From homogeneous matter straight to finite nuclei with a natural EDF Ansatz

> Panagiota Papakonstantinou Rare Isotope Science Project – IBS Daejeon, S.Korea

A rendering of the future RAON complex, under construction in Daejeon

Skyrme

T.Nakatsukasa

Edme Mariotte

My interests and motivation

Normal modes: Giant Resonances

Excitation energy \rightarrow Frequency (E= $\hbar\omega$) Fragmented strength function \rightarrow Dissipation

Overview

About density-dependent "interactions"
 Motivation for the KIDS Ansatz

- A textbook example
- EFT of dilute matter
- Fitting in homogeneous matter
 - APR pseudodata
 - Hierarchy of terms?
 - Naturalness

Mapping onto a Skyrme functional and applications in nuclei: Success!

- With no refitting
- Many prospects ahead

Density-dependent "interaction"

Original Ansatz by Skyrme [Nucl.Phys.9(1958)615]:

$$\begin{split} T &= \sum_{i < j} t_{ij} + \sum_{i < j < k} t_{ijk} & t(\mathbf{k}', \mathbf{k}) = t_0 (1 + x_0 P^{\sigma}) + \frac{1}{2} t_1 (1 + x_1 P^{\sigma}) (\mathbf{k}'^2 + \mathbf{k}^2) \\ &+ t_2 [1 + x_2 (P^{\sigma} - \frac{4}{5})] \mathbf{k}' \cdot \mathbf{k} \\ t_{12} &= \delta(\mathbf{r}_1 - \mathbf{r}_2) t(\mathbf{k}', \mathbf{k}) & + \frac{1}{2} T[\boldsymbol{\sigma}_1 \cdot \mathbf{k} \boldsymbol{\sigma}_2 \cdot \mathbf{k} - \frac{1}{3} \boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2 \mathbf{k}^2 + \text{conj.}] \\ &+ \frac{1}{2} U[\boldsymbol{\sigma}_1 \cdot \mathbf{k}' \boldsymbol{\sigma}_2 \cdot \mathbf{k} - \frac{1}{3} \boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2 \mathbf{k}' \cdot \mathbf{k} + \text{conj.}] \\ t_{123} &= \delta(\mathbf{r}_1 - \mathbf{r}_2) \delta(\mathbf{r}_3 - \mathbf{r}_1) t_3 & + V[i(\boldsymbol{\sigma}_1 + \boldsymbol{\sigma}_2) \cdot \mathbf{k}' \times \mathbf{k}], \end{split}$$

- ★ Extension: fractional-power density dependence $\frac{t}{6}(1+P_{\sigma})\rho^{\alpha}[(\mathbf{r}_{1}+\mathbf{r}_{2})/2]\delta(\mathbf{r}_{1}-\mathbf{r}_{2})$
 - Explosion of activity!
 - Gogny-type forces: similar term

Phenomenological energy-density functionals

Hundreds of EDF models for nuclei and nuclear matter

- Typically ~10 parameters fitted to nuclear properties using different data sets and fitting protocols
- Very different predictions below and above ρ₀
- Very different predictions at large isospin asymmetries
 - [cf Dutra et al., PRC85(2012)035201]

-RAON

Many questions:

What should the fraction be?

- Precise value often chosen arbitrarily
- Do we need more than one density-dependent couplings?
- More terms always provide better fits... but they still risk loss of predictive power
- Is there any guidance before we start cumbersome fitting?

Our answer so far:

- Low-order powers of p^{1/3}
- More than one powers necessary
- SNM and PNM have different "preferences"

- Chang Ho Hyun, Daegu University
 Tae-Sun Park, SKKU
- Yeunhwan Lim, IBS (now in Texas)
 - Korea
 - IBS (that's me and YHL)
 - Daegu
 - SKKU

Hana Gil, Kyungpook National University

- Yongseok Oh, Kyungpook National University
- Gilho Ahn, University of Athens, Greece
- ✤ Young-Min Kim (UNIST)

KIDS - People RAON

The elementary entity is the energy density (or energy per particle) as a unique functional of the density $E[\rho(\vec{r}), \delta(\vec{r})]$ ^[*]

- Mapping as per Hohenberg-Kohn
- The function E[p,..] is a black box
- The "interaction" which, in an orbital basis, yields the correct E[ρ,..] is an auxiliary entity with no immediate connection to an on-shell interaction
- Density-dependent couplings in the "interaction" arise even in the absence of three-nucleon interactions – fundamental requirement

To our knowledge, the most complete low-density expansion for the ground-state energy per particle of such a system is [13–16]:

$$\frac{E}{N} = \frac{k_{\rm F}^2}{2M} \left[\frac{3}{5} + (g-1) \left\{ \frac{2}{3\pi} (k_{\rm F}a_s) + \frac{4}{35\pi^2} (11-2\ln 2) (k_{\rm F}a_s)^2 + \frac{1}{10\pi} (k_{\rm F}r_s) (k_{\rm F}a_s)^2 + (0.076 + 0.057(g-3)) (k_{\rm F}a_s)^3 \right\} + (g+1) \frac{1}{5\pi} (k_{\rm F}a_p)^3 + (g-1)(g-2) \frac{16}{27\pi^3} (4\pi - 3\sqrt{3}) (k_{\rm F}a_s)^4 \ln(k_{\rm F}a_s) + \cdots \right].$$
(1)

In Eq. (1), a_s and r_s are the *s*-wave scattering length and effective range, and a_p is the *p*-wave scattering length. The spin degeneracy is denoted by *g*. For a natural system, this is an expansion in Fermi momentum k_F over the scale Λ . The mean-field correction of $\mathcal{O}(k_F^3)$ dates from 1929 [17], the $\mathcal{O}(k_F^4)$ correction from the 1950's [18,19], while the $\mathcal{O}(k_F^5)$ corrections and the logarithm were found in the 1960's [20]. The complete expression in Eq. (1) has been derived using the method of correlation functions [13,14], by expanding Goldstone diagrams [15,16], and by expanding Feynman diagrams [16]. Here we rederive and illuminate this result using EFT methods.

H.-W. Hammer, R.J. Furnstahl / Nuclear Physics A 678 (2000) 277-294

Any term of E/A ~ ρ^{1+a} can be generted by a density-dependent zero-range "interaction" ~ρ^aδ(r₁₂)
 More generally, any term of E/A ~ f(ρ) can be generted by a density-dependent "interaction" ~ f(ρ)/ρ

Plus asymmetry dependence: exchange term

We will determine an Ansatz for EDF
We will fix everything in homogeneous matter
Statistical analysis: how many terms do we need?

Nuclei will give us the unconstrained parameters:

Effective masses and spin-orbit force

°-RAON

Fetter and Walecka, "Quantum theory of many-particle systems"

- Realistic potential: strong repulsive core plus attraction at longer range
- Apply Brueckner methodology in the calculation of nuclear matter energy
- → Result: k_F^2 , k_F^3 , k_F^4 , k_F^5 , k_F^6 , ...
 - Even powers: from repulsive part
 - Odd powers: from both
- →The Fermi momentum is the relevant variable : powers of p^{1/3}

Saturation density is low...

- with respect to (effective) boson exchange range (?)
 - one-pion exchange: vanishing expectation value
 - next boson: rho with $m_{\rho} \sim 775 MeV \sim 4 fm^{-1}$
- Effective Lagrangian in powers of k_F/m_p
- Expansion of E/A in powers of k_F
 - \succ ... which means, again, powers of $\rho^{1/3}$
 - > The Fermi momentum as the relevant variable
 - k_F³ and k_F⁴ (i.e., coupling~p^{1/3}) known to be important for obtaining saturation [Kaiser et al.,NPA697(2002)]
- Dilute Fermi gas: plus logarithmic terms

To our knowledge, the most complete low-density expansion for the ground-state energy per particle of such a system is [13–16]:

$$\frac{E}{N} = \frac{k_{\rm F}^2}{2M} \left[\frac{3}{5} + (g-1) \left\{ \frac{2}{3\pi} (k_{\rm F}a_s) + \frac{4}{35\pi^2} (11-2\ln 2) (k_{\rm F}a_s)^2 + \frac{1}{10\pi} (k_{\rm F}r_s) (k_{\rm F}a_s)^2 + (0.076 + 0.057(g-3)) (k_{\rm F}a_s)^3 \right\} + (g+1) \frac{1}{5\pi} (k_{\rm F}a_p)^3 + (g-1)(g-2) \frac{16}{27\pi^3} (4\pi - 3\sqrt{3}) (k_{\rm F}a_s)^4 \ln(k_{\rm F}a_s) + \cdots \right].$$
(1)

In Eq. (1), a_s and r_s are the *s*-wave scattering length and effective range, and a_p is the *p*-wave scattering length. The spin degeneracy is denoted by *g*. For a natural system, this is an expansion in Fermi momentum k_F over the scale Λ . The mean-field correction of $\mathcal{O}(k_F^3)$ dates from 1929 [17], the $\mathcal{O}(k_F^4)$ correction from the 1950's [18,19], while the $\mathcal{O}(k_F^5)$ corrections and the logarithm were found in the 1960's [20]. The complete expression in Eq. (1) has been derived using the method of correlation functions [13,14], by expanding Goldstone diagrams [15,16], and by expanding Feynman diagrams [16]. Here we rederive and illuminate this result using EFT methods.

H.-W. Hammer, R.J. Furnstahl / Nuclear Physics A 678 (2000) 277-294

NUCLEAR ENERGY DENSITY FUNCTIONAL FOR KIDS

The Ansatz

Explore and fix homogeneous matter first Map to a Skyrme interaction for nuclei

Initial EDF Ansatz

$$\mathcal{E}(\rho,\delta) = \frac{E(\rho,\delta)}{A} = \mathcal{T}(\rho,\delta) + \sum_{i=0}^{3} c_i(\delta)\rho^{1+i/3} + c_{\ln}(\delta)\rho^2 \ln[\rho/(1\text{fm}^3)]$$

kinetic energy:

$$\mathcal{T} = \mathcal{T}_p + \mathcal{T}_n \, ; \, \mathcal{T}_{p,n} = \frac{3}{5} \frac{\hbar^2}{2m_{p,n}} x_{p,n}^{5/3} (3\pi^2 \rho)^{2/3} \, ; \, x_{p,n} \equiv \rho_{p,n} / \rho$$

asymmetry:

$$\delta = (\rho_n - \rho_p)/\rho_1$$

Nu	clear potential	Order	KIDS parameter	Skyrme parameter		
	\mathcal{E}_0	k_F^3	$c_0(\delta)$	(t_0, x_0)		
correspondence	\mathcal{E}_1	k_F^4	$c_1(\delta)$	$(t_3, x_3), \alpha = 1/3$		
with Skyrme	\mathcal{E}_2	k_F^5	$c_2(\delta)$	$(t_1, x_1), (t_2, x_2), (t'_3, x'_3), \alpha' = 2/3$		
	\mathcal{E}_3	k_F^6	$c_3(\delta)$	$(t_3'', x_3''), \alpha'' = 1$		

What terms are most important for describing homogeneous matter? Is there a low-order expansion?
We will fit all possible combinations of 1,2,3,4,5 terms to pseudodata and analyse the fits

Once we choose a robust set, verify:

Are the parameters natural?

same order of magnitude?

$$\mathcal{E}_i(\rho,\delta) = c_i(\delta)\rho^{1+i/3} = \left[\left(\frac{\nu}{6\pi^2}\right)^{1+i/3} c_i(\delta)m_{\rho}^{2+i} \right] m_{\rho} \left(\frac{k_F}{m_{\rho}}\right)^{3+i}$$

Can we use them in nuclei without refitting?

Under what conditions?

APR pseudodata and cost function

Hierarchy of powers 🖌

PP,Park,Lim,Hyun, Phys. Rev. C 97,014312

- For an equal number of terms (2,3,...), a combination of lower-power terms gives a better fit than a compination of higher-power terms
- Replacing power 1 with 3 gives higher χ

	eta=0	$\beta = \frac{1}{2}$	$\beta = 1$	
	SNM PNM	SNM PNM	SNM PNM	
k = 0	1.595335 0.397036	0.930742 0.171609	0.490650 0.071632	
k = 1	$1.801776 \ 0.346198$	1.527834 0.223333	1.089477 0.138133	
k = 0, 1	0.013044 0.022028	0.003866 0.007482	0.001151 0.001566	
k = 0, 2	0.009356 0.005804	$0.012267 \ 0.001864$	0.009435 0.000719	
k = 0, 3	$0.041156 \ 0.002160$	0.047771 0.003059	0.035831 0.003220	
k = 1, 2	0.085297 0.005936	0.108696 0.009991	0.090303 0.010973	
k = 1, 3	$0.175982 \ 0.014031$	$0.216418 \ 0.022334$	0.183405 0.023312	
k = 2, 3	0.342376 0.031821	$0.440564 \ 0.048252$	0.398009 0.050970	
k = 0, 1, 2	0.005009 0.003287	0.002588 0.001781	0.001016 0.000529	
k = 0, 2, 3	$0.006453 \ 0.002055$	$0.004070 \ 0.001540$	0.001284 0.000636	
k = 1, 2, 3	0.021528 0.005183	$0.018591 \ 0.005162$	$0.008571 \ 0.003018$	
$k=0,1,\ln$	$0.007486 \ 0.007088$	$0.003000 \ 0.002874$	0.001025 0.000696	
$k=0,3,\ln$	0.009117 0.002129	$0.006681 \ 0.001878$	0.002380 0.000930	
k = 0, 1, 2, 3	0.001616 0.000163	0.001731 0.000188	0.001015 0.000138	
$k = 0, 1, 2, \left(\frac{7}{3}\right)$	$0.001420 \ 0.000115$	0.001597 0.000136	$0.001016 \ 0.000112$	
$k=0,1,2,{ m ln}$	$0.001314 \ 0.000094$	0.001510 0.000107	0.001011 0.000092	
$k = 0, 1, 2, (\frac{1}{6})$	$0.002277 \ 0.000462$	$0.002072 \ 0.000415$	$0.000977 \ 0.000221$	

Hierarchy of powers 🖌

PP,Park,Lim,Hyun, Phys. Rev. C 97,014312

... Though for PNM the linear term k=3 seems even more efficient than k=1

	eta=0	$\beta = \frac{1}{2}$	$\beta = 1$	
	SNM PNM	SNM PNM	SNM PNM	
k = 0	1.595335 0.397036	0.930742 0.171609	0.490650 0.071632	
k = 1	$1.801776 \ 0.346198$	$1.527834 \ 0.223333$	$1.089477 \ 0.138133$	
k = 0, 1	0.013044 0.022028	0.003866 0.007482	0.001151 0.001566	
k = 0, 2	0.009356 0.005804	$0.012267 \ 0.001864$	0.009435 0.000719	
k = 0, 3	$0.041156 \ 0.002160$	0.047771 0.003059	0.035831 0.003220	
k = 1, 2	0.085297 0.005936	$0.108696 \ 0.009991$	0.090303 0.010973	
k = 1, 3	$0.175982 \ 0.014031$	$0.216418 \ 0.022334$	0.183405 0.023312	
k = 2, 3	0.342376 0.031821	$0.440564 \ 0.048252$	0.398009 0.050970	
k = 0, 1, 2	0.005009 0.003287	0.002588 0.001781	0.001016 0.000529	
k = 0, 2, 3	0.006453 0.002055	$0.004070 \ 0.001540$	0.0012 <u>84_0.000</u> 636	
k = 1, 2, 3	0.021528 0.005183	$0.018591 \ 0.005162$	$0.008571 \ 0.003018$	
$k=0,1,\ln$	0.007486 0.007088	0.003000 0.002874	0.001025 0.000696	
$k=0,3,\ln$	0.009117 0.002129	$0.006681 \ 0.001878$	0.002380 0.000930	
k = 0, 1, 2, 3	0.001616 0.000163	0.001731 0.000188	0.001015 0.000138	
$k = 0, 1, 2, (\frac{7}{3})$	0.001420 0.000115	0.001597 0.000136	0.001016 0.000112	
$k=0,1,2,{ m ln}$	$0.001314 \ 0.000094$	0.001510 0.000107	0.001011 0.000092	
$k = 0, 1, 2, (\frac{1}{6})$	$0.002277 \ 0.000462$	$0.002072 \ 0.000415$	$0.000977 \ 0.000221$	

Saturation of fits at 3 terms for SNM; higher for PNM

	$\beta = 0$	$\beta = \frac{1}{2}$	$\beta = 1$		
	SNM PNM	SNM PNM	SNM PNM		
k = 0	1.595335 0.397036	0.930742 0.171609	0.490650 0.071632		
k = 1	$1.801776 \ 0.346198$	$1.527834 \ 0.223333$	$1.089477 \ 0.138133$		
k = 0, 1	0.013044 0.022028	0.003866 0.007482	0.001151 0.001566		
k=0,2	$0.009356 \ 0.005804$	$0.012267 \ 0.001864$	$0.009435 \ 0.000719$		
k=0,3	0.041156 0.002160	0.047771 0.003059	0.035831 0.003220		
k = 1, 2	0.085297 0.005936	$0.108696 \ 0.009991$	0.090303 0.010973		
k = 1, 3	$0.175982 \ 0.014031$	$0.216418 \ 0.022334$	$0.183405 \ 0.023312$		
k = 2, 3	0.342376 0.031821	$0.440564 \ 0.048252$	0.398009 0.050970		
k = 0, 1, 2	0.005009 0.003287	0.002588 0.001781	0.001016 0.000529		
k = 0, 2, 3	$0.006453 \ 0.002055$	$0.004070 \ 0.001540$	$0.001284 \ 0.000636$		
k=1,2,3	0.021528 0.005183	$0.018591 \ 0.005162$	$0.008571 \ 0.003018$		
$k=0,1,{ m ln}$	$0.007486 \ 0.007088$	$0.003000 \ 0.002874$	$0.001025 \ 0.000696$		
$k=0,3,\ln$	0.009117 0.002129	$0.006681 \ 0.001878$	0.002380 0.000930		
k = 0, 1, 2, 3	0.001616 0.000163	$0.001731 \ 0.000188$	$0.001015 \ 0.000138$		
$k = 0, 1, 2, \left(\frac{7}{3}\right)$	$0.001420 \ 0.000115$	$0.001597 \ 0.000136$	$0.001016 \ 0.000112$		
$k=0,1,2,{ m ln}$	$0.001314 \ 0.000094$	$0.001510 \ 0.000107$	$0.001011 \ 0.000092$		
$k = 0, 1, 2, (\frac{1}{6})$	$0.002277 \ 0.000462$	$0.002072 \ 0.000415$	0.000977 0.000221		

A statistical analysis with two sets of pseudodata (APR,FP) indicated that a higher number of terms would lead to overfitti ng (stiff vs sloppy parameters)

PP,Park,Lim,Hyun, Phys. Rev. C 97,014312

Fitting results

	β	Matter	c_0	c_1	c_2	c_3	ϱ_0	\mathcal{E}_0	K_{∞}
								J	L
(0)	0	SNM	-863.36	1945.05	-2060.20	1129.96	0.178	-15.4	215
fits	0	PNM	-483.96	1433.54	-2119.68	1385.22		34.2	55.9
	1	SNM	-753.98	1389.20	-1171.03	678.87	0.177	-15.8	234
SNM fro	2	PNM	-451.91	1254.32	-1812.62	1221.33		34.4	56.0
	1	SNM	-613.13	620.22	154.72	-46.05	0.171	-16.1	247
	1	PNM	-408.56	991.76	-1323.81	937.96		34.0	54.9
- ، ر (*ر	1 1	SNM	-648.72	676.25	200.92	-98.73	0.160	-16.0	240
IM from E ₀ , K _{inf} : and n	ad-1	PNM	-451.91	1254.32	-1812.62	1221.33		32.8	47.9
	- 1 9	SNM	-664.52	763.55	40.13	0.00	0.160	-16.0	240
SN P ₀ , ad-1	ad-2	PNM	-411.13	1007.78	-1354.64	956.47		33.5	50.5

c₀,c₁ robust
 For SNM, also c₂, c₃

Fitting results

~RAON

Symmetric nuclear matter:

- Set ρ_0 =0.16 fm -3, E₀=-16MeV, K₀ = 240 MeV
- Determine c_{0,1,2}(0) (analytical expressions)
- Leads to Q₀=-373 MeV
- Pure neutron matter:
 - Fit c_{0,1,2,3}(1) to the APR pseudodata for PNM
 - Resulting symmetry-energy parameters:

J=33MeV, L=49MeV, K_{sym} =-157MeV, Q_{sym} =586MeV

Interpolations and extrapolations

Calculations with chiral interactions reproduced, although they were not used for fitting

Comparisons with other models

~RAON

What terms are most important for describing homogeneous matter?

- We will fit all possible combinations of 1,2,3,4,5 terms to the APR pseudodata and analyse the fits
- Once we choose a robust set, verify:
- Are the parameters natural?

same order of magnitude?

$$\mathcal{E}_i(\rho,\delta) = c_i(\delta)\rho^{1+i/3} = \left[\left(\frac{\nu}{6\pi^2}\right)^{1+i/3}c_i(\delta)m_{\rho}^{2+i}\right]m_{\rho}\left(\frac{k_F}{m_{\rho}}\right)^{3+i}$$

Can we use them in nuclei without refitting?

Under what conditions?

Power hierarchy and naturalness

✓ Fermi momentum calculus and power hierarchy: ✓ |E₀ | > | E₁ | > |E₂ | > |E₃ | within a large density range ✓ For SNM up to ~1fm⁻³, for PNM up to 0.05fm⁻³.

"Natural" Ansatz

At the very least: reproduce homogeneous matter (to the best of our knowledge)

- Better: based on a power expansion
 - Underlying EFT??
- Best: coefficients showing naturalness

~RAON

What terms are most important for describing homogeneous matter?

We will fit all possible combinations of 1,2,3,4,5 terms to the APR pseudodata and analyse the fits

Once we choose a robust set, verify:

Are the parameters natural?

same order of magnitude?

$$\mathcal{E}_i(\rho,\delta) = c_i(\delta)\rho^{1+i/3} = \left[\left(\frac{\nu}{6\pi^2}\right)^{1+i/3}c_i(\delta)m_\rho^{2+i}\right]m_\rho\left(\frac{k_F}{m_\rho}\right)^{3+i}$$

Can we use them in nuclei without refitting?

PROOF OF PRINCIPLE: APR TAKEN TO NUCLEI

Skyrme parameters by reverse engineering

$$v_{i,j} = (t_0 + y_0 P_{\sigma})\delta(r_{ij}) + \frac{1}{2}(t_1 + y_1 P_{\sigma})[\delta(r_{ij})k^2 + \text{h.c.}] + (t_2 + y_2 P_{\sigma})k' \cdot \delta(r_{ij})k + iW_0 k' \times \delta(r_{ij}) k \cdot (\sigma_i - \sigma_j) + \frac{1}{6}\sum_{n=1}^{3} (t_{3n} + y_{3n} P_{\sigma})\rho^{n/3}\delta(r_{ij}), \qquad (3)$$

$$\begin{split} t_0 &= \frac{8}{3} c_0(0) \,, \quad y_0 = \frac{8}{3} c_0(0) - 4 c_0(1) \,, \\ t_{3n} &= 16 c_n(0) \,, \quad y_{3n} = 16 c_n(0) - 24 c_n(1) \,, \quad (n \neq 2) \\ t_{32} &= 16 c_2(0) - \frac{3}{5} \left(\frac{3}{2} \pi^2\right)^{2/3} \theta_s \,, \\ y_{32} &= 16 c_2(0) - 24 c_2(1) + \frac{3}{5} (3\pi^2)^{2/3} \left(3\theta_\mu - \frac{\theta_s}{2^{2/3}}\right) \\ \text{with} \end{split}$$

$$\begin{array}{c} \theta_s \equiv 3t_1 + 5t_2 + 4y_2 \,, \quad \theta_\mu \equiv t_1 + 3t_2 - y_1 + 3y_2 \,. \end{array}$$

unconstrained from homogenous matter \rightarrow vary freely But the total $c_2(0)$, $c_2(1)$ will remain unchanged!

For given KIDS functional $c_i(0)$, $c_i(1)$ (i.e., fixed SNM, PNM)

- Chose effective masses (vary at will)
- $AII t_i$, y_i are now known except t_1, t_2, x_1, x_2
- The two combinations θ_s, θ_μ also known (eff. masses)

Two independent free parameters plus spin-orbit W₀

- Fit only to ⁴⁰Ca, ⁴⁸Ca, ²⁰⁸Pb
- Only bulk properties: E/A, charge radius: 6 data

Binding energy, charge radii

Neutron skin thickness

Model	t_0	t_1	t_2	t_{31}	t_{32}	t_{33}	(a_1,a_2,a_3)	W_0	$D_E[\%]$	60 Ca: E/A [MeV]
	y_0	y_1	y_2	y_{31}	y_{32}	y_{33}			$D_R[\%]$	R_c [fm]
KIDS0	-1772.04	275.72	-161.50	12216.73	571.08	0.00	(1/3, 2/3, 1)	108.35	0.32	7.6561
	-127.52	0.000	0.000	-11969.99	29485.52	-22955.28			0.56	3.6465
K240 1 0 0 82	-1772.04	270.52	-355.95	12216.73	642.12	0.00	(1/3, 2/3, 1)	97.61	0.41	7.6993
K240,1.0,0.02	-127.52	235.79	374.20	-11969.99	29224.07	-22955.28			0.56	3.6416
K240.0.7.0.82	-1772.04	448.99	-279.45	12216.73	-2572.65	0.00	(1/3, 2/3, 1)	135.24	0.26	7.6464
R240,0.7,0.82	-127.52	-345.72	234.74	-11969.99	41318.69	-22955.28			0.44	3.6494
V940.0.0.1.00	-1772.04	315.97	-527.58	12216.73	-191.34	0.00	(1/3, 2/3, 1)	107.58	0.38	7.6933
R240,0.9,1.00	-127.52	-56.87	480.10	-11969.99	36289.12	-22955.28			0.57	3.6370
K220 1 0 0 82	-1938.71	281.04	-479.05	15900.76	-2750.91	0.00	(1/3, 2/3, 1)	88.96	0.52	7.7701
11220,1.0,0.02	-294.19	236.07	388.03	-8285.96	25831.04	-22955.28			0.94	3.6524
K220 0 7 0 82	-1938.71	466.23	-439.68	15900.76	-5965.68	0.00	(1/3, 2/3, 1)	133.36	0.44	7.6807
K220,0.1,0.82	-294.19	-247.10	422.10	-8285.96	37925.67	-22955.28			0.82	3.6663
GSkI [32]	-1855.45	397.23	264.63	13858.00	-2694.06	-319.87	(1/3, 2/3, 1)	169.57	0.20	7.6294
	-219.02	-698.59	-478.13	1747.29	3200.69	146.94			0.68	3.6640
SLy4 [37]	-2488.91	486.82	-546.39	13777.00			(1/6, -, -)	122.69	0.38	7.7030
	-2075.75	-167.37	546.39	18652.68					0.91	3.6734

$$D_O = \frac{1}{N_{\text{nucl}}} \sum_{i=1}^{N_{\text{nucl}}} \left| \frac{O_i^{\text{expt}} - O_i^{\text{cal}}}{O_i^{\text{expt}}} \right|$$

Single-particle levels

- For given immutable EoS (no refitting), a Skyrme-type functional can easily be reverseengineered
- Bulk, static properties: practically independent of the effective mass!
 - We can vary EoS parameters and m* independently and examine effect on observables
- Effective mass: relevant for dynamics

preliminary

GIANT RESONANCES

- You see it first: breathing mode
- Giant dipole resonance of ⁶⁸Ni

Breathing mode of ²⁰⁸Pb

ib 기초과학연구원

KIDS-ad2: Predictions for ⁶⁸Ni (not fitted)

~ RAON

Summary

• RAON

Natural Ansatz + Skyrme formalism: KIDS functional

- 3 terms in expansion sufficient for SNM: { ρ_0 , E_0 , K_0 }
- 4 terms necessary for neutron matter and symmetry energy: {J, L, K_{sym}, Q_{sym}}
 Skyrme- type
- From fixed EoS straight to nuclei

Skyrme- type "interaction" by reverse engineering

- APR: static, bulk nuclear properties insensitive to
 - Effective-mass parameters
 - High-order parameters of symmetry energy

Flexibility to choose parameter values at will for sensitivity studies or adjust them to

- Dynamical observables (e.g., giant resonances)
- Ab initio pseudodata (polarized matter, neutron drops...
- Astrophysical and HIC constraints

RIST Rare Isotope Science Project

Thank you!