126	-306	-239		23.22	
32	70	-80	-290	-211		22.37	
32	80	-21	-261	-172		21.57	
32	90	50	-220	-119		20.82	
32	100	134	-166	-55		20.13	

Neutron Stars

Neutron stars

Neutron star properties

TOV equations

$$-\frac{dP(r)}{dr} = \frac{G\mathcal{E}(r)\mathcal{M}(r)}{r^2} \left(1 - \frac{2G\mathcal{M}(r)}{r}\right)^{-1} \left(1 + \frac{P(r)}{\mathcal{E}(r)}\right) \left(1 + \frac{4\pi r^3 P(r)}{\mathcal{M}(r)}\right)$$

Energy-pressure relation

$$P(\lambda) = \rho_0 \lambda^2 \frac{\partial \varepsilon(\lambda, 1)}{\partial \lambda},$$

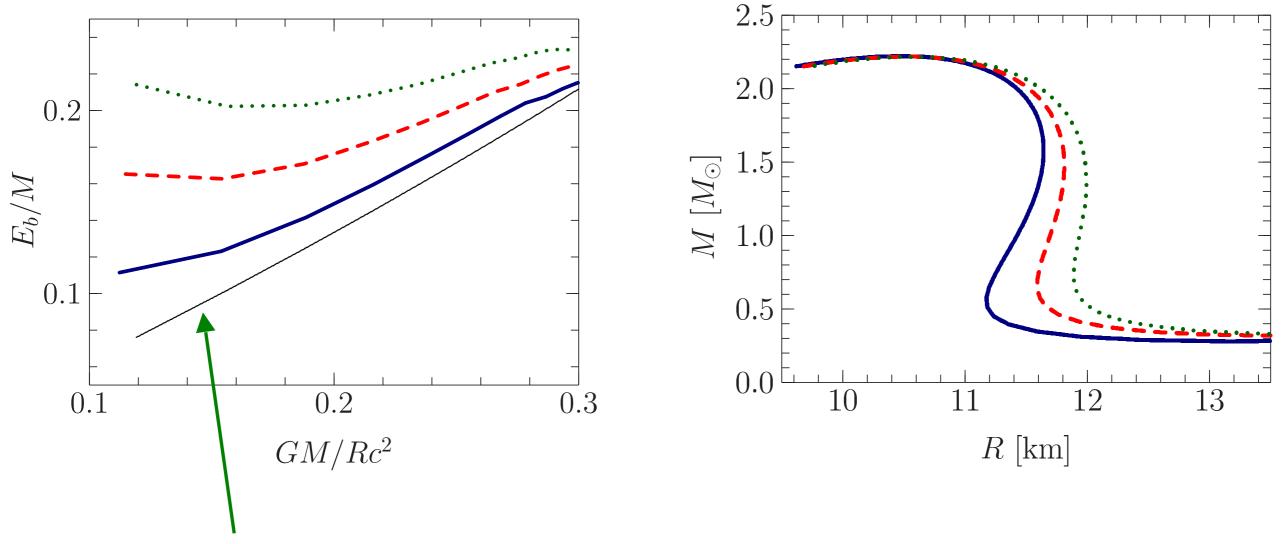
$$P(\lambda) = [\varepsilon(\lambda, 1) + m_N] \lambda \rho_0.$$

Neutron star's mass

$$\mathcal{M}(r) = 4\pi \int_0^r \mathrm{d}r \, r^2 \mathcal{E}(r) \,.$$

Neutron stars

Neutron star properties [UY, PLB749 (2015)]



From Ref. [J.M. Lattimer & M. Prakash, Astrophys. J. 550 (2001)].

Neutron stars

Neutron star properties

[UY, PLB749 (2015)]

TABLE III: Properties of the neutron stars from the different sets of parameters (see Tables I and II for the values of parameters): n_c is central number density, ρ_c is central energy-mass density, R is radius of the neutron star, M_{max} is possible maximal mass, A is number of baryons in the star, E_b is binding energy of the star. In the left panel we represent the neutron star properties corresponding to the maximal mass M_{max} and in right panel approximately 1.4 solar mass neutron star properties. The last two lines are results from the Ref. [21].

Set	n_c	$ ho_c$	R	$M_{ m max}$	A	E_b	n_c	$ ho_c$	R	M	A	E_b
	$[\mathrm{fm}^{-3}]$	$[10^{15}\mathrm{gr/cm}^3]$	[km]	$[M_{\odot}]$	$[10^{57}]$	$[10^{53}\mathrm{erg}]$	$[\mathrm{fm}^{-3}]$	$[10^{15}\mathrm{gr/cm}^3]$	[km]	$[M_{\odot}]$	$[10^{57}]$	$[10^{53}\mathrm{erg}]$
III-a	1.046	2.445	10.498	2.226	3.227	8.721	0.479	0.861	11.587	1.402	1.898	3.503
III-b	1.045	2.444	10.547	2.223	3.216	8.557	0.471	0.861	11.772	1.402	1.895	3.453
III-c	1.037	2.424	10.616	2.221	3.200	8.397	0.460	0.832	11.953	1.402	1.887	3.339
III-d	1.047	2.452	10.494	2.221	3.213	8.598	0.481	0.867	11.619	1.402	1.893	3.422
III-e	1.044	2.440	10.554	2.218	3.203	8.495	0.473	0.858	11.809	1.403	1.890	3.384
III-f	1.040	2.433	10.609	2.216	3.189	8.311	0.464	0.842	11.992	1.403	1.887	3.334
SLy230a [21]	1.15	2.69	10.25	2.10	2.99	7.07	0.508	0.925	11.8	1.4	1.85	2.60
SLy230b [21]	1.21	2.85	9.99	2.05	2.91	6.79	0.538	0.985	11.7	1.4	1.85	2.61

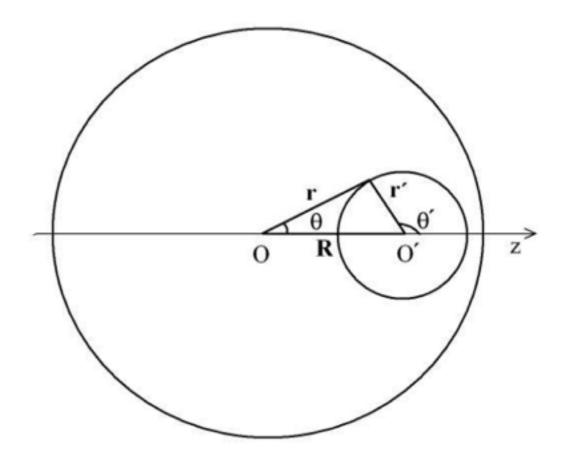
The nucleon in a nucleus will include

- Local density approach for environment
- R dependence of a results
- Deformations
 - In particular, axially symmetric case allows the deformations in polar direction
- Polar deformations can be represented
 - in the isotopic vector and
 - in the profile function

$$N(r - R) = \begin{pmatrix} \sin \Theta(r - R) \cos \varphi \\ \sin \Theta(r - R) \sin \varphi \\ \cos \Theta(r - R) \end{pmatrix}$$

$$P = P(|\mathbf{r} - \mathbf{R}|, \theta), \qquad \Theta = \Theta(|\mathbf{r} - \mathbf{R}|, \theta)$$

$$U(\mathbf{r} - \mathbf{R}) = \exp\left[i\mathbf{\tau} \cdot \mathbf{N}(\mathbf{r} - \mathbf{R})P(\mathbf{r} - \mathbf{R})\right]$$



The Equations of Motion

The coupled partial differential equations (not an easy problem)

$$f(F_{\tilde{r}\tilde{r}}, F_{\theta\theta}, F_{\tilde{r}}, F_{\theta}, \Theta_{\theta}, F, \Theta) = 0,$$

$$g(\Theta_{\theta\theta}, \Theta_{\theta}, F_{\tilde{r}}, F_{\theta}, \Theta, F) = 0,$$

A numerical variational method can be applied

 $\zeta(r,\theta) = re^{-\delta_0^2 r^2} \sum_{n=0}^{\infty} \delta_n \sin 2n\theta,$

$$P(r,\theta) = 2 \arctan \left\{ \frac{r_0^2}{r^2} (1 + m_\pi r) (1 + u(\theta)) \right\} e^{-f(r)r}$$

$$\Theta(r,\theta) = \theta + \zeta(r,\theta),$$

$$F(r) = 2 \arctan \left\{ \frac{r_0^2}{r^2} (1 + m_\pi r) \right\} e^{-f(r)r}, \qquad u(\theta) = \sum_{n=1}^{\infty} \gamma_n \cos^n \theta$$

$$f(r) = \beta_0 + \beta_1 e^{\beta_2 r^2}.$$

$$\lim_{r \to 0} F(r) = \pi - Cr,$$

$$\lim_{r \to \infty} F(r) = D \left(1 + m_{\pi} r \right) \frac{e^{-m_{\pi} r}}{r^2},$$

Accuracy of the variational method

- In spherically symmetric approximation (e.g. nucleon in the centre of the spherical nucleus) one can explicitly solve Equations of Motion and compare with results of variational method
- Skyrme term is not modified in nuclear matter (table below)

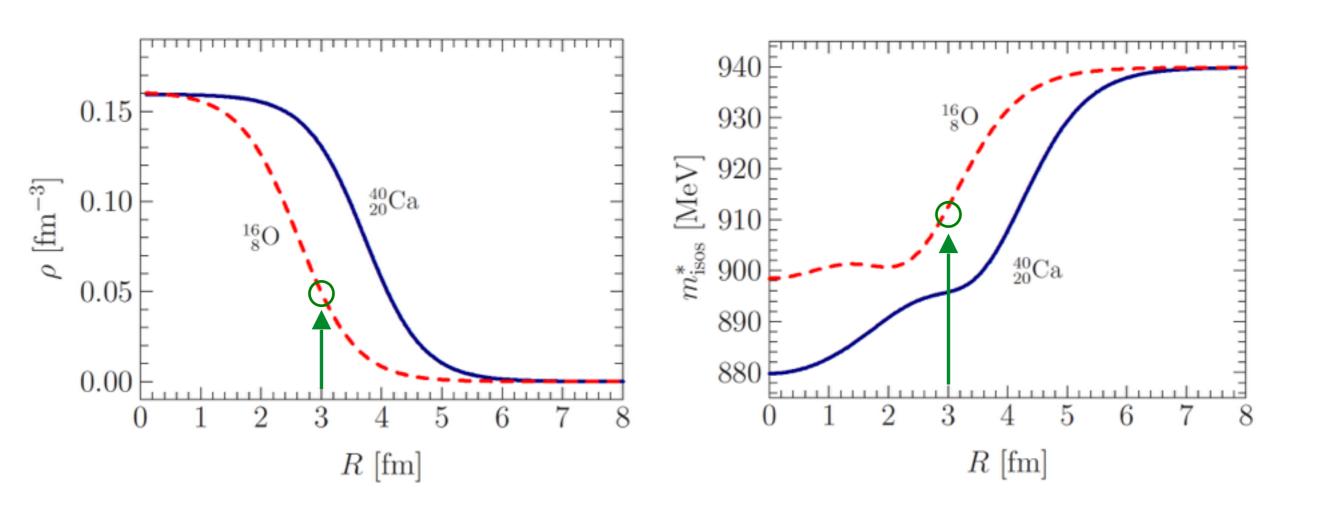
Element	t	r ₀	$10\beta_0$	β ₁	β_2 $[m_\pi^2]$	$m_{\rm p}^*$	$\Delta m_{\rm np}^*$	$\Delta m_{\rm np}^{*({\rm EM})}$	μ _p *	μ _n *	$\langle r^2 \rangle_{\mathrm{E,S}}^{*1/2}$	$\langle r^2 \rangle_{\mathrm{E,V}}^{*1/2}$
		[fm]	$[m_{\pi}]$	$[m_{\pi}]$	$[m_{\pi}]$	[MeV]	[MeV]	[MeV]	[n.m.]	[n.m.]	[fm]	[fm]
	i)	_	_	_	_	938.268	1.291	-0.686	1.963	-1.236	0.481	0.739
free space	ii)	0.954	0.075	1.311	-0.009	938.809	1.313	-0.687	1.966	-1.241	0.481	0.739
	i)	_	_	_	_	593.285	1.668	-0.526	2.355	-1.276	0.656	0.850
^{14}N	ii)	1.393	0.076	0.920	0.226	598.505	1.655	-0.536	2.230	-1.209	0.648	0.810
	i)	_	_	_	_	585.487	1.697	-0.517	2.393	-1.297	0.667	0.863
¹⁶ O	ii)	1.426	0.076	0.907	0.219	590.175	1.685	-0.527	2.341	-1.232	0.660	0.825
	i)	_	_	_	_	558.088	1.804	-0.480	2.584	-1.422	0.722	0.942
$^{38}{ m K}$	ii)	1.493	0.076	0.841	0.153	559.957	1.802	-0.485	2.550	-1.377	0.718	0.910
	i)	_	_	_	_	557.621	1.804	-0.478	2.569	-1.428	0.724	0.947
40 Ca	ii)	1.489	0.076	0.839	0.149	559.378	1.802	-0.483	2.557	-1.383	0.720	0.914

The Hamiltonian of the model

Has the form as in the case of symmetric top

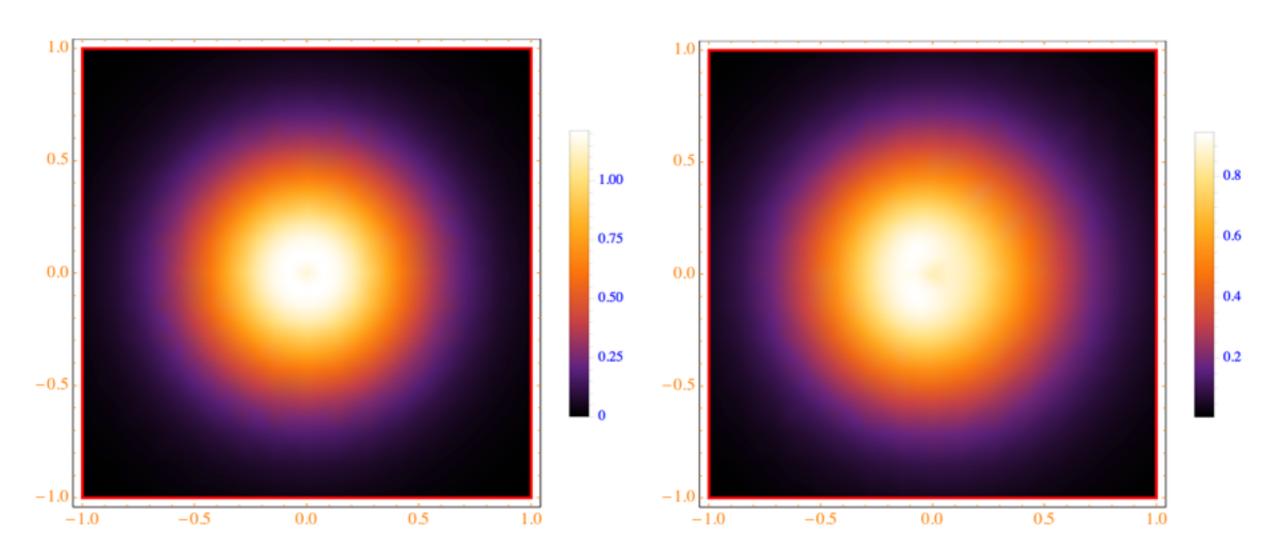
$$\hat{H} = M_{\text{NP}}^* + \mathcal{M}_{-}^2 \Lambda_{\text{mes}} + \frac{\Lambda_{\text{env}}^{*2}}{2\Lambda_{\omega\Omega,33}^*} + \frac{(\hat{T}_1^2 + \hat{T}_2^2)\Lambda_{\Omega\Omega,12}^* + (\hat{J}_1^2 + \hat{J}_2^2)\Lambda_{\omega\omega,12}^*}{2(\Lambda_{\omega\omega,12}^*\Lambda_{\Omega\Omega,12}^* - \Lambda_{\omega\Omega,12}^{*2})} + \frac{(\hat{T}_1\hat{J}_1 + \hat{T}_2\hat{J}_2)\Lambda_{\omega\Omega,12}^*}{\Lambda_{\omega\omega,12}^*\Lambda_{\Omega\Omega,12}^* - \Lambda_{\omega\Omega,12}^{*2}} + \frac{\hat{T}_3^2}{2\Lambda_{\omega\Omega,33}^*} - \boxed{\left(a^* + \frac{\Lambda_{\text{env}}^*}{\Lambda_{\omega\Omega,33}^*}\right)} \hat{T}_3.$$

The densities of nuclei (left) and the isoscalar mass in nuclei (right)



On the right panel R is a distance between the geometrical centres of nucleus and nucleon

Baryon charge distribution inside the nucleon under the consideration

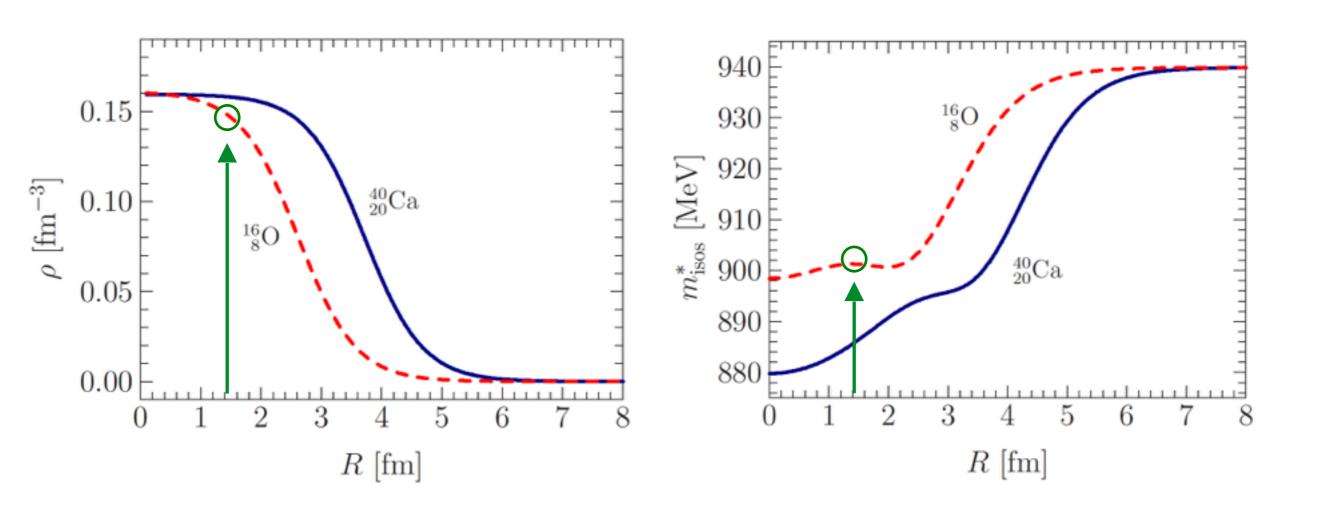


In free space (left)

and

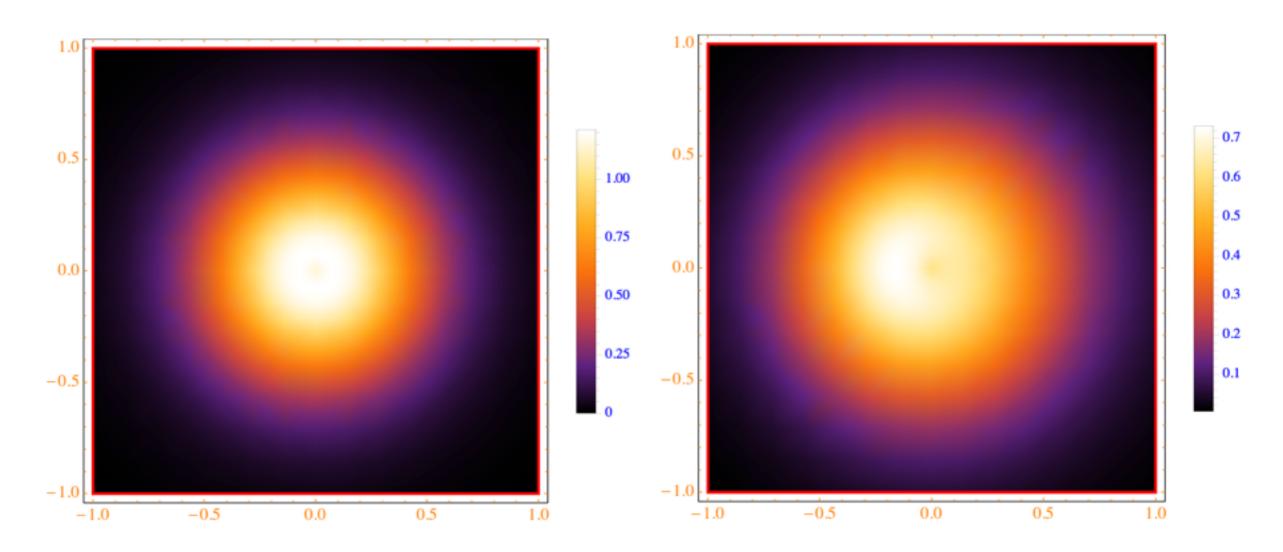
in O16 (right), R = 3fm

The densities of nuclei (left) and the isoscalar mass in nuclei (right)



On the right panel R is a distance between the geometrical centres of nucleus and nucleon

Baryon charge distribution inside the nucleon under the consideration

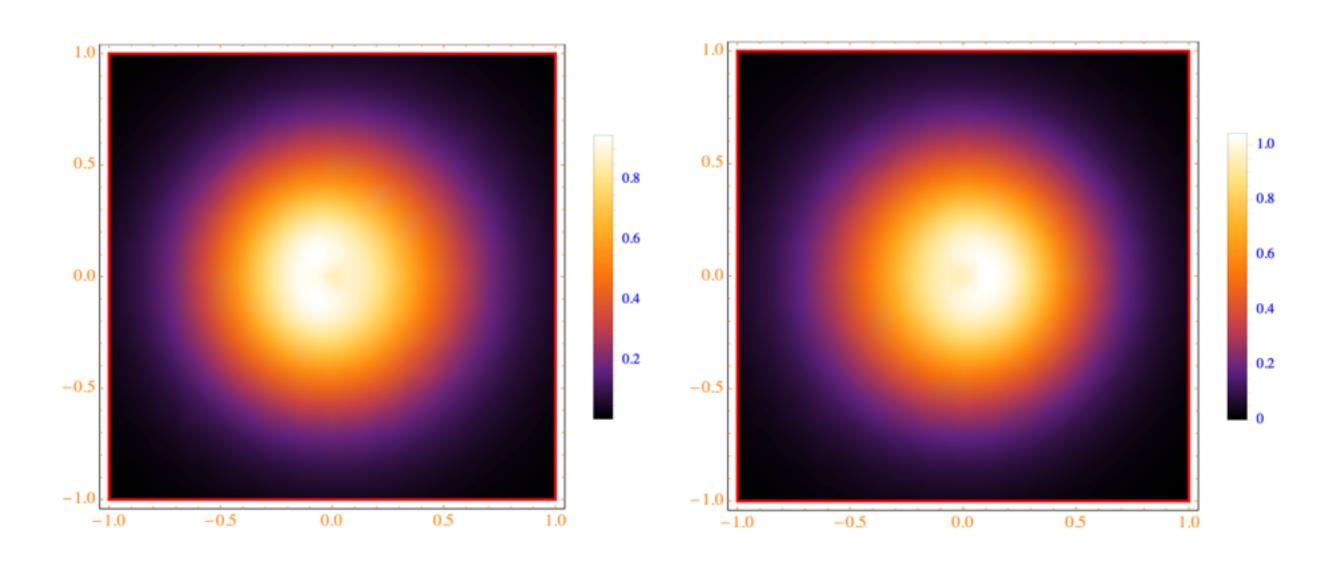


In free space (left)

and

in O16 (right), R = 1.5fm

Baryon charge distribution inside the nucleon under the consideration

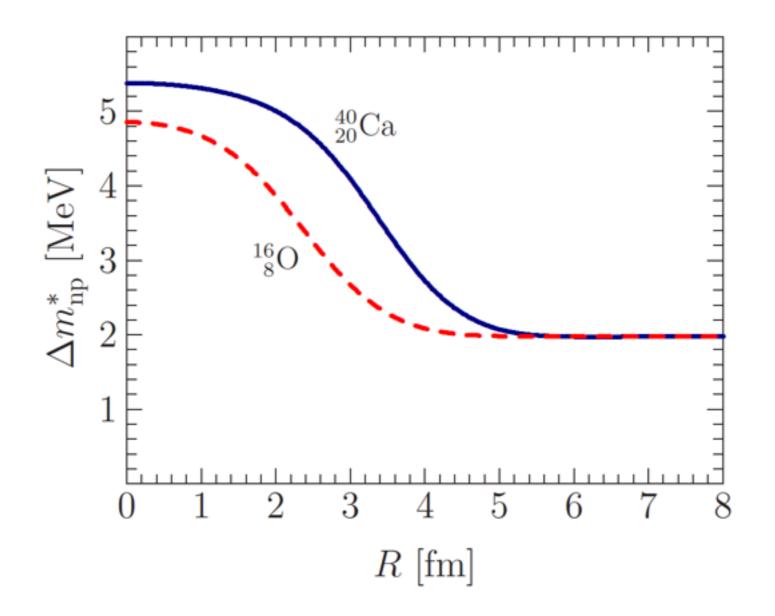


In O16 (left), R = 3fm

and

in Ca40 (right), R = 4.5 fm

The neutron-proton mass difference in finite nuclei



R is a distance between the geometrical centres of nucleus and nucleon

Properties of Finite Nuclei

The Nolen-Schiffer anomaly (NSA)

The mass difference of mirror nuclei

$$\Delta M \equiv {}_{Z+1}^{A} \mathbf{M}_{N} - {}_{Z}^{A} \mathbf{M}_{N+1} = \Delta E_{\mathrm{EM}} - \Delta m_{\mathrm{np}}^{*}$$

- EM part was calculated with high accuracy (within 1% error) in very detailed form (e.g., the exchange term, the center-of-mass motion, finite-size effects of the proton and neutron charges, magnetic interactions, vacuum effects, the dynamical effect of the neutron-proton mass difference, and short-range two-body correlations, etc.)
- If neutron-proton mass difference is not changed in nuclear matter then the above formula cannot be satisfied.

$$\overline{\Delta}_{\text{NSA}} = \Delta m_{\text{np}} - \left(\Delta \overline{m}_{\text{np}}^{*(1)} + \Delta \overline{m}_{\text{np}}^{*(2)} \right)$$

The Nolen-Schiffer anomaly (NSA)

Is defined as ("bar" means averaging over the R)

$$\overline{\Delta}_{\text{NSA}} = \Delta m_{\text{np}} - \left(\Delta \overline{m}_{\text{np}}^{*(1)} + \Delta \overline{m}_{\text{np}}^{*(2)} \right)$$

where

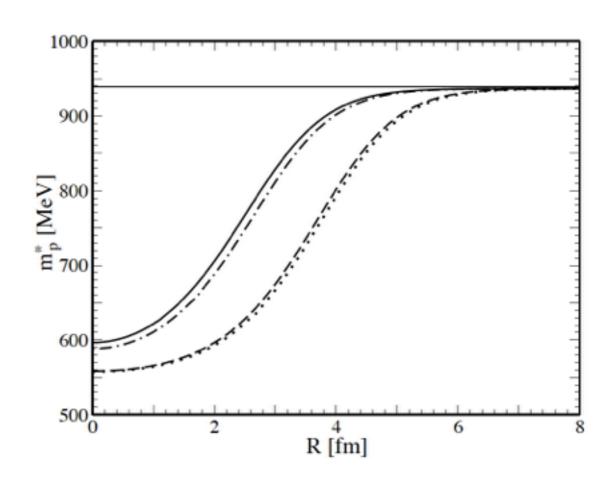
$$\Delta \overline{m}_{\rm np}^* \approx \int \left(\Delta \psi_{\rm np}^{(2)} m_{\rm p}^* + (\psi^{(p)})^2 \Delta m_{\rm np}^* \right) d^3 R$$
$$\equiv \Delta \overline{m}_{\rm np}^{*(1)} + \Delta \overline{m}_{\rm np}^{*(2)},$$

		Present approach								
Nuclei	Nuclei $\overline{m}_{\rm p}^*$			$\alpha_{\rm ren} = 0$			$\alpha_{\rm ren} = 0.95$			$\overline{\Delta}_{\mathrm{NSA}}$
	$\alpha_{\rm ren} = 0$	$\alpha_{\rm ren} = 0.95$	$\Delta \overline{m}_{\rm np}^{*(1)}$	$\Delta \overline{m}_{\rm np}^{*(2)}$	$\overline{\Delta}_{\mathrm{NSA}}$	$\Delta \overline{m}_{\rm np}^{*(1)}$	$\Delta \overline{m}_{\rm np}^{*(2)}$	$\overline{\Delta}_{\mathrm{NSA}}$	ref. [16]	ref. [17]
¹⁵ O- ¹⁵ N	767.45	928.30	-4.27	1.56	4.02	-0.21	1.33	0.20	_	0.16 ± 0.04
$^{17}F^{-17}O$	812.35	930.54	-5.53	1.52	5.33	-0.28	1.32	0.27	0.31	0.31 ± 0.04
$^{39}{ m Ca} - ^{39}{ m K}$	724.78	926.16	-8.11	1.67	7.75	-0.41	1.33	0.37	_	0.22 ± 0.08
$^{41}\mathrm{Sc}$ - $^{41}\mathrm{Ca}$	771.71	928.51	-9.74	1.62	9.44	-0.49	1.33	0.47	0.62	0.59 ± 0.08

U.Meissner, A.Wirzba, A.Rakhimov, UY [EPJ A36(2008)]

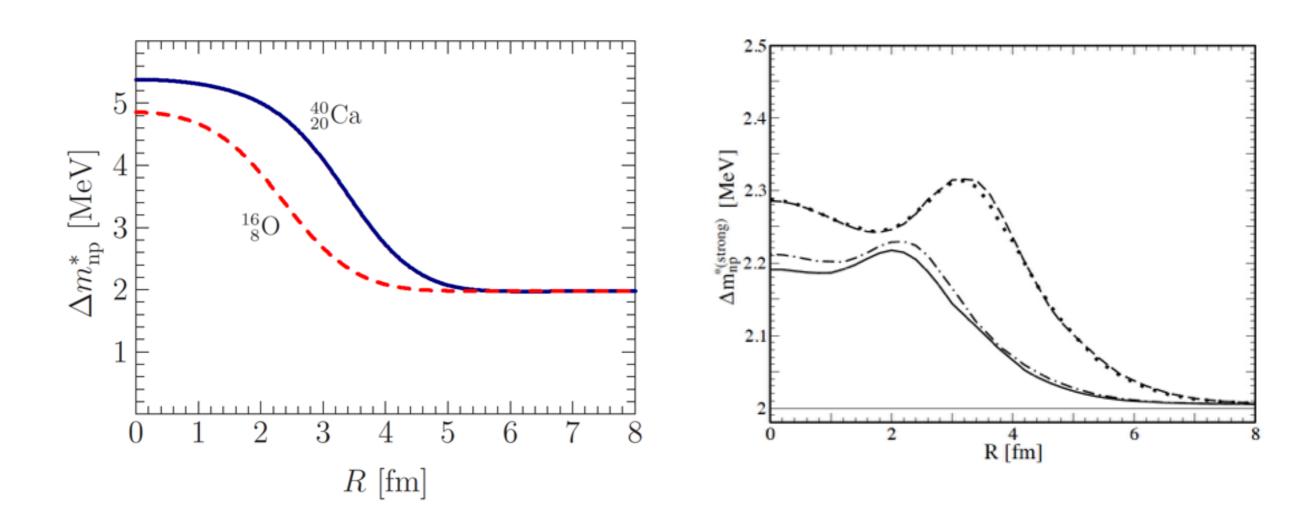
The nucleon mass in nuclei





UY [PPNL 15 (2018)] (left) and U.Meissner, A.Wirzba, A.Rakhimov, UY [EPJ A36(2008)] (right)

The neutron-proton mass difference in finite nuclei



UY [PPNL 15 (2018)] (left) and U.Meissner, A.Wirzba, A.Rakhimov, UY [EPJ A36(2008)] (right)

One can find density functionals from the reparametrization scheme

[UY, PRC88 (2013)]

Five density dependent parameters

Rearrangment (technical simplification)

$$1 + C_1 \frac{\rho}{\rho_0} = f_1 \left(\frac{\rho}{\rho_0}\right) \equiv \sqrt{\frac{\alpha_p^0}{\gamma_s}}$$

$$1 + C_2 \frac{\rho}{\rho_0} = f_2 \left(\frac{\rho}{\rho_0}\right) \equiv \frac{\alpha_s^{00}}{(\alpha_p^0)^2 \gamma_s}$$

$$1 + C_3 \frac{\rho}{\rho_0} = f_3 \left(\frac{\rho}{\rho_0}\right) \equiv \frac{(\alpha_p^0 \gamma_s)^{3/2}}{\alpha_s^{02}}$$

Shell modifications
$$F_{\pi,\tau} \to F_{\pi,\tau}^*, \quad e_{\tau} \to e_{\tau}^*, \quad m_{\pi} \to m_{\pi}^*, \quad F_{\pi,s} \to F_{\pi,s}^*, \quad e_{s} \to e_{s}^*$$

$$1 + C_{2} \frac{\rho}{\rho_{0}} = f_{2} \left(\frac{\rho}{\rho_{0}}\right) = \frac{\alpha_{s}^{00}}{(\alpha_{p}^{0})^{2} \gamma_{s}} \qquad \frac{\alpha_{e}}{\gamma_{s}} = f_{4} \left(\frac{\rho}{\rho_{0}}\right) \frac{\rho_{n} - \rho_{p}}{\rho_{0}} = \frac{C_{4} \frac{\rho}{\rho_{0}}}{1 + C_{5} \frac{\rho}{\rho_{0}}} \frac{\rho_{n} - \rho_{p}}{\rho_{0}}$$

$$1 + C_{2} \frac{\rho}{\rho_{0}} = f\left(\frac{\rho}{\rho_{0}}\right) = \frac{(\alpha_{p}^{0} \gamma_{s})^{3/2}}{(\alpha_{p}^{0})^{3/2}}$$

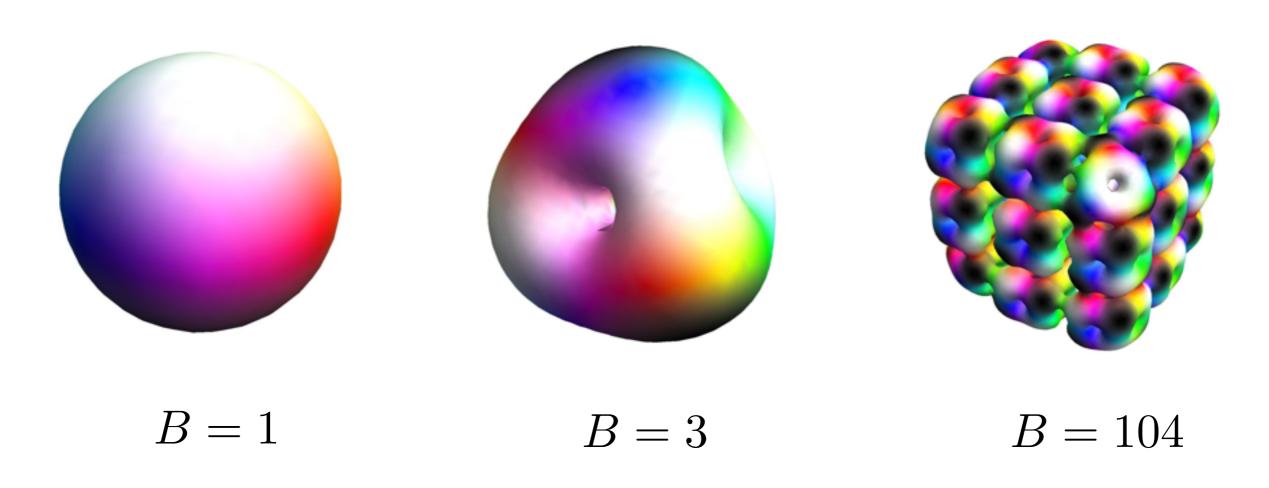
Low energy constants in nuclear at normal nuclear matter density ρ_0

	Present model	ChPT [1]	QCD sum rules [2]
$F_{\pi,t}^* / F_{\pi}$	0.37	0.74	0.79
$F_{\pi,s}^* / F_{\pi}$	0.72	< 0	0.78

^[1] U. Meissner, J. Oller, A. Wirzba, Annals Phys. 297 (2002) 27.

^[2] H. Kim, M. Oka, NPA720 (2003) 368.

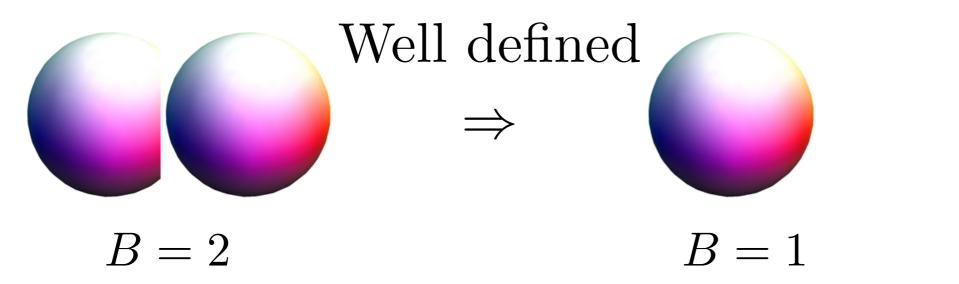
Surface of constant baryon density skyrmions [Feist, D.T.J. et al. Phys.Rev. D87 (2013)]



$$\mathcal{L} = \frac{F_{\pi}^{2}}{16} \operatorname{Tr} \left(\partial_{\mu} U \partial^{\mu} U^{\dagger} \right) - \frac{1}{16e^{2}} \operatorname{Tr} \left[U^{\dagger} \partial_{\mu} U, U^{\dagger} \partial_{\nu} U \right]^{2}$$

Changes from a nucleus to a nucleus ("calibration")

Physically consistent picture (ansatz product)



B=1

Overlapping at small distances

One can reproduce SS potential and project it into NN potential.

$$U_{\text{system}} = U(\vec{r}_1)U(\vec{r}_2)$$

$$U = \exp\{i\vec{\tau}\vec{n}F(r)\}$$

$$F(0) = \pi, \qquad F(\infty) = 0$$

Well separated at large distances

Other approaches

- Classical crystalline structures
 - Cubic structure
 [M. Kutschera et al. Phys. Rev. Lett. 53 (1984)]
 [I. R. Klebanov, Nucl. Phys. B 262 (1985)]
 - Phase structure analysis using FCC crystal
 [H.-J. Lee et al. Nucl. Phys. A 723 (2003)]
- Skyrmions in hypersphere
 - System properties from the single skyrmion in hypersphere
 [N. S. Manton and P. J. Ruback, Phys. Lett. B 181 (1986)]

Summary and outlook

Summary and Outlook

The present model describes at same footing (the corresponding phenomenology always qualitatively and in several cases quantitatively too)

the single nucleon properties

- in free space considering it as a structure-full system
- in nuclear matter (EM and EMT form factors)

as well as the properties of the whole nucleonic systems

- infinite nuclear matter properties (volume and symmetry energy properties)
- matter under extreme conditions (e.g. neutron stars)
- few/many nucleon systems (symmetric nuclei, mirror nuclei, rare isotopes, halo nuclei,...)
- nucleon knock-out reactions (lepton-nucleus scattering experiments)
- possible changes in in-medium NN interactions
- etc

Thank you very much for your attention!